Disclaimer:

The views and/or opinions expressed in the presentation are those of the speaker(s) and do not necessarily represent the views of ASTM International. ASTM International is not endorsing, sponsoring, or recommending a particular company, product or application. ASTM International is not responsible for any damages arising out of a party's reliance upon or use of the content contained in this presentation.
Positioning Respirators, Medical Face Masks, and Barrier Face Coverings for Meeting Regulatory Requirements Applied in the United States

Presentation to Jordan Stakeholders

Jeffrey O. Stull (ASTM PPE Consultant)
Presenter – Jeffrey O. Stull, M.S. ChE

Relevant Experience and Qualifications

• 37 years of experience in PPE
 – 5 years in U.S. Coast Guard: fire and hazardous materials protection
 – 5 years Texas Research Institute: PPE research, testing & certification
 – 27 years International Personnel Protection: full range of PPE services
 o R&D projects related to PPE materials, design, development, testing
 o Positioning of products against specific standards and regulatory requirements

• Involvement in PPE standards development
 – Original author for ASTM F1862 fluid resistance test; F2100 specification on medical face masks; ASTM F1671 viral penetration resistance test
 – Technical lead for ASTM F3502 standard for “barrier face coverings”
 – Former lead U.S. Delegate to ISO TC94/SC13 on Protective Clothing
Learning Objectives

1. How different products work to capture expelled particulate and droplets
2. The degree to which face covering products provide protection to the wearer for the inhalation of potentially infectious particulates
3. The principal similarities and contrasts between respirators, medical masks, and face coverings
4. Different options for how products can be manufactured to meet U.S. standards and requirements and how related requirements can be applied locally for end users including healthcare and the general population
5. The utility of the new ASTM F3502 standard and changes being considered in its current revision
How PPE Affects Disease Transmission
Infectious Disease Transmission Modes

Transmission mode affects PPE selection

- **Contact**: use of gloves, other clothing and equipment to prevent transfer to body

- **Droplet**: need to prevent deposition of small droplets on personal surfaces (gloves, gowns, faceshields, masks)

- **Airborne**: additional forms of respiratory protection

Figure from: https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-disease/2014/an-introduction-to-infectious-disease/
SARS-CoV-2 Transmission

The principal mode by which people are infected with SARS-CoV-2 (the virus that causes COVID-19) is through exposure to respiratory fluids carrying infectious virus. Exposure occurs in three principal ways:

1) Inhalation of very fine respiratory droplets and aerosol particles,
2) Deposition of respiratory droplets and particles on exposed mucous membranes in the mouth, nose, or eye by direct splashes and sprays, and
3) Touching mucous membranes with hands that have been soiled either directly by virus-containing respiratory fluids or indirectly by touching surfaces with virus on them.

Source Control versus Wearer Protection

- In healthcare, historically “masks” used for infection control as a means for source control:
 - To prevent healthcare provider infection of patient
- Wearer protection for healthcare provider with known risks for exposure to infectious diseases
 - Principal examples: Tuberculosis, some forms of influenza, recent epidemics
Preventing Transmission by Source Control

- Source control refers to use of well-fitting cloth masks, facemasks, or respirators to cover a person’s mouth and nose to prevent spread of respiratory secretions when they are breathing, talking, sneezing, or coughing
 - For face-worn products, product filtration and leakage are key factors

Preventing Transmission by Protection

- Product prevents exposure to wearer by keeping infectious droplets or aerosols from being inhaled
- Factors affecting effectiveness:
 - Droplet/aerosol size
 - Filtration media capture rates
 - Product seal or leakage on individual
 - Wear comfort and function

Filtration Efficiency Differences

Source: Lindsley et al., Aerosol Science and Technology; https://www.medrxiv.org/content/10.101/2020.10.05.20207241v1
Differences between Respirators, Medical Face Masks, and Face Coverings
Respirators

- Respirators typically used in healthcare include:
 - Filtering facepiece respirators (disposable)
 - Elastomeric half facepiece air-purifying respirators or **APR** (reusable facepiece, disposable filters)
 - Powered air-purifying respirators **PAPR** (reusable blower, other components; disposable filters)

- Respirators offer varying degrees of protection from inhalation of contaminants
U.S. Filtering Facepiece Respirator Classifications

NIOSH RESPIRATOR FILTER CLASSES

NIOSH classifies the filtering media in respirators based on its resistance to oil and its particle filtering efficiency. The resistance to oil is designated as "N", "R", or "P". Particle filtering efficiency is designated "95", "99", or "99.97".

N SERIES
- Not resistant to oil
- N95, N99, N100
 - Filters at least 95%, 99%, or 99.97% of airborne particles

R SERIES
- Somewhat resistant to oil
- R95, R99, R100
 - Filters at least 95%, 99%, or 99.97% of airborne particles

P SERIES
- Strongly resistant to oil/oil proof
- P95, P99, P100
 - Filters at least 95%, 99%, or 99.97% of airborne particles

When products containing oil (like fuel, lubricating or hydraulic oils, solvents, paints, and pesticides) are sprayed or used in processes producing aerosols or droplets, the oil component may become airborne.

NIOSH Particulate Filter Classification

Respirator filters (such as disposable respirators and reusable respirator filters) must meet filtration standards from the National Institute for Occupational Safety and Health. The nine filtration classifications are shown in the chart below.

<table>
<thead>
<tr>
<th>OIL RESISTANCE</th>
<th>FILTER EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Not resistant to oil)</td>
<td>95 (≥95%)</td>
</tr>
<tr>
<td>R (Resistant to oil; time-use limitations)</td>
<td>99 (≥99%)</td>
</tr>
<tr>
<td>P (Oil proof; time-use limitations)</td>
<td>100 (≥99.97%)</td>
</tr>
</tbody>
</table>

© ASTM International
Key Filtering Facepiece Respirator Tests

- Filtration efficiency
- Airflow resistance for inhalation
- Airflow resistance for exhalation
- Exhalation valve leakage
- Total inward leakage*
- Carbon dioxide buildup*
NIOSH Filtration Testing

- Test method based on 42 CFR Part 84
 - Uses poly-disperse sodium chloride particles
 - Count medium diameter of 75 nm diameter
 - Mass median aerodynamic diameter of 0.3 μm
 - Airflow rate of 85 Liters/min
- Evaluates full product (not just material)
- Provides greater challenge than other filtration tests (much better at discriminating filtration performance)
Medical Face Masks (US ASTM F2100)

Understanding ASTM levels of protection is Key

<table>
<thead>
<tr>
<th>ASTM F2100-11 Levels</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1: low barrier protection</td>
<td>Resistance to penetration by synthetic blood, minimum pressure in mm Hg for pass result: 80 mm Hg, Differential pressure, mm H2O/cm2 (Breathability): <4.0, Bacterial filtration efficiency: ≥95%, ≤95%, Sub-micron particulates filtration efficiency at 0.1 micron: ≥95%, ≤95%, Flame spread: Class 1</td>
</tr>
<tr>
<td>Level 2: moderate barrier protection</td>
<td>For low to moderate levels of aerosols, spray and/or fluids: 120 mm Hg, Resistance to penetration by synthetic blood, minimum pressure in mm Hg for pass result: <5.0, Differential pressure, mm H2O/cm2 (Breathability): ≥98%, ≤98%, Bacterial filtration efficiency: ≥98%, ≤98%, Sub-micron particulates filtration efficiency at 0.1 micron: ≥98%, ≤98%, Flame spread: Class 1</td>
</tr>
<tr>
<td>Level 3: maximum barrier protection</td>
<td>For heavy levels of aerosols, spray and/or fluids: 160 mm Hg, Resistance to penetration by synthetic blood, minimum pressure in mm Hg for pass result: <5.0, Differential pressure, mm H2O/cm2 (Breathability): ≥98%, ≤98%, Bacterial filtration efficiency: ≥98%, ≤98%, Sub-micron particulates filtration efficiency at 0.1 micron: ≥98%, ≤98%, Flame spread: Class 1</td>
</tr>
</tbody>
</table>
Other Key Performance Tests in US ASTM F2100

- Bacterial filtration efficiency
- Sub-micron particle filtration efficiency
 - Different than respirator test method
- Differential pressure
- Flammability
- Microbial cleanliness

Bacterial Filtration Efficiency Test Apparatus

16 CFR Part 1610 Flammability Test Apparatus
U.S. Surgical N95 Respirators

- N95 respirator that has been approved by NIOSH that is also subject to specific additional requirements normally applied to medical face masks
 - Fluid resistance
 - Flammability
 - Biocompatibility (cytotoxicity, skin irritation, sensitization)

- Joint approval process between U.S. NIOSH and U.S. FDA
Face Coverings

New ASTM F3502, Specification on Barrier Face Covering

- Purpose
 - Primary: SOURCE CONTROL
 - Secondary: Degree of inhalation protection to wearer

- Key attributes
 - Submicron filtration efficiency
 - Breathability
 - Leakage

- Conformity assessment
 - Key attribute testing by accredited laboratories; results available to buyer
Varying Product Definitions

<table>
<thead>
<tr>
<th>Respirators</th>
<th>Medical Face Masks</th>
<th>Barrier Face Coverings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal protective equipment (PPE) designed to protect the wearer from inhalation of hazardous atmospheres</td>
<td>an item of protective clothing designed to protect portions of the wearer's face, including the mucous membrane areas of the wearer's nose and mouth, from contact with blood and other body fluids during medical procedures</td>
<td>a product worn on the face specifically covering at least the wearer's nose and mouth with the primary purpose of providing source control and to provide a degree of particulate filtration to reduce the amount of inhaled particulate matter</td>
</tr>
</tbody>
</table>
Fit: Respirators vs. Masks vs. Face Coverings

- Provides quantitative measurement of mask leakage using human subject panel
Application of Leakage Information

<table>
<thead>
<tr>
<th>Outward Leakage of Face Covering From Infected Source</th>
<th>No Face Covering (100% Leakage)</th>
<th>80%</th>
<th>60%</th>
<th>40%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Face Covering (100% Leakage)</td>
<td>15 min</td>
<td>19 min</td>
<td>25 min</td>
<td>38 min</td>
<td>75 min</td>
</tr>
<tr>
<td>80%</td>
<td>19 min</td>
<td>23 min</td>
<td>31 min</td>
<td>47 min</td>
<td>94 min</td>
</tr>
<tr>
<td>60%</td>
<td>25 min</td>
<td>31 min</td>
<td>42 min</td>
<td>1 hr</td>
<td>2 hr</td>
</tr>
<tr>
<td>40%</td>
<td>38 min</td>
<td>47 min</td>
<td>1 hr</td>
<td>1.5 hr</td>
<td>3 hr</td>
</tr>
<tr>
<td>20%</td>
<td>75 min</td>
<td>94 min</td>
<td>2 hr</td>
<td>3 hr</td>
<td>6.25 hr</td>
</tr>
</tbody>
</table>

*Assumes that, for a dose with a high probability of infection, the time to infectious dose = 15 min (CDC contact tracing time). Also assumes perfect mixing of the aerosol in the space.
Regulatory Requirements for Respirators, Masks, and Face Coverings (Conformity Assessment)
Key Components of Conformity Assessment

- Risk assessment to determine level needed
- Selection of suitable standard or set of requirements to be applied to product
- Identification of responsibility for carrying out testing and determining when testing is conducted
- Application of quality management system
- Requirements for product labeling
- Decision on who provides declaration of conformity
- Process to list products and conduct surveillance for continued conformity
U.S. Product Conformity Requirements

<table>
<thead>
<tr>
<th>Respirators</th>
<th>Medical Face Masks</th>
<th>Face Coverings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulations set by NIOSH; NIOSH tests and approves all respirators; manufacturer must pass initial audit and is subject to future audits</td>
<td>Subject to FDA oversight as a "medical device"; suppliers must submit detailed technical information/test data for product to be "cleared"</td>
<td>While recently considered a "medical device", conformity assessment established by manufacturer declaration but required independent tests</td>
</tr>
</tbody>
</table>
Key Aspects for U.S. Respirator Approval

Required Parts of Application
- Detailed application form
- Engineering drawing(s)
- Proposed labeling/instructions
- Pre-submission test data
- Detailed product quality plan with inspection details
- Complete quality management system

Important Considerations
- NIOSH performs testing to confirm compliance
- NIOSH expects manufacturer to have operational QMS with records showing history that are verified by audit
- NIOSH conduct surveillance of product manufacturer while product is certified
U.S. FDA Medical Device Clearance Process

- **Class I devices**
 - Manufacturer meets general controls
- **Class II devices (e.g., medical masks, gowns)**
 - 510(k) submission
 - Demonstration of substantial equivalence to predicate product
 - Use of recognized standards
 - Manufacturer provision of safety and efficacy data
 - Good manufacturing practice
FDA Clearance of Medical Masks

Class II Devices Require 510(k)

- FDA provides guidance on requirements
- Manufacturer provides technical details, test data, and proposed labeling on product
- Manufacturer shows that product is substantially equivalent to existing cleared product

Important Considerations

- FDA recognizes specific ASTM F2100 for making mask claims
- Sampling requirements are extensive – AQL of 4%, e.g., of 32 specimens, only 3 can fail for primary tests
- Manufacturers must register each year and meet various “general controls”
Non-respirator/Non-mask Conformance

Variety of different conformity assessment practices are applied

- ASTM F3050 provides range of practices related to conformity assessment of PPE
 - Addresses who decides frequency of testing, qualification of testing laboratories, quality system requirements, who declares conformance
- Combination of practices used for products not subject to government regulations
 - Lowest level is self-declaration by manufacturer without requirements for laboratories, registered quality systems, or certification
 - Highest level is full third-party certification
 - Popular hybrid is manufacturer self-declaration supported by use of test data from accredited laboratories
Key Decisions for Instituting National Program

1. Decide on standard(s) to be applied
2. Determine how conformity assessment will be carried out
3. Identify laboratory capabilities to support both product qualification and manufacturing quality programs
4. Establish strategy to determine surveillance of in-country product and evaluate domestic or imported products
5. Create program to fully cover all stages of mask standardization, manufacturing, conformity assessment, and surveillance
Explanations of ASTM F3502 Specifications on Barrier Face Coverings

ASTM INTERNATIONAL
Helping our world work better
Design Requirements

Standard avoids being design-restrictive

- Kept to a minimum to permit product type flexibility
 - Not be made of irritating or toxic materials
 - Not pose a flammability hazard
 - Cover at least nose and mouth
 - Fit snugly against the wearers face
 - Have a means of head retention
 - Not employ exhaust valves or open vents
 - Be permitted to be available in a universal or multiple sizes (including pediatric sizing)
- Manufacturer required to conduct a “design analysis” to assess leakage around edges of BFCs on intended user population
Optional Leakage Test

Quantifies key characteristic of performance

- Allows measuring BFC leakage
 - Around edges and through material
- Can be performed to support or supplement design analysis
- References ASTM F3407 with changes:
 - Smaller test subject panel
 - Representation of different facial dimensions
 - No specific passing criteria

© ASTM International
Performance Requirements

Assessment of key attributes

Sub-micron particulate filtration efficiency
- Establishes % particles blocked by product
- Higher values are better

Airflow resistance (inhalation)
- Measures resistance to air passing through product
- Lower values are better

Applies to single use and reusable products
- Reusable products are evaluated before and after maximum number of cycles for manufacturer specified laundering/cleaning procedures

© ASTM International
Test Methods

Analogous methodology as applied to respirators

- Test method based on NIOSH procedures
 - Uses NaCl particles aerosol with diameter of 75 nm (aerodynamic diameter of 0.3 μm)
 - Airflow rate of 85 Liters/min adjusted to face velocity of 10 cm/s
- Evaluates full product (not just material)
- Utilizes holder to position face covering test sample on test apparatus
- Provides greater challenge than other filtration tests (much better at discriminating filtration performance)
- Allows for concurrent measurement of airflow resistance

Common test platform, globally available
Performance Classification

Multiple Levels Allowing Tradeoffs

<table>
<thead>
<tr>
<th>Property</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtration efficiency</td>
<td>$\geq 20%$</td>
<td>$\geq 50%$</td>
</tr>
<tr>
<td>Airflow resistance</td>
<td>$\leq 15 \text{ mm } H_2O$</td>
<td>$\leq 5 \text{ mm } H_2O$</td>
</tr>
</tbody>
</table>

Each property is classified separately.

![Filtration Efficiency Diagram](image)

- **60\%** Filtration Efficiency
 - 20\% Lower Performance
 - 50\% Higher Performance

![Breathability Diagram](image)

- 8 Mm H_2O
 - 15 mm H_2O Lower Performance
 - 5 mm H_2O Higher Performance
Labeling and User Information

Identifies and documents compliant products

- Product label
 - Manufacturer name
 - Product name or model
 - "MEETS ASTM F3502"
- Package label (smallest unit/package)
 - Product performance property classes
 - Materials of constructions
 - Month/year of manufacture
 - Lot or trace number (if applicable)
 - Indication of single use or reusable
 - Expiration date (if applicable)
Current CDC/NIOSH Website F3502 Postings

https://www.cdc.gov/PPEInfo/RG/FaceCoverings

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product Name or Model</th>
<th>Single Use/Reusable</th>
<th>Particulate Filtration Efficiency(%)</th>
<th>Breathability (mm H2O)</th>
<th>Leakage Ratio¹</th>
<th>Workplace Performance/Workplace Performance Plus Rating²</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M®</td>
<td>Advanced Filtering Face Mask AFFM</td>
<td>Single</td>
<td>99% - Level 2</td>
<td>13 mm - Level 1</td>
<td>73</td>
<td>Workplace Performance Plus</td>
</tr>
<tr>
<td>Contact: Linda Eichinger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aries®</td>
<td>Aries Barrier Face Covering</td>
<td>Single</td>
<td>83% - Level 2</td>
<td>5 mm - Level 2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Contact: Jane Foreman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulse Fashion, Inc.®</td>
<td>Hope Mask</td>
<td>Reusable</td>
<td>22% - Level 1</td>
<td>12 mm - Level 1</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Contact: Donald Roberts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckeye Mask Company®</td>
<td>PFM-153081</td>
<td>Reusable</td>
<td>24% - Level 1</td>
<td>5 mm - Level 2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Contact: Carla Macklin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18 products have been listed through early October (the first four listings are shown)

© ASTM International
Proposed Revisions to ASTM F3502

- Changes to introduction
- Use of the term aerosol to refer to particles and droplets
- Clarification of product performance for both source control and inhalation protection
- Restriction of claims for anti-viral or anti-microbial performance
- Better definition for using of non-toxic or irritating materials
- Procedures to address logos and embellishments
- Updates to conformity assessment requirements
- Provision of sample declaration form
Key Areas of Debate ASTM F3502

- More explicit details in test procedures to accommodate non-respirator-like products
- Possible use of standardized test fixture
- Mandatory application of quantitative leakage testing
- Establishment of true source control testing approach

Simple changes like to be resolved early 2022; more complicated changes will require more time
Questions?