

'Slot-in' biotechnology for more sustainable chemical production

Product Guide Bio2Amine™

We make biology operate like chemistry.

"Chemistry for biology"

We are **redefining chemical manufacturing**, bringing together the **elegance of biology** and **intensification of modern chemistry**.

Our products allow you to:

- replace your heavy-metal catalyst for hydrogenation reactions, or
- decarbonise your existing biocatalysis processes
- within existing infrastructure

Our Products:

About Us

Н

Product Range	Formula*	Application
Bio2Amine™	Hyd/C	Nitro-group reduction to amine
H ₂ BioCat: NADH-Regen	Hyd/C/E	NAD(H) co-factor recycling; Asymmetric double bond reductions;
H ₂ BioCat: Flav-Regen	Hyd/E	Flavin co-factor recycling

*Hyd = HydRegen biocatalyst formulation; /C = on-carbon; E = Bespoke cofactor-dependent enzyme

 NO_2

 H_2

Bio2Amine[™] Catalyst:

Carbon-supported biocatalyst system for clean aromatic amine production *via* nitro group reduction _R.

- Complete reduction to amine
- Uses established hydrogenation protocols
- No additives or cofactors necessary (compatible with a range of these if preferred)
- Broad substrate scope
- Proven chemoselectivity
- Multi-day catalyst stability

Catalyst evaluation samples

- High hit rate
- Designed for 10 mL 3-5 g/L reactions
- Operate in typical benchtop hydrogenation setups
- HydRegen offer joint development for intensification and scale-up

Demonstrated catalyst re-use, with up to 15 re-use cycles and >3 million total turnovers in a batch set-up

>99 % conversion of >35 substrates

Bio2Amine[™] is a biocatalytic hydrogenation catalyst with similar handling to common M/C-type catalysts. Using HydRegen technology to provide **industrial reactions under mild conditions** we are:

- Iowering energy requirements
- improving specificity
- simplifying downstream processing

Bio2Amine™ is recommended for **nitro-group reductions**.

Catalyst + H₂

Bio2Amine[™] Optimal Operating Conditions:

Bio2Amine[™]

Product Guide

Η

Example Reactions:

		Tem	Temp (°C) Co- solvents		Carbon mesh sizes		Мо	de	Titre	(g/L)		
Product	Reaction	15-40	40+	Miscible	Immiscible	nano	milli	macro	Batch	Continuous	0-50	51+
APIs / Precui	rsors											
Alfuzosin (intermediate)		\bigcirc			\bigcirc		\bigcirc	\bigcirc		\bigcirc		\bigcirc
Dipyridamole (intermediate)		\bigcirc			\bigcirc		\bigcirc	\bigcirc		\bigcirc		\bigcirc
			Optir	nal ope	rating co	ondition	IS:	Curre	ent oper	ational	envelop	e:

Example Reactions:

Example Reactions:

Optimal operating conditions: Current operational envelope:

For more products, bespoke processes and intensification...

E: Products@hydregenoxford.com

Begbroke Science Park, Oxford, OX5 1PF, U.K. W: https://hydregenoxford.com E: products@hydregenoxford.com Copyright HydRegen Ltd. | Version ID: B2APB-45544

For more information get in touch E: Products@hydregenoxford.com

We make biology operate like chemistry.

"Chemistry for biology"

'Next generation chemical manufacturing'

Technical Information Sheets

We make biology operate like chemistry.

"Chemistry for biology"

Bio2Amine[™] for Alfuzosin "Next generation chemical manufacturing"

2-amino-4,5-dimethoxybenzamide Precursor for pharmaceutical alfuzosin

API

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 3,4-dimethoxy-6-nitrobenzamide, Bio2Amine[™] facilitates highly selective hydrogenation to 2-amino-4,5-dimethoxybenzamide with no observable intermediates or side products. The catalyst shows selectivity over the unsaturated amide functionality.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 20 g/L

Solvents: ≤ 50 % miscible organic solvent in water

Miscible solvents:	NMP	MeCN
\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNALF-45544

HydRegen

Bio2Amine[™] for Dipyridamole "Next generation chemical manufacturing"

5-Aminoorotic acid (5-Amino-6-carboxy-2,4-dihydroxypyrimidine) Precursor for pharmaceutical dipyridamole

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 5-nitroorotic acid, Bio2Amine[™] facilitates highly selective hydrogenation to 5-aminoorotic acid with no observable intermediates or side products. This demonstrates compatibility of Bio2Amine[™] with a pyrimidine backbone.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

API

Compound Specifics:

Reaction concentration: 40 g/L

Solvents: None, or ≤ 50 % miscible organic solvent in water

Miscible solvents:	NMP	DMSO
\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: T<u>NDIP-45544</u>

HydReger

Bio2Amine[™] for Erlotinib "Next generation chemical manufacturing"

Ethyl-2-amino-4,5-bis(2-methoxyethoxy)benzoate Precursor for pharmaceutical erlotinib

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of ethyl-4,5-bis(2-methoxyethoxy)-2-nitrobenzoate, Bio2Amine[™] facilitates highly selective hydrogenation to ethyl-2-amino-4,5-bis(2-methoxyethoxy)benzoate with no observable intermediates or side products despite the bulky substituted structure and unsaturated ester.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 20 g/L

Solvents: ≤ 25 % miscible organic solvent in water

Miscible solvents:	NMP	DMSO	DMF	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

HydRegen

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNERL-45544

Bio2Amine[™] for Fampridine "Next generation chemical manufacturing"

4-Aminopyridine (4-AP, fampridine, dalfampridine) Pharmaceutical indicated for multiple sclerosis

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 4-nitropyridine-N-oxide, Bio2Amine[™] facilitates highly selective hydrogenation to 4-aminopyridine with no observable intermediates or side products. This demonstrates extension of the Bio2Amine catalyst to pyridine-type scaffolds.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: ≤ 30 % miscible organic solvent in water

Miscible solvents:	MeCN	EtOH	DMF	iPrOH
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRege

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

) For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNFAM-45544

Bio2Amine[™] for Linezolid "Next generation chemical manufacturing"

3-fluoro-4-morpholin-aniline

Precursor for pharmaceutical linezolid

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 4-(2-Fluoro-4-nitrophenyl)morpholine, Bio2AmineTM facilitates highly selective hydrogenation to 3-fluoro-4-morpholin-aniline with no observable intermediates or side products, including no dehalogenation. $A_{CNH_{ac}}$

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: ≤ 50 % miscible organic solvent in water

Miscible solvents:	NMP	DMSO	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- ▶ shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNLIN-45544

Bio2Amine[™] for Mesalazine "Next generation chemical manufacturing"

Mesalazine (mesalamine, 5-aminosalicylic acid) Pharmaceutical indicated for ulcerative colitis, Crohn's disease, inflammatory bowel disease

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 5-nitrosalicylic acid (5-NSA), Bio2Amine[™] facilitates highly selective hydrogenation to 5-aminosalicylic acid with no observable intermediates or side products. Following reaction completion, the heterogeneous biocatalyst is easily separated for streamlined downstream processing.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction Concentration: >60 g/L

Solvents: ≤ 40 % miscible organic solvent in water

Miscible solvents:	DMSO	MeOH	MeCN
\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNMES-45544

HydRegen

Bio2Amine[™] for Paracetamol "Next generation chemical manufacturing"

p-Aminophenol (4-aminophenol, 4-hydroxyaminobenzene) Precursor for paracetamol

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of *p*-nitrophenol (PNP), Bio2AmineTM facilitates highly selective hydrogenation to *p*-aminophenol (PAP) with no observable intermediates or side products. Hydrogenation with Bio2Amine, and subsequent acetylation can both be optimised in continuous flow.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 75 g/L

Catalyst compatibility: ≤ 50 % miscible organic solvent in water

Miscible solvents:	DMSO	MeOH	DMF	NMP	Acetone	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}[®]

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNPAP-45544

Bio2Amine[™] for Paracetamol "Next generation chemical manufacturing"

N-Phenylhydroxylamine (*N*-hydroxyaniline, *N*-hydroxybenzenamine) Precursor for paracetamol

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of nitrobenzene, Bio2AmineTM facilitates highly selective hydrogenation to *N*-phenylhydroxylamine with no observable intermediates or side products. $\bigcap_{i=1}^{N}$

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: ≤ 25 % miscible organic solvent in water

Miscible solvents:	DMSO	MeOH	DMF	NMP	Acetone	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}[®]

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNPHA-45544

Bio2Amine[™] for Sildenafil "Next generation chemical manufacturing"

4-Amino-1-methyl-3-*n***-propyl-5-pyrazolecarboxamide** Precursor for pharmaceutical sildenafil

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 1-methyl-4-nitro-3-propyl-(1H)-pyrazole-5-carboxamide, Bio2Amine[™] facilitates highly selective hydrogenation to 4-amino-1-methyl-3-*n*-propyl-5-pyrazolecarboxamide with no observable intermediates or side products. This is a key precursor for the blockbuster pharmaceutical sildenafil.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 40 g/L

Solvents: ≤ 50 % miscible organic solvent in water

Miscible solvents:	DMSO	DMF	NMP	Acetone	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}®

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNSIL-45544

Bio2Amine™ for Naphthylamine

"Next generation chemical manufacturing"

1-Naphthylamine (1-aminonaphthalene) Specialty / bulk chemical

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 1-nitronaphthalene, Bio2Amine[™] facilitates highly selective hydrogenation to 1-naphthylamine with no observable intermediates or side products, and demonstrating tolerance of bulky, extended aromatic structures.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: Water immiscible organic solvents, water miscible solvents may be used as additives to a biphasic system

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

For evaluation samples, email **products@hydregenoxford.com** For further technical <u>notes</u>, <u>visit</u> **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNNAP-45544

HydRegen

Bio2Amine™ for 4-Fluoroaniline

"Next generation chemical manufacturing"

4-Fluoroaniline (1-amino-4-fluorobenzene) Specialty / bulk chemical

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 4-fluoronitrobenzene, Bio2Amine[™] facilitates highly selective hydrogenation to 4-fluoroaniline with no observable intermediates, side products or dehalogenation.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: ≤ 5 % miscible organic solvent in water

Miscible solvents:	DMSO	DMF	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}⁽⁾⁾

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TN4FA-45544

Bio2Amine™ for 4-Chloroaniline

"Next generation chemical manufacturing"

4-Chloroaniline (1-amino-4-chlorobenzene) Specialty / bulk chemical

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 4-chloronitrobenzene, Bio2Amine[™] facilitates highly selective hydrogenation to 4-chloroaniline with no observable intermediates, side products or dehalogenation.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: Water immiscible organic solvents, water miscible solvents may be used as additives to a biphasic system

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TN4CA-45544

HydRegen

Bio2Amine[™] for Aniline "Next generation chemical manufacturing"

Aniline (aminobenzene, phenylamine) Specialty / bulk chemical

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of nitrobenzene, Bio2Amine[™] facilitates highly selective hydrogenation to aniline with no observable intermediates or side products.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: ≤ 40 % miscible organic solvent in water

Miscible solvents:	DMSO	DMF	MeOH	Acetone	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}[®]

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNANI-45544

m-phenylenediamine (MPD, 1,3-diaminobenzene) Specialty / bulk chemical

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 3-nitroaniline, Bio2Amine[™] facilitates highly selective hydrogenation to MPD with no observable intermediates or side products. Additionally, this reaction proceeds with Bio2Amine[™] from the di-nitro starting material.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 27 g/L

Solvents: ≤ 50 % miscible organic solvent

Miscible solvents:	DMSO	DMF	NMP	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}[®]

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNMPD-45544

Bio2Amine[™] for OPD "Next generation chemical manufacturing"

o-phenylenediamine (OPD, 1,2-diaminobenzene) Specialty / bulk chemical

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 2-nitroaniline, Bio2Amine[™] facilitates highly selective hydrogenation to OPD with no observable intermediates or side products. Additionally, this reaction proceeds with Bio2Amine[™] from the di-nitro starting material.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 40 g/L

Solvents: ≤ 50% miscible organic solvent

Miscible solvents:	DMSO	DMF	NMP	Immiscible solvents
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

Hyd_{Regen}[@]

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNOPD-45544

Bio2Amine[™] for PPD "Next generation chemical manufacturing"

p-phenylenediamine (PPD, 1,4-diaminobenzene) Specialty / bulk chemical

Replacing metal-catalysts with our bio-alternative for nitro-to-amine conversions provides at least: 3 x CO2e saving, and 40 % cost savings

For the reduction of 4-nitroaniline, Bio2Amine[™] facilitates highly selective hydrogenation to PPD with no observable intermediates or side products. Additionally, this reaction proceeds with Bio2Amine[™] from the di-nitro starting material.

Bio2Amine™ Operating conditions:

Infrastructure: batch, fed-batch, continuous Operational stability: >4 million enzyme turnovers, >100 hours

Compound Specifics:

Reaction concentration: 50 g/L

Solvents: Water immiscible organic solvents, water miscible solvents may be used as additives to a biphasic system

About us:

HydRegen is pioneering a technology, Bio2Amine™, a 'slot-in' biocatalytic alternative to traditional catalysts for nitro-to-amine reduction, removing the need for precious metals for hydrogenation reactions. Bio2Amine™ is:

- a cofactor-free, heterogeneous biocatalyst
- shown to fully convert nitro to amine for over 35 compounds
- demonstrated excellent functional group tolerance (e.g. unsaturated bonds, halogens, sulphur).

For evaluation samples, email **products@hydregenoxford.com** For further technical notes, visit **hydregenoxford.com**

Copyright HydRegen Ltd. | Doc ID: TNPPD-45544

HydReger

Begbroke Science Park, Oxford, OX5 1PF, U.K. W: https://hydregenoxford.com E: products@hydregenoxford.com Copyright HydRegen Ltd. | Document ID: B2ATS-45544

For more information get in touch E: Products@hydregenoxford.com

We make biology operate like chemistry.

"Chemistry for biology"