(54) ISOLATED AUSTRALIAN CORAL REEF FLUORESCENT PROTEINS AND CELL-BASED KINASE OR PHOSPHATASE PLATFORMS FOR CANCER DRUG DEVELOPMENT

(76) Inventors: David Gruber, Fair Lawn, NJ (US); Hung-Teh Kao, Providence, RI (US); Vincent Pieribone, New Haven, CT (US)

(21) Appl. No.: 13/496,574
(22) PCT Filed: Sep. 16, 2010
(86) PCT No.: PCT/US2010/049181
§ 371 (c)(1), (2), (4) Date: Jun. 4, 2012
(87) PCT Pub. No.: WO2011/035067
PCT Pub. Date: Mar. 24, 2011

(65) Prior Publication Data

Related U.S. Application Data
(60) Provisional application No. 61/243,024, filed on Sep. 16, 2009, provisional application No. 61/350,630, filed on Jun. 2, 2010.

(51) Int. Cl.
C40B 40/10 (2006.01)

(52) U.S. Cl.
USPC .. 506/18

(58) Field of Classification Search
None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
* cited by examiner

Primary Examiner — Tracey Vivlenore
Assistant Examiner — Karen S Weiler
Attorney, Agent, or Firm — Scully, Scott, Murphy & Presser, P.C.

ABSTRACT
The present invention concerns novel isolated fluorescent proteins, variants thereof, and polynucleotides encoding the same. Methods for making and using the polypeptides and polynucleotides are also provided. For example, methods to detect protein-protein interactions, to develop novel fluorescent reagents, to monitor cellular events, as well as cell-based methods for screening for kinase or phosphatase inhibitors, are set forth. Kits to carry out the methods of the invention are also taught.

9 Claims, 19 Drawing Sheets
<table>
<thead>
<tr>
<th>1</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acr_BAD24723</td>
<td>MVSYSKQ</td>
</tr>
<tr>
<td>Aeg_2AAA27721</td>
<td>MSELLGTPQVPI</td>
</tr>
<tr>
<td>Ame_AAAG4105</td>
<td>MYP</td>
</tr>
<tr>
<td>Ant_AAAR85306</td>
<td>MNVNRNTETPFQKLPY</td>
</tr>
<tr>
<td>Ase_AY508120</td>
<td>MSLSKQ</td>
</tr>
<tr>
<td>Bra_AB061190</td>
<td>MSLPTTSDLHIFG</td>
</tr>
<tr>
<td>Cer_AAP5761</td>
<td>MLNKnVSv</td>
</tr>
<tr>
<td>Cen_DQ065852</td>
<td>MSLSKQ</td>
</tr>
<tr>
<td>Fuv_BAD24721</td>
<td>MVS</td>
</tr>
<tr>
<td>Gal_BAD2001</td>
<td>MSR</td>
</tr>
<tr>
<td>Gom_AAAL27542</td>
<td>MVCQNTY</td>
</tr>
<tr>
<td>Het_AAAL27538</td>
<td>MCG</td>
</tr>
<tr>
<td>Lab_AA001185</td>
<td>MVS</td>
</tr>
<tr>
<td>Lob_AAV5495</td>
<td>MSA</td>
</tr>
<tr>
<td>Men_AA00732</td>
<td>MVS</td>
</tr>
<tr>
<td>Mon_AA662982</td>
<td>MSA</td>
</tr>
<tr>
<td>28a</td>
<td>MSA</td>
</tr>
<tr>
<td>30a</td>
<td>MSA</td>
</tr>
<tr>
<td>35a</td>
<td>MSA</td>
</tr>
<tr>
<td>47a</td>
<td>MSA</td>
</tr>
<tr>
<td>Phi_AAAR85349</td>
<td>MSS</td>
</tr>
<tr>
<td>Poc_AA04500</td>
<td>MSLSKQ</td>
</tr>
<tr>
<td>Pon_AA01183</td>
<td>MSA</td>
</tr>
<tr>
<td>Mic_AA971338</td>
<td>MSA</td>
</tr>
<tr>
<td>Tra_BAC20344</td>
<td>MSA</td>
</tr>
<tr>
<td></td>
<td>81</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>Acr BAD24723</td>
<td>KYPA</td>
</tr>
<tr>
<td>Aed AAA27721</td>
<td>SRXPD</td>
</tr>
<tr>
<td>Ano AAG41205</td>
<td>AKXPKIELP-</td>
</tr>
<tr>
<td>Ant AARS5350</td>
<td>VRYPNE1N-</td>
</tr>
<tr>
<td>Ast AY508123</td>
<td>VVIPAEIA-</td>
</tr>
<tr>
<td>Bra ABO61190</td>
<td>LFPFPGG-</td>
</tr>
<tr>
<td>Cer AAP55761</td>
<td>TKYPECGTV-</td>
</tr>
<tr>
<td>Cca DG065852</td>
<td>CDYPEDMP-</td>
</tr>
<tr>
<td>Fta BAD56669</td>
<td>VYPESXY-</td>
</tr>
<tr>
<td>Fun BAD24721</td>
<td>TKXPEXIF-</td>
</tr>
<tr>
<td>Gal BAD52001</td>
<td>TKXPAHIO-</td>
</tr>
<tr>
<td>Got AAL27542</td>
<td>TKYPEHIF-</td>
</tr>
<tr>
<td>Ket AAL27538</td>
<td>VHRHTAETP-</td>
</tr>
<tr>
<td>Lab AAG01185</td>
<td>AFYPAGYE-</td>
</tr>
<tr>
<td>Lob AAV54099</td>
<td>KFHDHTO-</td>
</tr>
<tr>
<td>Mea AAO00732</td>
<td>TKYPEGKT-</td>
</tr>
<tr>
<td>Non AAC92982</td>
<td>TKYPDIDF-</td>
</tr>
<tr>
<td>28a</td>
<td>TKXPADIF-</td>
</tr>
<tr>
<td>30a</td>
<td>AKYPIDEF-</td>
</tr>
<tr>
<td>35a</td>
<td>AKYPDETF-</td>
</tr>
<tr>
<td>47a</td>
<td>AKYGP glo-</td>
</tr>
<tr>
<td>Phil AAR5349</td>
<td>AYGRPELE-</td>
</tr>
<tr>
<td>Poc AAO4450</td>
<td>TKYPAHMP-</td>
</tr>
<tr>
<td>Fon AAO1183</td>
<td>GYXPSGXS-</td>
</tr>
<tr>
<td>Ric AAK71338</td>
<td>VVIPKDI-</td>
</tr>
<tr>
<td>Tra BAC20344</td>
<td>AKYPDHLP-</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acr BAD24723</td>
<td>V K L E E H A S A H V N P - L K V K - - - - - - - - - - - - - [232]</td>
</tr>
<tr>
<td>Ada AAA27721</td>
<td>M V L L E F V P A A C T I T H C M D E L V K - - - - - - - - - [238]</td>
</tr>
<tr>
<td>Ans AAG41205</td>
<td>V E Q H E S V Y V A S Y S O - V P S K L G H R - - - - - - - - [228]</td>
</tr>
<tr>
<td>Ant AAR855360</td>
<td>I I I K E T H C A F - - - - D A D - - - - F S - - - - - - - - [232]</td>
</tr>
<tr>
<td>Ast AY503123</td>
<td>T L E I D A A R Y - [223]</td>
</tr>
<tr>
<td>Bra ABO61190</td>
<td>I T L S E R V K A F - - - - I D T V - - - - - - - - - - - [218]</td>
</tr>
<tr>
<td>Cer AAP53761</td>
<td>V E Q T E Y A T A H Y S D - L P K - - - - - - - - - - - [232]</td>
</tr>
<tr>
<td>Coa D065852</td>
<td>V O I Q E H A V A N Y F T - V - - - - - - - - - - - [221]</td>
</tr>
<tr>
<td>Fov BAD95669</td>
<td>V K L Y E H A K A H - S G - L P - - - - R L A K - - - - - - [227]</td>
</tr>
<tr>
<td>Fun BAD24721</td>
<td>T R L V E D A V A H C - - - - - - - - - - - - - - - - - [217]</td>
</tr>
<tr>
<td>Gal BAD52001</td>
<td>V K L Y E N A V A R Y S N - L P - - - - S Q A K - - - - - [225]</td>
</tr>
<tr>
<td>Gdn AAL27542</td>
<td>V E O C K E I S I A R K P V - V A - - - - - - - - - - [221]</td>
</tr>
<tr>
<td>Het AAL27538</td>
<td>F R L Y E A S V A R Y S D - L P E K - - - - A N - - - - - [227]</td>
</tr>
<tr>
<td>Lab AAO01195</td>
<td>V G I V E Y Q H V F K T P T A F A - - - - - - - - - [222]</td>
</tr>
<tr>
<td>Lob AAV54099</td>
<td>V K L Y E H A V A H - S G - L P - - - - D N A R - - - - - [226]</td>
</tr>
<tr>
<td>Maa AAO0732</td>
<td>V L E E T A A R Y D S - - - - - - - - - - - - - - [214]</td>
</tr>
<tr>
<td>Mon AAK62902</td>
<td>V K L S E D A B A R Y S M - L P - - - - S Q A K - - - - - [225]</td>
</tr>
<tr>
<td>28a</td>
<td>V T V H E S A K A R H C S - L P - - - - S K A K - - - - - [230]</td>
</tr>
<tr>
<td>30a</td>
<td>V K L Y E N A V A R Y S N - L P - - - - S Q A K - - - - - [225]</td>
</tr>
<tr>
<td>35a</td>
<td>V K L C E H A B A H - S G - L P - - - - S G R K A R Q I S T E [236]</td>
</tr>
<tr>
<td>47n</td>
<td>V K L C E H A V A H - S G - L P - - - - N N A R - - - - - [226]</td>
</tr>
<tr>
<td>Phi AAR85349</td>
<td>M S L V E T V R A V - - - - D C R E T K Y L - - - - - [234]</td>
</tr>
<tr>
<td>Poc AAO04450</td>
<td>V L L E E T A V A B V N P - - - - - - - - - - - [222]</td>
</tr>
<tr>
<td>Pon AAO01183</td>
<td>I E G I V E Q H A F T K P T A F A - - - - - - - [222]</td>
</tr>
<tr>
<td>Rtc AAK71338</td>
<td>A V L S E D A V A N S P - L E - - - - K K S Q A R K A - - [231]</td>
</tr>
<tr>
<td>Tra BAC20344</td>
<td>V K L Y E H A V A H - S G - L P - - - - D N V K - - - - - [225]</td>
</tr>
</tbody>
</table>
FIG. 6

- SEQ ID NO: 24 emission
- eGFP emission

Fluorescence intensity vs. wavelength (nm)
FIG. 10

[Diagram showing results of experiments with PKG and Src enzymes, comparing PhosFluor and eGFP over time (0, 1, 24 hours).]
FIG. 11

Excitation Spectra
PhosFluor eGFP

Normalized Fluorescence

Wavelength (nm)

Emission Spectra
PhosFluor eGFP

control (no kinase)
PKC
Src
1

ISOLATED AUSTRALIAN CORAL REEF FLUORESCENT PROTEINS AND CELL-BASED KINASE OR PHOSPHATASE PLATFORMS FOR CANCER DRUG DEVELOPMENT

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority of i) U.S. Provisional Application No. 61/243,024, filed on Sep. 16, 2009; and ii) U.S. Provisional Application No. 61/350,630, filed on Jun. 2, 2010, the entire content of each of which is incorporated herein by reference.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Sep. 18, 2010, is named 262281PCT.txt and is 100,737 bytes in size.

FIELD OF THE DISCLOSURE

Generally disclosed are isolated fluorescent proteins from organisms of the order Scleractinia, and variants of such proteins. Further disclosed are methods of using and of the disclosed proteins and variants thereof, as well as kits for performing the methods. Additionally disclosed are cell-based assays for detecting kinase and phosphatase activities and for identifying kinase and phosphatase modulators by utilizing a fluorescent protein disclosed herein.

BACKGROUND OF THE DISCLOSURE

Fluorescent proteins are proteins that absorb electromagnetic radiation of a particular wavelength and emit electromagnetic radiation of a different longer wavelength. The marine organisms that express fluorescent proteins are predominantly within the phylum Cnidaria, and are estimated to have evolved over 700 million years ago, before organisms of the phylum Cnidaria and the bilateria separated (Shaing et al. (2004), Mol. Biol. Evol. 21, pp. 841-850). Fluorescent proteins exhibit a wide diversity of excitation/emission spectra that extend from cyan to far red, but are generally grouped according to four basic colors: three fluorescent colors (cyan, green, and red) and a non-fluorescent color (purple-blue) (Kelmaison and Matz (2003), Mol. Biol. Evol. 20, pp. 1125-1133). Single organisms have been shown to express multiple fluorescent protein genes, to emit a variety of fluorescent colors (Kelmaison and Matz (2003), Mol. Biol. Evol. 20, pp. 1125-1133; Kao et al. (2007), Mar. Biotechnol. (NY) 9, pp. 733-746), and to express fluorescent proteins in distinct anatomical patterns (Gruber et al. (2008), Biol. Bull. 215, pp. 143-154).

The identification and isolation of fluorescent proteins in various organisms, including marine organisms, has provided a valuable tool to molecular biology. The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria (A. victoria), for example, has become a commonly used reporter molecule for examining various cellular processes, including the regulation of gene expression, the localization and interactions of cellular proteins, the pH of intracellular compartments, and the activities of enzymes (see, e.g., U.S. Pat. Nos. 5,491,084, 5,777,079, and 7,329,735).

2

The usefulness of A. victoria GFP has led to the identification of numerous other fluorescent proteins, such as fluorescent proteins with emission wavelengths or brightness different from that of GFP. In addition, spectral variants of A. victoria GFP have been disclosed that are excited or emit at wavelengths, for different periods of time, and under different conditions in comparison to the respective properties of native GFP.

Although a number of fluorescent proteins have been disclosed, there still exists a need for fluorescent proteins that exhibit unique biochemical properties. For example, a fluorescent protein that fluorescence with a greater intensity than those previously disclosed would be beneficial, inter alia, in the fields of molecular biology, biochemistry, and drug discovery. Additionally, fluorescent proteins that can detect the interaction of specific molecules and that can track the intracellular and intercellular movements of specific molecules would be beneficial, inter alia, in the fields of molecular biology, biochemistry, and drug discovery.

A hallmark of cancer is the imbalance between protein kinase and phosphatase activity. In many cases, overactive protein kinases drive the uncontrolled proliferation of tumors. Akt1 kinase is a well studied kinase that promotes angiogenesis and the development of new blood vessels that feed the uncontrolled growth of solid tumors. Akt1 kinase has several established inhibitors that have shown great potential in retarding the growth of tumors.

Over the past decade, several inhibitors have been identified that target specific protein kinases, and these inhibitors have been developed into highly effective anti-cancer agents. One such example is imatinib mesylate (Gleevec®), a tyrosine kinase inhibitor marketed by Novartis that successfully treats chronic myeloid leukemia and generates over $3.7 billion/year in revenue. There has been great difficulty in finding selective kinase inhibitors, and presently fewer than 15 have been approved by the FDA.

SUMMARY OF THE DISCLOSURE

Disclosed herein are fluorescent proteins isolated from organisms of the order Scleractinia, and variants of such proteins.

In one embodiment, an isolated fluorescent polypeptide is provided, which comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, and 44.

In another embodiment, an isolated fluorescent polypeptide variant is provided, wherein the fluorescent polypeptide variant comprises an amino acid sequence having at least 80% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, and 44.

In yet another embodiment, an isolated nucleic acid encoding for a fluorescent protein is provided. The nucleic acid comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. In a further embodiment, the nucleic acid comprises a codon-usage variant of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. In this embodiment, the variant nucleotide sequence of the nucleic acid differs from the nucleotide sequence of the reference nucleic acid, but each nucleotide sequence nevertheless encodes a polypeptide comprising the same amino acid sequence.

In still another embodiment, an isolated nucleic acid encoding for a fluorescent protein is provided, wherein the
nucleic acid comprises a nucleotide sequence having at least 80% sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID Nos: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. In a further embodiment, the nucleic acid comprises a codon-usage variant of a nucleotide sequence having at least 80% sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID Nos: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. In this embodiment, the variant nucleotide sequence of the nucleic acid differs from the nucleotide sequence of the reference nucleic acid, but each nucleotide sequence nevertheless encodes a polypeptide comprising the same amino acid sequence.

In another embodiment, the present invention provides fusion proteins comprising a protein of interest operatively joined to at least one fluorescent protein of the invention, or variant thereof (e.g., a protein comprising the amino acid sequence of any of SEQ ID Nos: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, and 44, or a sequence that has at least 80% sequence identity to any of those sequences). In some embodiments, the fusion protein contains an epitope tag, such as a polyhistidine tag.

In still another embodiment, nucleic acid molecules encoding a fusion protein are provided. In some such embodiments, a nucleotide sequence encoding a protein of interest is operatively linked to a nucleotide sequence selected from the group consisting of SEQ ID Nos: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. In other such embodiments, a nucleotide sequence encoding a protein of interest is operatively linked to a nucleotide sequence having at least 80% sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID Nos: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. In still other such embodiments, a nucleotide sequence encoding a protein of interest is operatively linked to a codon-usage variant of a nucleotide sequence having at least 80% sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID Nos: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. In these still other such embodiments, the variant nucleotide sequence of the nucleic acid differs from the nucleotide sequence of the reference nucleic acid, but each of the variant nucleotide sequence and the nucleotide sequence of the reference nucleic acid nevertheless encodes a polypeptide comprising the same amino acid sequence.

In one embodiment, the present invention provides vectors that encode the fluorescent protein variants disclosed herein, as well as host cells containing such vectors. The invention also provides expression vectors suitable for the expression of the disclosed fluorescent polypeptides, fluorescent polypeptide variants, or fusion proteins, as well as host cells containing such expression vectors. As further disclosed herein, the fluorescent protein variants of the invention can be used in various applications.

In one embodiment, the invention provides a method for detecting transcriptional activity, where the method utilizes a host cell comprising a vector encoding a fluorescent protein comprising the amino acid sequence of any of SEQ ID Nos: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 and 44, operably linked to at least one expression control sequence, and a means to detect fluorescence. In this method, assaying the fluorescence of the fluorescent protein produced by the host cell is indicative of transcriptional activity.

In one embodiment, the present invention is directed to a kit for the detection of protein-protein interactions. The kit comprises an isolated fluorescent polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 and 44, or a variant thereof.

In other embodiments, the invention also provides a polypeptide probe suitable for use in fluorescence resonance energy transfer (FRET), comprising at least one fluorescent protein variant of the invention.

In a further embodiment, the present invention is directed to a novel FRET pair. The novel FRET pair comprises an isolated fluorescent polypeptide which comprises an amino acid sequence selected from the group consisting of SEQ ID Nos: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 and 44. In still another embodiment, the FRET pair comprises a polypeptide having an amino acid sequence with at least 80% sequence identity to any of SEQ ID Nos: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 or 44.

In another embodiment, the present invention provides fluorescent proteins having an increased intensity of emission with respect to fluorescent proteins known in the art.

In still another embodiment, the invention provides a method for the analysis of in vivo localization or trafficking of a polypeptide of interest, where the method uses a fluorescent fusion protein of the invention in a host cell or tissue, and where the fusion protein can be visualized in the host cell or tissue.

In one embodiment, the invention concerns a method for the analysis of in vivo localization or trafficking of a polypeptide of interest, comprising the steps of: (a) providing a polynucleotide encoding a fusion protein, comprising at least one fluorescent protein encoded by the polynucleotides discussed above, operatively joined to at least one other polypeptide of interest and a host cell or tissue, and (b) visualizing said fusion protein that is expressed in said host cell or tissue.

Also disclosed are methods for detecting protein kinase or phosphatase activity. In one embodiment, the disclosed fluorescent polypeptides and variants thereof are used to detect protein kinase or phosphatase activity, wherein the fluorescence emission of the disclosed fluorescent polypeptides and variants thereof is indicative of the activity of a protein kinase or phosphatase.

Further disclosed are cell-based methods for screening for kinase or phosphatase modulators by utilizing a fluorescent protein disclosed herein.

In one embodiment, the cell-based method of the invention utilizes the fluorescent protein, PhosFluor, which comprises the amino acid sequence as set forth in SEQ ID NO: 10, or a variant or derivative thereof. Such fluorescent protein has been identified as capable of optically detecting protein phosphorylation in living cells in real time.

In a specific embodiment, the cell-based assay is designed to screen for protein kinase and phosphatase inhibitors, including, for example, inhibitors of the Akt1 kinase.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1, which is presented in the drawings as FIGS. 1A-G, is an alignment of a subset of fluorescent proteins spanning representative genus (SEQ ID NOS 49-65, 10, 14, 28, 42, and 66-70, respectively, in order of appearance). The highlighted portion of the sequences corresponds to the chromophore region of the fluorescent proteins.

FIG. 2 is a map of a typical fluorescent protein, shown with terminal regions separated from the internal chromophore region. The 3-residue chromophore is shown in the internal region with a shaded box. Below the map are lines representing 40-residue sliding window segments (with region designated) that were examined for congruence with the terminal regions. Dark lines indicate sliding windows that were shown.
to be incongruent with the terminal regions with statistical significance. The histogram below the map plots the difference in number of steps it takes to construct a phylogenetic tree using the N/C terminal regions versus the middle region, for each residue in the protein. Residue position is indicated on the bottom of the histogram.

FIGS. 3A-D are diagrams of the crystal structure of a red fluorescent protein from Discosoma sp. (DsRed). The conserved central domain (dark) and flanking variable domains (white/grey) are imposed on a ribbon diagram of monomer (A) and tetramer (B and C) of the red fluorescent protein crystal structure. (B) Standard view of the tetramer. (C) depicts a slight rotation to highlight the proximity of the β strands of the conserved region. (D) Electron density map created in Chimera (Pettersen et al. (2004). J. Comp. Chemisty 25, pp 1605-1612) depicting residues (dark) corresponding to the middle conserved region mapped to the crystal structure of DsRed.

FIG. 4 is a ball-and-stick diagram of the crystal structure of DsRed. Residues undergoing rapid molecular change are shown in a darker shade. These residues were determined by analyses of fluorescent proteins derived from specimens of Montastrea cavernosa from different geographic regions.

FIG. 5 shows the amino acid sequence of red fluorescent protein (SEQ ID NO: 71), and the respective residues which are highly variable, as compared to other fluorescent proteins (asterisks). Residues 61-105 correspond to the conserved central fluorescent protein region. This region is flanked by the N- and C-terminal variable regions (resides 1 to 60, and 106 to 225) respectively. Resides 13, 30, 32, 34, 36, 41, 43, 45, 201, and 211 are fluorescent protein residues homologous to Perlecan-binding residues in NIdogens. The boxed residues are homologous to both Perlecan-binding residues in Nidogen proteins, and highly variable residues in fluorescent proteins.

FIG. 6 shows the emission spectra of both eGFP and the fluorescent polypeptide comprising the sequence set forth in SEQ ID NO: 24.

FIG. 7 shows the emission and excitation spectra at 25°C. and 37°C. for the isolated fluorescent polypeptide comprising the sequence set forth in SEQ ID NO: 12.

FIG. 8 sets forth a schematic diagram of a disclosed method. Cells expressing both a protein kinase of interest and PhosFluor (the PhosFluor Detection System) are plated onto a multi-well grid for compound screening. Compounds are then added to the wells to test for kinase inhibition, in the presence or absence of a stimulus. Fluorescence is used as the readout of kinase activity. Both the IC50 and kinetic data can be obtained using this system.

FIGS. 9A-9B disclose the modulation of PhosFluor by alkaline pH and phosphorylation. A. Equal quantities of the indicated fluorescent proteins were subjected to different pH by addition of Tris buffer. Normalized fluorescence intensity (excitation at 485 nm and emission at 538 nm, compared to the value at pH 7.0) was measured using a SpectraMax M5 Microplate Reader. B. Equal quantities of the recombinant PhosFluor or eGFP were subjected to phosphorylation by the indicated protein kinases or to dephosphorylation with alkaline phosphatase (Alk Phos). Fluorescence intensity (representing the change in emission of a part of the emission spectrum compared to the value at 0 hours) was measured over time during the reaction. The PhosFluor reaction containing no enzyme showed an increase in fluorescence over time, but virtually no change was observed when the reaction was incubated with alkaline, thereby suggesting the presence of an endogenous bacterial protein kinase that was co-purified with PhosFluor.

FIG. 10 discloses that PhosFluor is an avid substrate for PKC and Src. Equal quantities of PhosFluor or eGFP incubated with either PKC or Src for the indicated times (in hours) were resolved on 10% SDS-PAGE gels and immunoblotted to antibodies that reveal total protein (a polyhistidine monclonal antibody) or phospho-tyrosine. M designates the position of the monomeric form of fluorescent protein while P designates the position of phosphorylated forms of the protein that have undergone a motility shift due to increased negative charge.

FIG. 11 discloses that phosphorylation of PhosFluor alters its spectral properties. The excitation and emission spectra of PhosFluor and eGFP are depicted under control conditions (no kinase) and after phosphorylation by the indicated kinases. The excitation and emission spectra for eGFP are all superimposed under a single curve, while phosphorylation of PhosFluor alters both spectra compared to control conditions.

FIG. 12 discloses the expression of PhosFluor in mammalian cells. HEK-293 cells were transfected with PhosFluor driven by the CMV promoter, and visualized with a fluorescent microscope 1 week later.

DETAILED DESCRIPTION OF THE DISCLOSURE

Definitions

Unless specifically indicated otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this disclosure pertains, or with which it is most nearly connected. For purposes of the present invention, the following terms are defined.

The term “nucleic acid molecule” or “polynucleotide” refers to a deoxyribonucleotide or ribonucleotide polymer in either single-stranded or double-stranded form, and, unless specifically indicated otherwise, encompasses polynucleotides containing known analogs of naturally-occurring nucleotides which can function in a similar manner as naturally-occurring nucleotides. It will be understood that when a nucleic acid molecule is represented by a DNA sequence, this also includes RNA molecules comprising a nucleotide sequence which corresponds to a DNA sequence in which “U” (uridine) replaces “T” (thymidine).

The term “recombinant nucleic acid molecule” refers to a non-naturally occurring nucleic acid molecule containing two or more linked polynucleotide sequences. A recombinant nucleic acid molecule can be produced by recombination methods, particularly genetic engineering techniques, or can be produced by a chemical synthesis method. A recombinant nucleic acid molecule can encode a fusion protein, for example, a disclosed fluorescent protein variant linked to a polypeptide or peptide of interest. The term “recombinant host cell” refers to a cell that contains a recombinant nucleic acid molecule. As such, a recombinant host cell can express a polypeptide from a “gene” that is not found within the native (non-recombinant) form of the cell.

Reference to a polynucleotide encoding a polypeptide means that, upon transcription of the polynucleotide and translation of the mRNA transcript, a polypeptide is produced. The encoding polynucleotide is considered to include both the coding strand, whose nucleotide sequence is identical to the nucleotide sequence of an mRNA, as well as its complementary strand, whose nucleotide sequence is complementary to the nucleotide sequence of an mRNA. It will be recognized that such a polynucleotide encoding a polypeptide is considered to include degenerate nucleotide
sequences, which encode the same amino acid residues. Nucleotide sequences encoding a polypeptide can include polynucleotides containing introns as well as the encoding exons.

The term “expression control sequence” refers to a nucleotide sequence that regulates the transcription or translation of a polynucleotide or the localization of a polypeptide to which it is operatively linked. Expression control sequences are “operatively linked” when the expression control sequence controls or regulates the transcription and, as appropriate, translation of the nucleotide sequence which encodes a polypeptide (i.e., a transcription or translation regulatory element, respectively), or localization of the encoded polypeptide to a specific compartment of a cell or tissue. Thus, an expression control sequence can be a promoter, enhancer, transcription terminator, a start codon (ATG), a splicing signal for intron excision and maintenance of the correct reading frame, a STOP codon, a nucleotide sequence encoding a ribosome binding site, or a sequence that targets a polypeptide to a particular location, for example, a cell compartmentalization signal which can target a polypeptide to the cytosol, nucleus, plasma membrane, endoplasmic reticulum, mitochondrial membrane or matrix, chloroplast membrane or lumen, medial trans-Golgi cisternae, or a lysosome or endosome. Cell compartmentalization domains are well known in the art and include, for example, a peptide containing amino acid residues 1 to 81 of human type II membrane-anchored protein galactosyltransferase, or amino acid residues 1 to 12 of the presequence of subunit IV of cytochrome c oxidase (see, also, Hancock et al. (1991), EMBO J. 10, pp. 4033-4039; Buss et al. (1988), Mol. Cell. Biol. 8, pp. 3960-3963; U.S. Pat. No. 5,776,689, each of which is incorporated herein by reference).

The term “operatively linked” or operably linked” or “operatively joined,” when used herein to describe fusion proteins, refers to polypeptide sequences that are placed in a physical and/or functional relationship with each other. The functional activity of the components of a given fusion protein are preferably unchanged compared to the functional activities of the individual components when the components are not operatively joined. For example, a disclosed fluorescent polypeptide or variant thereof, can be fused to a polypeptide of interest. In this case, it is preferable that the fusion molecule retains its fluorescence, and the polypeptide of interest retains its original biological activity. In some embodiments of the present invention, the activities of either the fluorescent protein or the protein of interest can be reduced relative to their activities in isolation. Such fusions can also find use with the present invention. As used herein, the chimeric fusion molecules of the invention can be in a monomeric state, or in a multimeric state (e.g., dimeric, trimeric or tetrameric).

The term “oligomer” refers to a complex formed by the specific interaction of two or more polypeptides. A “specific interaction” or “specific association” is one that is relatively stable under specified conditions, for example, physiologic conditions. Reference to a “propensity” of proteins to oligomerize indicates that the proteins can form dimers, trimers, tetramers, or the like under specified conditions. Generally, fluorescent proteins such as GFPs have a propensity to oligomerize under physiologic conditions although, as disclosed herein, fluorescent proteins also can oligomerize, for example, under pH conditions other than physiologic conditions. The conditions under which fluorescent proteins oligomerize, or have a propensity to oligomerize can be determined using well known methods as disclosed herein or otherwise known in the art.

The terms “polypeptide” and “protein” are synonymous, and refer to a polymer of two or more amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical analog of a corresponding naturally-occurring amino acid, as well as to naturally-occurring amino acid polymers.

The term “recombinant protein” refers to a protein that is produced by expression of a recombinant polynucleotide encoding the protein.

The term “isolated” or “purified” refers to a material that is substantially or essentially free from components that normally accompany the material in its native state. Purity or homogeneity generally is determined using analytical techniques such as polyacrylamide gel electrophoresis and high performance liquid chromatography. A polynucleotide or a polypeptide is considered to be isolated when it is the predominant polynucleotide or a polypeptide present in a preparation, respectively. An isolated protein or nucleic acid molecule represents greater than 90% of the macromolecular species present in a preparation, greater than 90% of all macromolecular species present, greater than 95% of all macromolecular species present, greater than 96% of all macromolecular species present, greater than 97% of all macromolecular species present, greater than 98% of all macromolecular species present, greater than 99% of the macromolecular species, and, in particular, is a polypeptide or polynucleotide that purified essentially to homogeneity such that the polypeptide or polynucleotide is the only macromolecular species detected when examined using conventional methods for determining purity of such a molecule.

The term “naturally-occurring” is used to refer to a protein, nucleic acid molecule, cell, or other material that occurs in nature (i.e., wild type molecule), for example, a polypeptide or polynucleotide sequence that is present in an organism, including in a virus. A naturally-occurring material can be in its form as it exists in nature, and can be modified by the hand of man such that, for example, is in an isolated form.

The term “antibody” refers to a polypeptide encoded by at least one portion of an immunoglobulin gene. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as the myriad of immunoglobulin variable region genes. Antibodies exist as intact immunoglobulins and as well characterized antigen-binding fragments of an antibody which can be produced by digestion with a peptidase or by recombinant DNA methods. Such antigen-binding fragments of an antibody include, for example, Fab, Fab’, and F(ab)₂ fragments. “Antibody,” as used herein, includes antibody fragments either produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA methodologies.

The term “identical” is used herein in reference to two or more polynucleotide sequences or, alternatively, two or more polypeptide sequences. The term “identical” refers to nucleotides in one nucleotide sequence that are the same as nucleotides in another nucleotide sequence when the nucleotide sequences are aligned for maximum correspondence. Similarly, the term “identical” refers to amino acid residues in one amino acid sequence that are the same as amino acid residues in another amino acid sequence when the amino acid sequences are aligned for maximum correspondence. When percentage of sequence identity is used in reference to a polypeptide, it is recognized that one or more residue positions that are not otherwise identical can differ by a conservative amino acid substitution, in which a first amino acid residue is substituted for another amino acid residue having similar chemical properties such as a similar charge, hydro-
The term "fluorescent property" or "fluorescent characteristics" refers to the molar extinction coefficient at an appropriate excitation wavelength, the fluorescence quantum efficiency, the shape of the excitation spectrum or emission spectrum, the excitation wavelength maximum and emission wavelength maximum, the ratio of excitation amplitudes at two different wavelengths, the ratio of emission amplitudes at two different wavelengths, the excited state lifetime, fluorescence intensity, fluorescence lifetime, multiphoton cross-section, fluorescence resonance energy transfer efficiency, bioluminescence resonance energy transfer efficiency, or the fluorescence anisotropy. A measurable difference in any one of these properties between the wild type GFP of A. victoria and a spectral variant thereof, or the wild type GFP of A. victoria and a mutant of a spectral variant thereof, is useful. A measurable difference can be determined by determining the amount of any fluorescent product formed, e.g., the amount of fluorescence at a particular wavelength, or the integral of fluorescence over the emission spectrum.

As used herein, the term "fluorescent protein" refers to any protein that can fluoresce when excited with an appropriate electromagnetic radiation, except that chemically tagged proteins, wherein the fluorescence results from the chemical tag, and polypeptides that fluoresce only due to the presence of certain amino acids such as tryptophan or tyrosine, whose emission peaks at ultraviolet wavelengths (i.e., less than about 400 nm) are not considered fluorescent proteins for purposes of the present disclosure. In general, a disclosed fluorescent protein is a protein which derives its fluorescence from auto-catalytically forming a chromophore. A fluorescent protein can contain amino acid sequences that are naturally occurring or that have been engineered (i.e., variants or mutants). When used in reference to a fluorescent protein, the term "mutant" or "variant" refers to a protein that is different from a reference fluorescent protein. For example, a spectral variant of Aeuroez GFP can be derived from the naturally occurring GFP by engineering mutations such as amino acid substitutions into the reference GFP protein (see, e.g., U.S. Pat. No. 5,777,079). A "spectral variant" or "spectral mutant" of a fluorescent protein indicates a mutant fluorescent protein which has a different fluorescence characteristic with respect to the corresponding wild type fluorescent protein.

The term "coral" as used herein encompasses species within the class Anthozoa (e.g., species of the order Scleractinia) and includes corals, stony corals and corallimorphs.

Fluorescent Proteins

The GFP of A. victoria and blue, cyan, and yellow variants thereof have found widespread use as both genetically-encoded indicators for td/tol overlap and as donor/acceptor pairs for fluorescence resonance energy transfer (FRET). However, extending the spectrum of available colors to red wavelengths, and the further engineering of these proteins to create biosensors and to detect novel protein-protein interactions, e.g., for high throughput drug screening would provide distinct new labels for multicolor tracking of fusion proteins and the detection of various interactions.

Accordingly, disclosed herein are isolated fluorescent proteins from organisms of the order Scleractinia, which are indigenous to the Australian Great Barrier Reef. Further disclosed are fluorescent proteins with fluorescent properties disclosed above.

Illustrative examples of the disclosed isolated fluorescent proteins include proteins comprising an amino acid sequence selected from the groups consisting of SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, and 44.
The sequences associated with these SEQ ID NOs are provided in the Sequence Listing.

Also disclosed herein are polynucleotides encoding the isolated fluorescent proteins. In one embodiment, a nucleic acid molecule is provided that comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. The sequences associated with these SEQ ID NOs are provided in the Sequence Listing.

The disclosed isolated fluorescent proteins contain three distinct regions: a first region of 45 amino acid residues which includes a chromophore; a second region of 50-amino acid residues N-terminal of the first region; and a third region of 140 amino acid residues C-terminal of the first.

The chromophore region of 45 amino acid residues, specifically residues 70 to 115, displays a sharply divergent presence of proline residues of the β-strand. The chromophore region evolved slowly under stabilizing selection.

The structure of the chromophore region contains an α-helix and a single β-strand. The β-strand faces inward in the tetrameric fluorescent protein complex (see FIG. 3).

The N-terminal and C-terminal regions are under intense Darwinian selection and evolve rapidly with mutations appearing at sites of putative protein-protein interactions (see FIG. 4). In addition, fluorescence color is significantly associated with the N-terminal and C-terminal hypervariable regions and not with the middle conserved region.

Fluorescent Protein Variants

The present invention provides variant fluorescent proteins, which differ from the fluorescent proteins having a polypeptide sequence as set forth in any of SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 or 44. In one embodiment, the present invention is directed to a novel fluorescent protein having an amino acid sequence comprising a sequence with at least 80% identity to that of any of sequences identified as SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 or 44. In a further embodiment, the variant has at least 85%, 90%, 92%, 95%, 97%, 98% or 99% identity to the aforementioned sequences.

In one embodiment, the fluorescent protein variant of the present invention has a mutation in at least one of the hypervariable residues. In a further embodiment, the one or more mutations results in a fluorescent protein with less of a propensity to oligomerize, or a protein that specifically binds a protein or small molecule of interest.

As stated above, variant fluorescent proteins of the invention can have a reduced propensity to oligomerize, due to the presence of a more amino acid residues of the fluorescent protein’s surface. In one embodiment, one of the starred residues in FIG. 5 is mutated to arrive at a variant fluorescent protein with a reduced propensity to oligomerize.

Amino acids with charged (ionized D, E, K, and R), dipolar (H, N, Q, S, T, and uncharged D, E and K), and polarizable side groups (e.g., C, F, H, M, W and Y) are useful for altering the ability of fluorescent proteins to oligomerize or interact with other proteins, especially when they substitute an amino acid with an uncharged, nonpolar or non-polarizable side chain.

In one embodiment, the present invention provides a variant fluorescent protein that fluoresces at a different wavelength, as compared to the protein the variant was derived from. In this embodiment, one or more residues in the fluorescent protein’s terminal hypervariable region (region does not include the chromophore) is mutated.

In another embodiment, a variant fluorescent protein of the present invention only fluoresces when binding to a protein of interest.

Fusion Proteins Comprising the Disclosed Fluorescent Proteins

Fluorescent proteins fused to target proteins can be prepared, for example using recombinant DNA methods, and used as markers to identify the location and amount of the target protein produced. Accordingly, the present invention provides fusion proteins comprising a fluorescent protein (including those described above and variants thereof) and a polypeptide or peptide of interest. The polypeptide of interest can be of any length, for example, about 15 amino acid residues, about 50 residues, about 150 residues, or up to about 1000 amino acid residues or more, provided that the fluorescent protein component of the fusion protein can fluoresce or can be induced to fluoresce with or without magnetic radiation of the appropriate wavelength. The polypeptide of interest can be, for example, a peptide tag such as a polyhistidine sequence, a c-myc epitope, a FLAVI epitope, and the like; can be an enzyme, which can be used to effect a function in a cell expressing a fusion protein comprising the enzyme or to identify a cell containing the fusion protein; can be a protein to be examined for an ability to interact with one or more other proteins in a cell, or any other protein as disclosed herein or otherwise desired.

A fusion protein of the present invention can include a fluorescent protein disclosed herein operatively linked to one or more polypeptides of interest. The two or more polypeptides of the fusion protein can be linked through peptide bonds, or the fluorescent protein can be linked to the one or more polypeptides of interest through a linker molecule.

In one embodiment, a linker can be present to join the fluorescent protein of the present invention and a polypeptide of interest. If the linker between the two moieties is a non-peptide linker, the two subunits will be encoded by separate polynucleotide molecules, produced separately, and subsequently linked by methods known in the art.

In another embodiment, the fusion protein is expressed from a recombinant nucleic acid molecule containing a polynucleotide encoding a fluorescent protein disclosed herein operatively linked to one or more polynucleotides encoding one or more polypeptides of interest.

A polypeptide of interest can be any polypeptide, including, for example, a peptide tag such as a polyhistidine peptide, or a cellular polypeptide such as an enzyme, a G-protein, a growth factor receptor, or a transcription factor, and can be one of two or more proteins that can associate to form a complex. In one embodiment, the fusion protein is a tandem fluorescent protein variant fused to the fluorescent protein disclosed herein, an acceptor fluorescent protein disclosed herein, and a peptide linker moiety coupling said donor and said acceptor, wherein cyclized amino acids of the donor emit light characteristic of said donor, and wherein the donor and the acceptor exhibit fluorescence resonance energy transfer when the donor is excited, and the linker moiety does not substantially emit light to excite the donor. As such, a fusion protein of the invention can include two or more operatively linked fluorescent proteins, which can be linked directly or indirectly, and can further comprise one or more polypeptides of interest.

Preparation of Fluorescent Proteins

The present invention also provides polynucleotides encoding fluorescent proteins, or variants thereof, where the protein can be a fluorescent protein isolated from Splendidinia (Lizard Island, Australia), a variant thereof, or a fusion pro-
tein comprising such a fluorescent protein (or variant) operatively linked to one or more polypeptides of interest.

The invention further provides vectors containing such polynucleotides, and host cell containing a polynucleotide or vector. Also provided is a recombinant nucleic acid molecule, which includes at least one polynucleotide encoding a fluorescent protein operatively linked to one or more other polynucleotides. The one or more other polynucleotides can be, for example, a transcription regulatory element such as a promoter or polyadenylation signal sequence, or a translation regulatory element such as a ribosome binding site. Such a recombinant nucleic acid molecule can be contained in a vector, which can be an expression vector, and the nucleic acid molecule or the vector can be contained in a host cell.

The vector generally contains elements required for replication in a prokaryotic or eukaryotic host system or both, as desired. Such vectors, which include plasmid vectors and viral vectors such as bacteriophage, baculovirus, retrovirus, lentivirus, adenovirus, vaccinia virus, semliki forest virus and adenov-associated virus vectors, are well known and can be purchased from a commercial source (Promega, Madison, Wis.; Stratagene, La Jolla Calif.; Gibco/BRL, Gaithersburg Md.) or can be constructed by one skilled in the art (see, e.g., Meth. Enzymol., Vol. 185, Goeddel ed. (Academic Press, Inc., 1990); Jolly (1994), Conc. Gene Ther. 1, pp. 51-64; Flotte (1993), Bioenerg. Biomemb., 25, pp. 37-42; Kirshenbaum et al. (1992), J. Clin. Invest. 92, pp. 381-387; each of which is incorporated herein by reference in its entirety).

A vector for containing a polynucleotide encoding a fluorescent protein can be a cloning vector or an expression vector, and can be a plasmid vector, viral vector, and the like. Generally, the vector contains a selectable marker independent of that encoded by a polynucleotide of the invention, and further can contain transcription or translation regulatory elements, including a promoter sequence, which can provide tissue specific expression of a polynucleotide operatively linked thereto, which can, but need not be, the polynucleotide encoding the fluorescent protein, for example, a variant fluorescent protein with a decreased propensity to oligomerize, thus providing a means to select a particular cell type from among a mixed population of cells containing the introduced vector and recombinant nucleic acid molecule contained therein.

Where the vector is a viral vector, it can be selected based on its ability to infect one or few specific cell types with relatively high efficiency. For example, the viral vector also can be derived from a virus that infects particular cells of an organism of interest, for example, vertebrate host cells such as mammalian host cells. Viral vectors have been developed for use in particular host systems, particularly mammalian systems and include, for example, retroviral vectors, lentivirus vectors such as those based on the human immunodeficiency virus (HIV), adenovirus vectors, adenovirus-associated vector viruses, herpesvirus vectors, vaccinia virus vectors, and the like (see Miller and Rosman (1992), BioTechniques 7, pp. 980-990; Anderson et al. (1998), Nature 392, pp. 25-30 Suppl.; Verma and Somantha (1997), Nature 389, pp. 239-242; Wilson (1996), New Engl. J. Med. 334, pp. 1185-1187).

Recombinant production of a fluorescent protein, which can be a component of a fusion protein, involves expressing a polypeptide encoded by a polynucleotide. A polynucleotide encoding the fluorescent protein is a useful starting material. In one embodiment, the polynucleotide comprises one or more of the sequences identified as SEQ ID NOS: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 or 43 or 45. In a further embodiment, the variant has at least 85%, at least 87%, at least 90%, at least 92%, at least 95% or at least 97% identity to one of the sequences identified as SEQ ID NOS: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 or 43 or 45.

Polynucleotides encoding a fluorescent protein are disclosed herein or otherwise known in the art, and can be obtained using routine methods, then can be modified such that the encoded fluorescent protein has a biological property altered. For example, the resulting fluorescent protein variant may be engineered to bind specifically to a protein target. Alternatively or additionally, the variant may emit fluorescence only when the binding occurs.

For example, a polynucleotide encoding a fluorescent protein of the present invention, can be isolated by PCR of cDNA from Schereccactinia using primers based on the polynucleotide sequences provided as SEQ ID NOS: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43 or 45, or alternatively, sets of degenerate primers (e.g., primers comprising a sequence identified as any of SEQ ID NOS: 1-9). PCR methods are well known and routine in the art (see, e.g., U.S. Pat. No. 4,683,195; Mullis et al. (1987), Cold Spring Harbor Symp. Quant. Biol. 51, p. 263; Erlich, ed., “PCR Technology” (Stockton Press, NY, 1989)). A variant form of the fluorescent protein can then be made by site-specific mutagenesis of the polynucleotide encoding the fluorescent protein.

The construction of expression vectors and the expression of a polynucleotide in transfected cells involves the use of molecular cloning techniques also well known in the art (see Sambrook et al., In “Molecular Cloning: A Laboratory Manual” (Cold Spring Harbor Laboratory Press 1989); “Current Protocols in Molecular Biology” (eds., Ausubel et al.; Greene Publishing Associates, Inc., and John Wiley & Sons, Inc. 1990 and supplements)). Expression vectors contain expression control sequences operatively linked to a polynucleotide sequence of interest, for example, that encodes a fluorescent protein variant, as indicated above. The expression vector (for example, pCR4Blunt-TOPO (Invitrogen, Carlsbad, Calif.) can be adapted for function in prokaryotes or eukaryotes by inclusion of appropriate promoters, replication sequences, markers, and the like. An expression vector can be transfected into a recombinant host cell for expression of a fluorescent protein variant, and host cells can be selected, for example, for high levels of expression in order to obtain a large amount of isolated protein. A host cell can be maintained in cell culture, or can be a cell in vivo in an organism. A fluorescent protein or variant thereof can be produced by expression from a polynucleotide encoding the protein in a host cell such as E. coli.

An expressed fluorescent protein of the present invention, or variant thereof, can be operatively linked to a first polypeptide of interest, further can be linked to a second polypeptide of interest, for example, a peptide tag, which can be used to facilitate isolation of the fluorescent protein variant, including any other polypeptides linked thereto. For example, a polyhistidine tag containing, for example, six histidine residues, can be incorporated at the N-terminus or C-terminus of the fluorescent protein (or variant thereof), which then can be isolated in a single step using nickel-chelate chromatography. Additional peptide tags, including a myc epitope, a FLAG epitope, or any other ligand, including any peptide epitope (or antibody, or antigen binding fragment thereof, that specifically binds the epitope) well known in the art and similarly can be used (see, e.g., Hopp et al. (1989), Biotechnology 6, pp. 1204; U.S. Pat. No. 5,011,912).
Kits
The present invention is also directed to kits, in order to facilitate and/or standardize use of compositions provided by the present invention, as well as to facilitate the methods of the present invention. Materials and reagents to carry out these various methods can be provided in kits to facilitate execution of the methods. As used herein, the term “kit” is used in reference to a combination of articles that facilitate a process, assay, analysis or manipulation.

Kits can contain chemical reagents (e.g., polypeptides or polynucleotides) as well as other components. In addition, kits of the present invention can also include, for example but not limited to, apparatus and reagents for sample collection and/or purification, apparatus and reagents for product collection and/or purification, reagents for bacterial cell transformation, reagents for eukaryotic cell transformation, previously transformed polynucleotide transfectants, or encoding, a host cell, hosts, strains, cultures, plates, instructions to the user, solutions, buffers or other chemical reagents (e.g., oligonucleotide primers), suitable samples to be used for standardization, normalization, and/or control samples. Kits of the present invention can also be packaged for convenient storage and safe shipping, for example, in a box having a lid.

In some embodiments, for example, kits of the present invention can provide a fluorescent protein of the invention, a polynucleotide vector (e.g., a plasmid) encoding a fluorescent protein of the invention (including variant(s) thereof), bacterial cell strains suitable for propagating the vector, and reagents for purification of expressed fusion proteins. Alternatively, a kit of the present invention can provide the reagents necessary to conduct mutagenesis of fluorescent proteins isolated from Sclerotinia, in order to generate a fluorescent protein variant of the present invention having a novel biophysical or biochemical property.

A kit can contain one or more compounds of the invention, for example, one or a plurality of fluorescent proteins or variants, which can be a portion of a fusin protein, or one or a plurality of polynucleotides that encode the polypeptides. The fluorescent protein variant can be a mutated fluorescent protein having a fluorescent emission spectrum at a wavelength different than the native protein. In one embodiment, the kit comprises a plurality of fluorescent protein variants, or at least one isolated fluorescent protein of the present invention, and reagents sufficient to carry out site directed mutagenesis.

A kit of the invention also can contain one or a plurality of recombinant nucleic acid molecules, which encode, in part or full, a fluorescent protein of the present invention or variant thereof, and can further include, for example, an operatively linked polynucleotide construct, or encoding, a restriction endonuclease recognition site or a recombinase recognition site, or any polypeptide of interest. In addition, the kit can contain instructions for using the components of the kit, particularly the compositions of the invention that are contained in the kit.

Such kits can be particularly useful where they provide a plurality of different fluorescent proteins or variants because the artisan can conveniently select one or more proteins having the fluorescent properties desired for a particular application. Similarly, a kit containing a plurality of polynucleotides encoding different fluorescent protein variants provides numerous advantages. For example, the polynucleotides can be engineered to contain convenient restriction endonuclease or recombinase recognition sites, thus facilitating operativeness of the polynucleotide to a regulatory element or to a polynucleotide encoding a polypeptide of interest or, if desired, for operatively linking two or more the polynucleotides encoding the fluorescent protein variants to each other.

Uses of Disclosed Fluorescent Proteins
An isolated fluorescent protein of the present invention (i.e., isolated from Sclerotinia), or variant of the isolated protein, is useful in any method that employs a fluorescent protein. Thus, the fluorescent proteins and variants, are useful as fluorescent markers in the many ways fluorescent markers already are used, including, for example, coupling fluorescent protein variants to antibodies, polynucleotides or other receptors for use in detection assays such as immunossays or hybridization assays, to track the movement of proteins in cells, or for the identification of protein-protein interactions, or protein-small molecule interactions.

For intracellular tracking studies, a first polynucleotide encoding the fluorescent protein variant is fused to a second polynucleotide encoding a protein of interest and the construct, if desired, can be inserted into an expression vector. Upon expression inside the cell, the protein of interest can be localized based on fluorescence, without concern that localization of the protein is an artifact caused by oligomerization of the fluorescent protein component of the fusion protein. In one embodiment of this method, two proteins of interest independently are fused with two fluorescent protein variants that have different fluorescent characteristics. This allows for the tracking of two proteins simultaneously.

The isolated fluorescent proteins and variants of this invention are useful in systems to detect induction of transcription. For example, a nucleotide sequence encoding an isolated Sclerotinia fluorescent protein or variant can be fused to a promoter or other expression control sequence of interest, which can be contained in an expression vector. The construct can be transfected into a cell, and induction of the promoter (or other regulatory element) can be measured by detecting the presence or amount of fluorescence, thereby allowing a means to observe the responsiveness of a signaling pathway from receptor to promoter.

Fluorescent proteins and variants of the invention also are useful in applications involving fluorescence resonance energy transfer (FRET), which can detect events as a function of the movement of fluorescent donors and acceptors towards or away from each other. One or both of the donor/acceptor pair can be a fluorescent protein of the present invention (or variant(s) thereof). Such a donor/acceptor pair provides a wide separation between the excitation and emission peaks of the donor, and provides good overlap between the donor emission spectrum and the acceptor excitation spectrum.

FRET can be used to detect cleavage of a substrate having the donor and acceptor coupled to the substrate on opposite sides of the cleavage site. Upon cleavage of the substrate, the donor/acceptor pair physically separate, eliminating the energy transfer, and therefore the fluorescence emission of the acceptor molecule. Such an assay can be performed, for example, by contacting the substrate with a sample, and determining a qualitative or quantitative change in FRET (see, e.g., U.S. Pat. No. 5,741,657). A fluorescent protein or variant donor/acceptor pair also can be part of a fusion protein coupled by a peptide having a proteolytic cleavage site (see, e.g., U.S. Pat. No. 5,981,200). FRET also can be used to detect changes in potential across a membrane. For example, a donor and acceptor can be placed on opposite sides of a membrane such that one translates across the membrane in response to a voltage change, thereby producing a measurable FRET (see, e.g., U.S. Pat. No. 5,661,035).

In other embodiments, fluorescent proteins and variants of the invention are useful for making fluorescent biosensors for protein kinase and phosphatase activities or indicators for
small ions and molecules such as Ca^{2+}, Zn^{2+}, cyclic 3',5'-adenosine monophosphate, and cyclic 3',5'-guanosine monophosphate. These inclusions, the fluorescence emission of a protein of the present invention is correlated with the protein kinase or phosphatase activity, respectively.

Fluorescence in a sample generally is measured using a fluorimeter, wherein excitation radiation from an excitation source having a first wavelength, passes through excitation optics, which cause the excitation radiation to excite the sample. In response, a fluorescent protein variant in the sample emits radiation having a wavelength that is different from the excitation wavelength. Collection optics then collect the emission from the sample. The device can include a temperature controller to maintain the sample at a desired temperature while it is being scanned, and can have a multi-axis translation stage, which moves a microtiter plate holding a plurality of samples in order to position different wells to be exposed. The multi-axis translation stage, temperature controller, auto-focusing feature, and electronics associated with imaging and data collection can be managed by an appropriately programmed digital computer, which also can transform the data collected during the assay into another format for presentation. This process can be miniaturized and automated to enable screening many thousands of compounds in a high throughput format. These and other methods of performing assays on fluorescent materials are well known in the art (see, e.g., Lakowicz, “Principles of Fluorescence Spectroscopy” (Plenum Press 1983); Herman, “Resonance energy transfer microscopy” in “Fluorescence Microscopy of Living Cells” Part B, Meth. Cell Biol. 30:219-243 (ed. Taylor and Wang; Academic Press 1989); Turro, “Modern Molecular Photochemistry” (Benjamin/Cummings Publ. Co., Inc. 1978), pp. 296-301, each of which is incorporated herein by reference).

A fluorescent protein can be linked to a molecule directly or indirectly, using any linkage that is stable under the conditions to which the protein-molecule complex is to be exposed. Thus, the fluorescent protein and molecule can be linked via a chemical reaction between reactive groups present on the fluorescent protein and molecule, or the linkage can be mediated by linker moiety, which contains reactive groups specific for the fluorescent protein and the molecule. It will be recognized that the appropriate conditions for linking the fluorescent protein of the present invention and the molecule are selected depending, for example, on the chemical nature of the molecule and the type of linkage desired. Where the molecule is a polypeptide, a convenient means for linking a fluorescent protein variant and the molecule is by expressing them as a fusion protein from a recombinant nucleic acid molecule, which comprises a polynucleotide encoding, for example, an isolated coral reef fluorescent protein operatively linked to a polynucleotide encoding the polypeptide molecule.

A method of identifying an agent or condition that regulates the activity of an expression control sequence also is provided. Such a method can be performed, for example, by exposing a recombinant nucleic acid molecule, which includes a polynucleotide encoding a fluorescent protein variant operatively linked to an expression control sequence, to an agent or condition suspected of being able to regulate expression of a polynucleotide from the expression control sequence, and detecting fluorescence of the fluorescent protein variant due to such exposure. Such a method is useful, for example, for identifying chemical or biological agents, including cellular proteins, which can regulate expression from the expression control sequence, including cellular factors involved in the tissue-specific expression from the regulatory element. As such, the expression control sequence can be a transcription regulatory element such as a promoter, enhancer, silencer, intron splicing recognition site, polyadenylation site, or the like; or a translation regulatory element such as a ribosome binding site.

The fluorescent proteins and variants of the invention also are useful in a method of identifying a specific interaction of a first molecule and a second molecule. Such a method can be performed, for example, by contacting the first molecule, which is linked to a donor fluorescence protein, and the second molecule, which is linked to an acceptor second fluorescent protein, under conditions that allow a specific interaction of the first molecule and second molecule; exciting the donor; and detecting fluorescence or luminescence resonance energy transfer from the donor to the acceptor, thereby identifying a specific interaction of the first molecule and the second molecule. The conditions for such an interaction can be any conditions under which is expected or suspected that the molecules can specifically interact. In particular, where the molecules to be examined are cellular molecules, the conditions generally are physiological conditions. As such, the method can be performed in vitro using conditions of buffer, pH, ionic strength, and the like, that mimic physiological conditions, or the method can be performed in a cell or using a cell extract.

The first and second molecules can be cellular proteins that are being investigated to determine whether the proteins specifically interact, or to confirm such an interaction. Such first and second cellular proteins can be the same, where they are being examined, for example, for an ability to oligomerize, or they can be different where the proteins are being examined as specific binding partners involved, for example, in an intracellular pathway. The first and second molecules also can be a polynucleotide and a polypeptide, for example, a polynucleotide known or to be examined for transcription regulatory element activity and a polypeptide known or being tested for transcription factor activity. For example, the first molecule can comprise a plurality of nucleotide sequences, which can be random or can be variants of a known sequence, that are to be tested for transcription regulatory element activity, and the second molecule can be a transcription factor, such a method being useful for identifying novel transcription regulatory elements having desirable activities.

The present invention also provides a method for determining whether a sample contains an enzyme, e.g., a protein kinase or phosphatase. Such a method can be performed, for example, by contacting a sample with a tandem fluorescent protein disclosed herein (including a variant fluorescent protein), exciting the donor, and determining a fluorescence resonance property in the sample, wherein the presence of an enzyme in the sample results in a change in the degree of fluorescence resonance energy transfer. Similarly, the present invention relates to a method for determining the activity of an enzyme in a cell. Such a method can be performed, for example, providing a cell that expresses a tandem fluorescent protein construct, wherein the peptide linker moiety comprises a cleavage recognition amino acid sequence specific for the enzyme coupling the donor and the acceptor, exciting said donor, and determining the degree of fluorescence resonance energy transfer in the cell, wherein the presence of enzyme activity in the cell results in a change in the degree of fluorescence resonance energy transfer.

Also provided is a method for determining the pH of a sample. Such a method can be performed, for example, by contacting the sample with a first fluorescent protein of the invention, wherein the emission intensity of the first fluorescent protein changes as pH varies between pH 5 and pH 10,
and in some embodiments, varies between pH6 and pH19, and in some specific embodiments, varies between pH6.3 and pH8.5; exciting the indicator; and determining the intensity of light emitted by the first fluorescent protein at a first wavelength, wherein the emission intensity of the first fluorescent protein indicates the pH of the sample. The first fluorescent protein useful in this method can comprise a polypeptide sequence as set forth in any one of SEQ ID NOS: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 or 44. Alternatively, the protein can comprise an amino acid sequence with at least 80% identity, or at least 85% identity, or at least 90% identity, or at least 95% identity with one or more of the sequences set forth in SEQ ID NOS: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 or 44. In a specific embodiment, the method utilizes the fluorescent protein having the amino acid sequence set forth in SEQ ID NO: 10.

The sample used in a method for determining the pH of a sample can be any sample, including, for example, a biological tissue sample, or a cell or a fraction thereof.

Cell-Based Method for Detecting Kinase and Phosphatase Modulators

In a further aspect, the invention provides a cell-based method for detecting kinase and phosphatase activities, and for detecting kinase and phosphatase modulators. The method is based on the surprising discovery that one or more fluorescent characteristics of a fluorescent protein disclosed herein are modulated by phosphorylation. The method utilizes a genetically encoded fluorescent protein which, when expressed within living cells, exhibits a change in a fluorescent characteristic concordant with the temporal and spatial activity of a kinase or phosphatase of interest.

This method of the invention provides a powerful cellular screening platform for new drugs to target kinases and phosphatases. Cell-based phosphorylation detection platforms to screen for kinase and phosphatase modulators offer significant advantages to current strategies that involve purified reagents. For instance, considerable effort has been made to determine protein kinase structures in order to synthesize chemical inhibitors. Cell-based screening for kinase and phosphatase inhibitors has the potential to lead to the discovery of compounds with mechanisms that are either not apparent from the kinase structure, or not dependent on the protein kinase alone. Another advantage to a cell-based detection approach is that the problem of cell membrane permeability and access to the kinase and phosphatase is automatically addressed by the design of the approach. Further, a cell-based detection approach permits identification of any undesirable effects a compound may have, e.g., undesirable effects on other molecules within the cell (such as related kinases and phosphatases) that may cause, e.g., apoptosis, which would not be detected by assays using purified kinases or phosphatases, and reagents. Cell-based phosphorylation detection platforms provided by the invention also offer significant advantages over assays which detect activities of specific kinases and phosphatases within cells using phosphorylation state-specific antibodies, which are typically performed in Western Blot or ELISA format (see, e.g., Nairn et al., Nature 299, 734-736, 1982). Such antibody-based phosphorylation assays only provide a "snapshot" of the dynamic process of phosphorylation within cells, which involves both kinase and phosphatase activities, and are also expensive and difficult to scale up for purposes of drug screening.

In accordance with the present invention, a cell-based detection method utilizes host cells that express a protein kinase or phosphatase of interest and a fluorescent protein, wherein one or more fluorescent characteristics of the fluorescent protein change upon phosphorylation by the kinase or phosphatase. Such host cells are contacted with a candidate compound under conditions that permit phosphorylation of the fluorescent protein by the kinase or phosphatase, and the compound is identified as an modulator of the kinase or phosphatase if the compound causes any alteration in the change of a fluorescent characteristic of the fluorescent protein upon phosphorylation in the presence of the compound as compared to in the absence of the compound.

The term "modulator" as used herein refers to a molecule that modulates, directly or indirectly, the activity of a protein kinase or phosphatase. A modulator includes both molecules that enhance and molecules that inhibit, directly or indirectly, the activity of a protein kinase or phosphatase. In some embodiments, the cell-based detection method of the invention is directed to identifying inhibitors of a protein kinase or phosphatase of interest.

The cell-based detection method of the invention can be applied to screen for modulators of a wide array of protein kinases, including serine kinases, threonine kinases, and tyrosine kinases. Examples of protein kinases suitable for use in accordance with the present invention include, but not limited to, Akt1, Akt2, Akt3, VEGF, Src, MET, KIT, ERBB2, FAK, PKA, PKC, PKG, PKD, MAPK (such as MAPK4, MAPK6, MAPK7, MAPK8, MAPK9, MAPK10, MAPK11, MAPK12, MAPK13, MAPK14, and MAPK15), cdc2, CDK, ERK2, CK1, CK2, GSK3, CaMK1, CaMK2, CaMK4, ABL, EGFR, IRK, PIM1-3, CLK1, DMPK-E, Pim1, RSK1, SLK1, ZIPK, NIMA, DCK1-b2, CHK1, MSK1/2, PAK, PDK1, LKB1, mTOR, MEK3, BARK, ATM, DNAPK, SIM, ERK1, GSK3, TGF-beta1, TrkB, Fyn among others (see, e.g., Udgersax et al., Nature Reviews Mol. Cell. Biol. 8: 530-541 (2007), the content of which is incorporated herein by reference).

In a specific embodiment, the cell-based detection method is designed to identify modulators of Akt1. Akt1 is well characterized for review, see Gonzalez and McGraw, Cell Cycle 8, 2502-2508 (2009), allowing testing of candidate compounds and comparison with available inhibitor compounds of Akt1.

The cell-based detection method of the invention utilizes a fluorescent protein, which exhibits a change in one or more fluorescent characteristics upon phosphorylation. As described hereinabove, the term "fluorescent property" or "fluorescent characteristic" refers to the molar extinction coefficient at an appropriate excitation wavelength, the fluorescence quantum efficiency, the shape of the excitation spectrum or emission spectrum, the excitation wavelength maximum and emission wavelength maximum, the ratio of excitation amplitudes at two different wavelengths, the ratio of emission amplitudes at two different wavelengths, the excited state lifetime, the fluorescence anisotropy, intensity of fluorescence at a particular wavelength, or the integral of fluorescence over the emission spectrum.

In some embodiments, the fluorescent characteristic that exhibits a change upon phosphorylation is the fluorescence intensity at a particular wavelength, and/or the integral of fluorescence over part or all of the emission spectrum. In these cases, the change can be measured and is indicative of the activity of a kinase or phosphatase being examined.

As used herein, the change of a fluorescent characteristic (such as change in fluorescence intensity) is considered to be significant if the change is at least 20%, or at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 100% or greater, when comparing the measurement of the fluorescent characteristic
in question in the presence of a kinase or phosphatase relative to in the absence of the kinase or phosphatase.

In specific embodiments, the fluorescence intensity at a particular wavelength and/or the integral of fluorescence over the emission spectrum is increased when the fluorescent protein is phosphorylated. Thus, detection of the increase in fluorescence intensity is indicative of the kinase or phosphatase activity.

For purposes of the cell-based assay disclosed herein, a fluorescent characteristic is being examined and detected, and the detected characteristic is correlated with a kinase or phosphatase activity. The term “correlated with”, as used in this context, is meant to include a correlation where the detected characteristic (e.g., fluorescence intensity) is compared to a control value, and the difference relative to the control value is used as an indicator of the kinase or phosphatase activity, as well as a co-relation where the detection device or data processing unit has been calibrated based on a built-in control value, such that the detected characteristic or value is used directly as an indicator of a kinase or phosphatase activity.

In other embodiments, the fluorescent characteristic that exhibits a change is the shape of the excitation spectrum or emission spectrum. Changes in the emission spectrum of a fluorescent protein permit ratiometric measurements to be carried out, which allows for the development of a highly robust method for quantifying spectral change in a fluorescent protein. In some embodiments, a portion of the emission or excitation spectrum is enhanced while another portion of the emission or excitation spectrum is reduced. In such embodiments, both portions are simultaneously measured. In such embodiments, the signals produced are normalized for probe levels. In some embodiments, a single narrow excitation filter centered around 490 nm causes the emission of the probe to decrease with phosphorylation. In other embodiments, the excitation wavelength is switched between 490 nm and 420 nm to produce a ratio in which the 420 nm signal decreases and the 490 nm signal increases following phosphorylation. In some embodiments, a single narrow excitation filter centered around 490 nm causes the emission of the probe to decrease with phosphorylation. In other embodiments, switching between exciting at 490 nm and 420 nm produces a ratio in which the 420 nm signal decreases and the 490 nm increases following phosphorylation.

The cell-based kinase or phosphatase assays of the invention can be implemented using a fluorescent protein or a variant disclosed herein and above. In a specific embodiment, the assay utilizes the fluorescent protein having the amino acid sequence set forth in SEQ ID NO: 10, also referred to herein as “PhosFluor”. PhosFluor has been identified in accordance with the invention as a protein that exhibits increased fluorescence intensity and an altered emission spectrum upon phosphorylation. It is believed that specific sites within the PhosFluor protein alter the excitation and emission spectrum of the protein in response to phosphorylation or dephosphorylation.

In other embodiments, the assay utilizes a variant of the PhosFluor protein which exhibits increased fluorescence intensity and an altered emission spectrum upon phosphorylation or dephosphorylation.

In one embodiment, a PhosFluor variant is generated by inserting into the naturally-occurring PhosFluor protein, one or more consensus sites for phosphorylation by a specific kinase or phosphatase, or a group of kinases or phosphatases, without necessarily replacing any of the phosphorylation sites within the naturally-occurring PhosFluor protein. Phosphorylation sites can be inserted at an internal location of the PhosFluor protein, or at the termini of the PhosFluor protein.

In eukaryotic cells, phosphorylation can occur on several amino acids within a protein, with phosphorylation on serine being the most common, followed by threonine, and with tyrosine phosphorylation being relatively rare. The term “phosphorylation consensus site” refers to a relatively short amino acid sequence motif, generally 4-10 residues, which includes a phosphorylation residue (serine, threonine or tyrosine) flanked by amino acid residues having certain characteristics (e.g., hydrophobic, polar, acidic, basic, neutral, or kink), and which sequence motif defines substrate specificity for a specific kinase or phosphatase, or group of kinases or phosphatases. For example, the consensus phosphorylation sites for Akt, PKA and Src are RXXX(S/T) (SEQ ID NO: 46), RRX(S/T)O (SEQ ID NO: 47), and EEFY/E(G)XF (SEQ ID NO: 48), respectively, where X represents any amino acid and O represents a hydrophobic residue (Übersax et al., Nature Reviews Mol. Cell. Biol. 8: 530-541 (2007)). Additionally, a number of databases are available which provide experimental verified phosphorylation sites, accessible on line, such as PhosphoBase as reported by Blom et al. (Nucleic Acids Research 26(1): 382-386, 1998).

In another embodiment, a PhosFluor variant is generated by replacing one or more native phosphorylation sites within the naturally-occurring PhosFluor with one or more consensus phosphorylation sites for a specific kinase or phosphatase, or group of kinases or phosphatases. Such replacement engineering is believed to enhance the specificity of the resulting variant to phosphorylation by the specific kinase or phosphatase, or group of kinases or phosphatases which recognize and acts on the phosphorylation site(s). In a specific embodiment, all of the native phosphorylation sites in PhosFluor have been replaced with the consensus phosphorylation sites for a specific kinase or phosphatase, e.g., the Akt1 kinase.

Any of the above-described PhosFluor variants can be generated using genetic engineering techniques such as, e.g., site-directed mutagenesis. Additional molecular engineering can be performed to improve solubility, folding, expression, fluorescence intensity, and monomer state in a host cell. For instance, previous studies have identified amino acid modifications that optimize protein folding of coral GFPs (Campbell et al., Proc Natl Acad Sci USA 99, 7877-7882, 2002). A similar approach can be taken to improve the folding of PhosFluor in host cells such as mammalian cells. Furthermore, mutations can be introduced into PhosFluor which can reduce the affinity of paired proteins with one another thereby permitting more effective spatial resolution of phosphorylation detection in cells. Another fluorescent protein isolated from warm water coral, Cyphastrea microphthalma, vivid Verde fluorescent protein (or “vVFP”), has been successfully monomertized based on introducing mutations into the region(s) involved in oligomerization (Hagan et al., 2010, incorporated herein by reference). The PhosFluor protein, which exhibits 68.9% identity to vVFP, can be mutated in a similar manner.

To practice the cell-based method of the invention, a variety of cells can be used as host cells, including but not limited to bacterial and eukaryotic cell lines, such as fungal, plant, avian, insect and mammalian cell lines suitable for expression of a protein kinase or phosphatase of interest and a fluorescent protein disclosed herein. In specific embodiments, the kinase or phosphatase detection method of the invention utilizes a mammalian cell line.

A host cell may express a protein kinase or phosphatase of interest at a desirable level endogenously; or may be engineered or further modified to achieve an effective expression of the protein kinase or phosphatase of interest. For example, a host cell can be transformed with an expression vector
coding for the kinase or phosphatase, and expression of the kinase or phosphatase is driven by a strong promoter, which can be either inducible or constitutive. Suitable promoters include the cytomegalovirus (CMV) and retroviral long terminal-repeat (LTR) promoters. Cell lines that normally express low basal levels of protein kinases, such as NIH 3T3 cells, may be desirable to permit introduction of expression vectors that direct expression of a specific kinase. The expression vectors can, in some embodiments, be integrated into the genome of the host cell to achieve stable, high-level expression of the kinase or phosphatase.

The host cell is also engineered to express a fluorescent protein disclosed herein above. This can be accomplished by conventional transformation of the host cell with an expression vector which encodes a desirable fluorescent protein, e.g., PhosFluer or a variant thereof.

Expression of a protein kinase or phosphatase of interest and a fluorescent protein may be enhanced by optimizing the codons encoding these proteins, i.e., selecting codons that are particularly used for expression in the host cells such as mammalian cells, as well as utilizing an optimized Shine-Dalgarno sequence in the expression vector. Similar methods were used to create enhanced GFP (eGFP) (Yang et al., Nucleic Acids Res 24, 4592-4593, 1996).

To perform a cell-based assay for detection of kinase or phosphatase activity, an appropriate host cell which expresses a protein kinase or phosphatase of interest and a fluorescent protein is monitored. A change in one or more fluorescent characteristic, e.g., an increase in fluorescence intensity within the cell, can be detected and is indicative of the spatial and temporal activity of the kinase or phosphatase. Animal models can also be developed based on such cell-based approach to detect the spatial and temporal activity of a kinase or phosphatase in vivo within an animal.

To perform a cell-based assay for screening for kinase inhibitors, an appropriate host cell which expresses a protein kinase of interest and a fluorescent protein is contacted with a candidate compound under conditions that permit phosphorylation of the fluorescent protein by the kinase. Host cells without being contacted by the compound are used as control.

In cases where the fluorescent protein exhibits increased fluorescence intensity upon phosphorylation, a reduction in the increase of fluorescence intensity in the presence of the compound is indicative of an inhibitory effect of the compound on the kinase activity. As disclosed above, once properly calibrated, the fluorescence intensity detected in the presence of a compound can be correlated directly with the effect of the compound on the phosphatase activity.

In a specific embodiment, the cell-based assay of the invention is performed in an array or multiwell format, which allows high throughput screening of combinatorial libraries for kinase or phosphatase inhibitors. In this embodiment, cells expressing both a protein kinase or phosphatase of interest and a fluorescent protein (e.g., the PhosFluer protein or variant) are plated onto a multi-well grid. Compounds are then added to the wells to test for kinase or phosphatase inhibition, followed with an addition of a stimulus that triggers the phosphorylation or dephosphorylation reaction, or without addition of such stimulus (as control). Suitable stimuli include cyclic AMP (cAMP) and brain-derived neurotrope factor (BDNF). Fluorescence is used as the readout of kinase or phosphatase activity. Both the IC₅₀ and kinetic data (based on fluorescence over time) can be obtained from such an assay.

In one embodiment, the assay is performed in vivo, i.e., within an intact animal. In this embodiment, cells of the animal express both a protein kinase or phosphatase of interest and a fluorescent protein. The cells of the animal are then contacted with one or more compounds to test for kinase or phosphatase inhibition. The cells of the animal are contacted with a stimulus that triggers the phosphorylation or dephosphorylation reaction, or without addition of such stimulus (as control). Suitable stimuli include cyclic AMP (cAMP) and brain-derived neurotrope factor (BDNF). Fluorescence is used as the readout of kinase or phosphatase activity. Both the IC₅₀ and kinetic data (based on fluorescence over time) can be obtained from such an assay.

The present invention is further illustrated by reference to the following examples. However, it should be noted that these examples, like the embodiments described above, are illustrative and are not to be construed as restricting the enabled scope of the invention in any way.

EXAMPLE 1

cDNA Synthesis, Cloning, Isolation and Sequencing of Disclosed Fluorescent Proteins

Biological samples were isolated from organisms of the order Scyphistomata, found in the Australian Great Barrier Reef. Methods for RNA extraction, cDNA synthesis, and specific cloning of fluorescent proteins from the Australian Great Barrier Reef and **Montastrea cavernosa** have been described previously (Kao et al. 2007). *Mar Biotechnol. (NY)* 9, pp. 733-746).

A set of degenerate primers was used to amplify a conserved region of each fluorescent molecule. The degenerate primers comprising the nucleotide sequences set forth in SEQ ID NOs: 1-5 (1 μM total concentration with each primer present in equimolar concentrations) were used for the 5' end.

The degenerate primers comprising the nucleotide sequences set forth in SEQ ID NOs: 6-9 (at 1 μM total concentration with each primer present in equimolar concentrations) were used for the 3' end.

For each of the primers comprising the nucleotide sequences set forth in SEQ ID NO: 1-9, "B" - G, C or T; "K" - G or T; "M" - A or C; "N" - A, C, G or T; "R" - A or G; "S" - G or C; "W" - A or T; "Y" - C or T.

The degenerate primers were used to amplify cDNA derived from the coral specimens, and the resulting DNAs were cloned into pCR4-Blunt-TOPO (Invitrogen, Carlsbad, Calif.) and sequenced. Sequences that were homologous to
previously known fluororescent proteins were used to design internal primers for amplifying the entire DNA.

The internal primers were used in inverse PCR assays to obtain the full length clones (Kuniyoshi, Fukui, and Sakai (2006), Bioch. Biotechnol. Biochem. 70, pp. 1983-1986).

Fluorescent proteins were constitutively expressed in pCR4Blunt-TOPO (Invitrogen, Carlsbad, Calif.). Expression was visualized by plating bacteria onto CircleGlow agar plates (MP Biomedicals, Irvine, Calif.) supplemented with kanamycin (20 μg/ml) and charcoal (2% w/v) to suppress endogenous fluorescence from bacterial media. Colonies were visualized using Illumatool (Lightools Research, Encinitas, Calif.).

Sequences and Alignment

The Australian Great Barrier Reef fluorescent proteins in this study were obtained from sequencing and from GenBank. The nucleotide and sequences encoding the disclosed fluorescent peptides are set forth in SEQ ID NOs: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. The amino acid sequences encoding the disclosed fluorescent polypeptides are set forth in SEQ ID NOs: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, and 44.

For the nucleotide sequences, the upper case letters denote the coding sequence. The novel amino acid and nucleotide sequences of the present invention were collated and aligned with the sequences of known fluorescent proteins using MAFFT default settings (Katoh et al. (2005), Nucleic Acids Res. 33, pp. 511-518). While some gaps were observed in the alignment in the N terminal region, most of the protein is trivial with respect to alignment (see FIG. 1).

EXAMPLE 2

Phylogenetic Tree Generation for the Disclosed Fluorescent Proteins

All phylogenetic trees were generated using PAUP* (Swofford (2000), PAUP*. Phylogenetic Analysis Using Parsimony (*) and Other Methods). Version 4. Sinauer Associates, Sunderland, Mass.). Standard parsimony settings were used in all analyses, and robustness was assessed with bootstrap and jackknife analyses as well as Bayesian approaches using MrBayes (using the paradigm model). In general, trees generated were well resolved and supported despite the small number of characters present (45 for the conserved chomophore regions and 225 for the flanking non-chromophore regions) in each of the partitioned matrices.

The phylogenetic matrix was partitioned using the charset option in PAUP*. The interior potential chomophoric region was partitioned into 40 discrete sliding windows as indicated in the charpart partitions. The congruence of each of these internal sliding windows as well as the congruence of the N terminal end with the C terminal end was determined using the "hompart" option in PAUP* utilizing 100 random partitioning steps.

Molecular evolutionary analysis of the novel polypeptides of the present invention, and 74 additional fluorescent protein sequences (comprising fluorescent protein sequences derived from organisms of the order Scerretina, of the order Actiniaria, of the order Corallimorpharia, of the order Ceriantharia, of the order Hydroidea, of the subclass Cepoidea, and of the order Amphiprion) of known geographic origin revealed a conserved region located approximately in the middle of the molecule that includes the light-emitting tripeptide chomophore (e.g., for eGFP, Ser65-Tyr66-Gly67) (see FIGS. 1, 2, and 5).

Molecular phylogenetic analyses were then undertaken by partitioned analysis of the conserved region and the remainder of the protein. The initial analyses using the incongruence length difference (ILD) test revealed distinct evolutionary processes at work on a central conserved region and two flanking regions (null hypothesis of congruence is rejected at p<0.25).

The analysis was repeated by sliding a 40 amino acid window (representing the potential boundary size of the region) in the carboxyl direction by 5 amino acid increments (see FIG. 2) to precisely locate the boundary of the interior conserved region. This revealed a distinct central region, demarcated by residues 70 to 115 (see FIGS. 1 and 2); residues correspond to sequence alignment shown in FIG. 1). The central region displays a sharply divergent evolutionary pattern from the rest of the protein (ILD test: p<0.25). The central region evolves slowly under stabilizing selection. Consistent with this finding, the rate of molecular change in this middle conserved region is much slower than the terminal regions (relative ratio of rates of terminal regions to the middle conserved region range from 1.68 to 1.77 depending on input criteria). This central region consists of the chomophore containing a helix and a single β strand. The β strand faces inward in the tetrameric fluorescent complex (see FIG. 3).

The terminal regions are under intense Darwinian selection and evolve rapidly with mutations appearing at sites of putative protein-protein interactions (see FIG. 4), with no difference observed between the amino and carboxyl regions (ILD test: p<0.01). In addition, phylogenetic trees generated from the middle region and from the combined terminal regions revealed that fluorescence color is significantly associated with the terminal hypervariable regions and not with the middle conserved region (K11 test—p=0.013-0.039; Templeton test—p=0.022-0.039; marginal significance testing site test—p=0.071-0.125).

The results indicate that the fluorescent proteins analyzed herein possess two regions under distinct molecular evolutionary pressures. When aligned to the crystal structure, residues undergoing rapid evolution map to a single patch on the exterior of the tetramer and point outward (see FIG. 4). By contrast, the middle conserved region contains the chomophore followed by a single beta-strand, part of which forms a pocket or channel (see FIGS. 3 and 4) in the center of the tetrameric structure.

However this central conserved region does not appear to contain those residues necessary for tetramerization of fluorescent proteins. Based on the sequence of the entire protein, fluorescent separate on the basis of color (Ugalde, Chang, and Matz (2004), Science 305, p. 1433; Field et al. (2006), J. Molecular Evolution 62, pp. 332-331; Kao et al. (2007), Mar Biotechnol (NY) 9, pp. 733-746). However, only the terminal hypervariable regions of fluorescent proteins, which do not include the chomophore, track with color evolution. Conversely, the region containing the chomophore, evolves independently from the rest of the protein and does not track fluorescence color (see FIG. 2).

For a class of compact protein appreciated mainly for its chromatic properties, fluorescent proteins contain distinct regions—one containing the chomophore (45 internal residues) and the other enclosing it (50 residues on the N terminus and 140 residues on the C terminus)—with sharply contrasting evolutionary behavior largely unrelated to chromatic properties. The highly divergent and externally facing terminal regions are likely involved in protein-protein interactions with a highly variable protein of external origin. In addition there are additional hypervariable sites (19 sites; FIGS. 4 and
EXAMPLE 3

Determination of Surface Residues of the Disclosed Fluorescent Polypeptides

The amino acid sequences of the disclosed fluorescent polypeptides, as well as sequences of other fluorescent proteins, were aligned to the structure of nidogens, a family of extracellular matrix proteins that unexpectedly displayed a nearly identical crystal structure to that of fluorescent proteins (Hopf, et al. (2001). Nat. Struct. Biol. 8, pp. 634-640). The N-terminal hypervariable amino acids of fluorescent proteins form a surface patch that closely aligns with the conserved binding region of the nidogens (see FIG. 5).

Alignment of amino acid sequences of the disclosed fluorescent polypeptides with the globular extracellular region of nidogens reveals that the N-terminal hypervariable amino acids of the respective fluorescent polypeptide forms a surface patch that closely aligns with the conserved binding region of the nidogens. This conserved nidogen region is the surface that interacts with perlecans, the major protein binding partner of nidogens (Kwanakul et al. (2001). EMBO J 20, pp. 5342-5346). Accordingly, a main function of the hypervariable terminal regions of the fluorescent proteins disclosed herein may be to bind to other protein targets.

EXAMPLE 4

Comparison of a Disclosed Fluorescent Polypeptide with eGFP

The fluorescence emission of a disclosed fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 24 was compared to eGFP. eGFP is one of the brightest fluorescent proteins created to date. Both the disclosed fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 24 and eGFP were cloned into a modified pET-HT vector with a TEV-cleavable His-tag, expressed in BL21 DE3 E. coli, and purified via Ni-NTA resin. The concentration of each sample was normalized by the intensity of the respective absorption spectrum at 480 nm.

Fluorescence correlation spectroscopy (FCS) measurements (not shown) also indicated the protein having the sequence set forth in SEQ ID NO: 24 is monomeric and about 1.4 times as bright as eGFP. Additionally, as FIG. 6 clearly indicates, the peak emission intensity of the disclosed fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 24 is about 50% greater than that of eGFP.

EXAMPLE 5

Maturation Kinetics of the Disclosed Fluorescent Polypeptides

The kinetics of maturation of the disclosed fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 12 were monitored in E. coli grown at two different temperatures (25°C and 37°C). FIG. 7 shows the excitation and emission spectra, measured under identical conditions, and normalized to absorbance at 600 nm (i.e., an equal number of cells) for the proteins grown at both 25°C and 37°C. Distinct, high peaks were seen for the sample grown at 37°C, in contrast to the 25°C sample. This indicates that the disclosed fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 12 grown at 37°C is soluble and correctly folded.

EXAMPLE 6

PhosFluor Exhibited Fluorescence Modulation in Response to Alkaline pH

It was hypothesized that a single fluorescent protein could exhibit altered fluorescence when phosphorylated, and that such proteins could exist in nature. Phosphorylation bestows a phosphate group to a protein, rendering additional negative charge and a more basic isoelectric point. Since this is roughly equivalent to creating a basic environment for the protein, it was reasoned that proteins exhibiting a change of fluorescence with basic pH could be engineered into phosphorylation sensors.

One of the earliest examples of a pH-sensitive fluorescent protein is pHluorin, an engineered fluorescent protein that exhibits very low or no fluorescence below pH 6, but bright fluorescence at pH 7 (Miesenbock et al., 1998). When pHluorins (also known as SynaptotagminXIs) are engineered to reside within acidic organelles (e.g. vesicles of lysosomes) no fluorescence is detected until the organelle is brought to a neutral pH. Thus, pHluorins fluoresce when vesicles or lysosomes are discharged, providing a fluorescent readout of a physiological process. It was believed, however, that there are no proteins that exhibit increased fluorescence with basic pH.

A panel of fluorescent proteins was subjected to different pH conditions. As shown in FIG. 9A, PhosFluor (the fluorescent protein having the amino acid sequence set forth in SEQ ID NO: 10) exhibited >100% increase in brightness from pH 6.3 to pH 8.5. By contrast, none of the other proteins, including Green Fluorescent Protein (GFP) or its derivatives, enhanced GFP (eGFP), CFP or YFP, or another coral protein (sYFP) exhibited any change in fluorescence intensity at basic pH (FIG. 9A).

EXAMPLE 7

PhosFluor Underwent Dramatic Spectral Changes when Phosphorylated

Analyses of the PhosFluor protein suggest that several sites within the molecule are strong substrates for many different protein kinases (Blom et al., J Mol Biol 294, 1531-1362, 1999), particularly protein kinase C (PKC). Indeed, Western blot analyses revealed that serine and threonine sites on PhosFluor are phosphorylated by PKA, PKC, mitogen-activated protein kinase (MAPK), cell division control protein 2 (edc2), and Akt1.

To determine if the fluorescence of PhosFluor could be modulated by phosphorylation, recombinant PhosFluor was incubated with different protein kinases and fluorescence was monitored (FIG. 9B). PhosFluor demonstrated a dramatic increase in fluorescence intensity when treated with various protein kinases, consistent with the increased brightness of this molecule when exposed to alkaline pH (FIG. 9A). eGFP, one of the most widely used fluorescent proteins, showed no change in fluorescence intensity when incubated with kinases (FIG. 9B). However, fluorescence intensity also increased to a lesser degree in the absence of added protein kinase. It was thought that endogenous bacterial protein kinases were expressed in E. coli (Enami and Ishihama, J Biol Chem 259, 526-533, 1984); therefore PhosFluor was incubated in the presence of alkaline phosphatase to remove phosphate.
groups. This treatment virtually abolished the increase in fluorescence intensity of PhosFluor over time (FIG. 9B). The fluorescence intensity of PhosFluor also increased above background levels when the protein was incubated with cdc2 and MAPK (data not shown). Collectively, these experiments demonstrate that PhosFluor increases its fluorescence intensity upon phosphorylation.

Phosphorylation is known to increase the negative charge on proteins, which commonly results in an upward shift in the apparent molecular weight of the protein when resolved by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Indeed, when phosphorylated by PKC, multiple higher molecular weight species of PhosFluor were resolved by SDS-PAGE (FIG. 9C), indicating that several sites on this molecule were phosphorylated by this protein kinase. To a lesser extent, higher molecular weight species were also observed upon phosphorylation by PKA (FIG. 9C).

The excitation and emission spectra of PhosFluor were also obtained under control conditions and when phosphorylated (FIG. 10A). Remarkably, the excitation spectrum of PhosFluor was dramatically altered upon phosphorylation by different protein kinases, including Akt1 (FIG. 10A). A marked shift in the emission spectrum of PhosFluor was observed when this molecule was incubated with PKA, PKC or Akt1 (FIG. 10B). Similar changes in the emission spectrum were also observed when this protein was phosphorylated by CamKII and MAPK (data not shown). By contrast, no changes were observed in either the excitation or emission spectra of EGFP under the same conditions (FIGS. 10A-10B). These observations are highly significant because changes in the emission spectrum permits ratiometric measurements to be carried out, a highly robust method for quantifying spectral change in a fluorophore. Moreover, the effects reported here were carried out on the unmodified native PhosFluor protein. Enhanced effects would be expected if this protein is optimized for phosphorylation and/or expression as disclosed herein.

EXAMPLE 8
PhosFluor was Expressed Stably in a Mammalian Cell Line

PhosFluor was readily expressed in E. coli, but requires a few hours at room temperature or 4°C to attain maximal fluorescence. To determine if this protein can be expressed in mammalian cells, PhosFluor was expressed in HEK-293 cells, a transformed cell line that expresses a multitude of different protein kinases. Fluorescence was observed in these cells five days post-transfection (FIG. 11), and was still stably expressed in cells selected for stable transfection 3 weeks later. This stable transfection indicated that the disclosed fluorescent polypeptide could be used in a cell-based phosphorylation detection system.

EXAMPLE 9
Converting PhosFluor into an Avid Substrate for Akt1 Kinase

Preliminary data indicate the presence of several phosphorylation consensus sites in PhosFluor. These sites are confirmed in the recombinant PhosFluor protein by phosphorylation in vitro using purified kinases, followed by digestion with trypsin and analysis by mass spectroscopy (Porton et al., Biol Psychiatry 55, 118-125, 2004). Peptides of interest are identified by an 80 Dalton mass shift (the molecular weight of a phosphate group) upon phosphorylation, and the identity of the phosphorylation site are inferred from the peptide's molecular weight and predicted sequence.

Conversion of functional phosphorylation sites into optimal substrates for Akt1 in PhosFluor is achieved by site-directed mutagenesis, a routine procedure (Kao et al., Nat Neurosci 5, 431-437, 2002). The effect of adding multiple Akt1 phosphorylation sites to the PhosFluor molecule is determined. These additional sites are believed to enhance the shift in the isoelectric point of the protein, resulting in a greater alteration of its spectral properties.

Recombinant PhosFluor protein or a variant thereof is produced in E. coli and purified using established techniques (Malhotra, Methods Enzymol 463, 239-258, 2009). Purified proteins are subjected to phosphorylation in vitro using recombinant Akt1 kinase. Reactions are monitored in a spectrophotometer after the addition of Akt1 kinase to record changes in intensity, excitation spectra or emission spectra.

Patents, patent applications, publications, product descriptions, and protocols which are cited throughout this application are incorporated herein by reference in their entirety. The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. Modifications and variation of the above-described embodiments of the invention are possible without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.

SEQUENCE LISTING

araagcgcac covtsccwtygc
<210> SEQ ID NO 2
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer
<400> SEQUENCE: 2
agccyctgcc ttttygygttt gacatattg

<210> SEQ ID NO 3
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer
<400> SEQUENCE: 3
agccyctgcc ttttygygttt gacatattg

<210> SEQ ID NO 4
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer
<400> SEQUENCE: 4
ccccctccct tccccctttgs c

<210> SEQ ID NO 5
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer
<400> SEQUENCE: 5
gaygcyrgdc ctctgccttt ctcttggat atc

<210> SEQ ID NO 6
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer
<400> SEQUENCE: 6
gtctctctyt gcatacoggg wccatyzgca gg

<210> SEQ ID NO 7
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer
<400> SEQUENCE: 7
agcagatcct tctgccttga ctgwc

<210> SEQ ID NO 8
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer

<400> SEQUENCE: 8

aatcctcctc gcctacctgg wccattggsr gg 32

<210> SEQ ID NO 9
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic Primer

<400> SEQUENCE: 9

gtcttttgc atcaacrggtc cgytreyrgg g 31

<210> SEQ ID NO 10
<211> LENGTH: 230
<212> TYPE: PRT
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 10

Met Ser Ala His Ile Lys Pro Asn Met Lys Ile Lys Leu Arg Met Glu
1 5 10 15
Gly Asp Val Asn Gly His Pro Phe Val Ile Thr Gly Glu Gly Ser Gly
20 25 30
Lys Pro Tyr Glu Gly Thr His Ala Ile Asp Leu Lys Val Lys Glu Gly
35 40 45
Gly Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Ala Ala Phe Glu Tyr
50 55 60
Gly Asn Arg Ala Phe Thr Lys Tyr Pro Ala Asp Ile Pro Asp Tyr Phe
65 70 75 80
Lys Glu Ser Phe Pro Asp Gly Tyr Cys Trp Glu Arg Ser Met Val Phe
95 90 95
Glu Asp Gin Gly Ile Cys Val Val Lys Ser Val Ile Ser Leu Asp Lys
100 105 110
Lys Glu Pro Asp Cys Phe Asn Tyr Asp Ile Arg Phe Tyr Gly Val Asn
115 120 125
Phe Pro Ala Thr Gly Pro Val Met Lys Lys Thr Val Lys Trp Glu
130 135 140
Pro Ser Thr Glu Thr Met Tyr Glu Arg Asp Gly Val Leu Val Gly Asp
145 150 155 160
Val Asn Met Ala Leu Leu Leu Glu Gly Gly His His Arg Cys Asp
165 170 175
Phe Lys Ser Thr Tyr Arg Ala Lys Val Val Leu Asn Met Pro Gly
180 185 190
Asn His Tyr Val Asp His Arg Ile Glu Ile His His Asp Lys Gly
195 200 205
Tyr Asn Ser Val Thr Val His Glu Ser Ala Glu Ala Arg His Cys Ser
210 215 220
Leu Pro Ser Lys Ala Lys
225 230

<210> SEQ ID NO 11
<211> LENGTH: 792
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 11

cagctgcag aaaaagacg ctgtaaagc gattatctta ttttacgat acagtcatga 60
gtgcgtcat aaaaacgcc atgaagatca agoctgctat gggaggagat gttaaagggc 120
acccgtcgt gattacagga gagaaggagc gcaagcctta cggaggaaca cagctatag 180
acctaaaggt caagagaggt ggaacctcgc cattccttta ctatcatctg acacgacgtt 240
tccagtcgag caacagggca ttcaccaaat atccagcaga cattccccagc tatcccaagc 300
agcttttccc tggtagctat tggtagggac gaggcatggt ttctcaggg gaggacattt 360
gcgtgggtca aagcgtattg tcgttacaga aaaaaggaacc tgaagtgcttc aacatcacaca 420
tccagactata tcgttgcaaa aaaaaggaacc tgaagtgcttc aacatcacaca 480
aatcgggagcc atcggctcg agaagtgtat aagctgtatg aggtctaggt ggtgtatgtaa 540
acatgcgctg gttggtgtaa gggagcggtc gccgctccag tgcagagctca ggtagtctaa 600
agcagacgg agttgtcttg acatgctgac ggaacactag cggtagctac cggagtctaa 660
taacacccca tggacacaggt ttaacacagc tggacacgct cgggtgctgca gaaggtcgcgcg 720
attgttgctg gcggagcaac gcgaagtaaa gcgtttacat gaaacccagt agaccaacag 780
gagcaaaaa at 792

<410> SEQ ID NO 12
<411> LENGTH: 225
<412> TYPE: DNA
<423> OTHER INFORMATION: Xaa is any amino acid

<400> SEQUENCE: 12

Met Asn Val Ile Lys Thr Asp Met Lys Met Lys Leu Arg Met Val Gly
 1 5 10 15

Ala Val Asn Gly His Lys Phe Glu Ile Ala Gly Glu Gly Lys Gly Lys
 20 25 30

Pro Phe Glu Gly Lys Glu Glu Thr Met Asn Leu Glu Val Leu Val Gly
 35 40 45

Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly
 50 55 60

Asn Arg Val Phe Val Lys Tyr Pro Lys Asp Ile Xaa Asx Tyr Phe Lys
 65 70 75 80

Gln Ser Phe Pro Glu Gly Phe Ser Thr Glu Arg Ser Met Ala Tyr Glu
 85 90 95

Asp Gly Gly Ile Cys Ile Xaa Thr Asn Asx Ile Thr Leu Met Lys Gly
 100 105 110

Asp Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe Pro Ala
 115 120 125
Asn Ser Pro Val Xaa Gln Lys Xaa Thr Val Lys Trp Glu Pro Ser Thr
130 135 140
Glu Lys Leu Tyr Val Arg Asp Gly Val Leu Lys Gly Val Asn Met
145 150 155 160
Ala Leu Leu Leu Glu Gly Gly His Tyr Arg Cys Asp Phe Lys Thr
165 170 175
Thr Tyr Lys Ser Lys Lys Val Val Gin Leu Pro Asp Tyr His Phe Val
180 185 190
Asp His Arg Ile Glu Ile Glu Ser His Asp Lys Tyr Asn Lys Val
195 200 205
Lys Leu Cys Glu His Ala Glu Ala His Ser Gly Lys Pro Arg Gin Ala
210 215 220
Lys
225

<210> SEQ ID NO 13
<211> LENGTH: 960
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 13
atcagagaac acctagaagt tataaggcc atatcctact tcgctccatc atcattagt 60
tgattaagaac acacatgag atgaagttgc gactgttacg cgcgttaaac gggcacaagt 120
tcgsaaatgc aggcaagagg aagggcaagc cttttaggg asacagact atgaaccttg 180
aagtcctagt cgccggacct tcgcctttcg ctttctgatat ttcgacacat gatattgat 240
acggcacaag ggcggattcg aaatatctac mraactttcc aacacgtcct 300
ttccggaggct cttctttagg gacgccagca tcgctattga gagcgggggg attgcaatcs 360
cacacaacra cataacatgg atgaagaaggg acgtgatttct ttatgaafat cgaatatg 420
agatgaacct tcttcctggc atgcggamar tgcagaagac gacggtcggaa tggagcttcs 480
cacaag aatgtacagt cgtcagggag tgcgtaggg agatgttaac atggctctgt 540
tgctcgaag aggtggccct taccatgagc actctttaaac tacctatcag ttaaaaag 600
tgctcagct gccgacatc cactttggtg ataccggat tgcagatcag agccgtaca 660
aagatttac caaggttaac cgtgtgtcag atgcggaac tcagcatgtg ctcggaaggg 720
acggcagtaa aagtgttaac cagccggca aagcgaaagag acattttt 780
agcgtgcaat tgtgttaacct gataggtat tggataattc caatctattg accttttattg 840
gggttcatg gcacccttt taaaattaa atccgattac atctctatat ggggtatttc 900
gcgcgtggtt ctaattagtt gaaagttaa gacgaggaag taaaattttg 960
gtgcagcttc aaaaaaaaa
980

<210> SEQ ID NO 14
<211> LENGTH: 225
<212> TYPE: PRT
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 14
Met Ser Val Ile Lys Gin Glu Met Lys Ile Lys Leu Arg Met Glu Gly
1 5 10 15
Thr Val Asn Gly His Ser Phe Val Ile Glu Gly Glu Gly Phe Lys Lys Lys
20 25 30
Pro Tyr Glu Gly Thr Glu Thr Ile Asn Thr Thr Val Lys Gly Ala
35 40 45
Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Ser Gly Phe Glu Tyr Gly
50 55 60
Asn Arg Ala Phe Thr Lys Tyr Pro Ser Asp Ile Pro Asp Tyr Phe Lys
65 70 75 80
Gln Thr Phe Pro Glu Tyr Ser Trp Glu Arg Ser Met Thr Tyr Glu
95 90 95
Amp Glu Gly Ile Cys Thr Ile Thr Ser Asp Ile Arg Met Glu Asp Asp
100 105 110
Cys Phe Met Tyr Glu Ile Arg Phe Lys Gly Glu Asn Phe Ser Pro Asn
115 120 125
Gly Pro Val Met Glu Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140
Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val Arg Met Ala
145 150 155 160
Leu Leu Leu Asp Gly Gly Gly His Tyr Arg Cyc Asp Phe Arg Ser Thr
165 170 175
Tyr Lys Ala Lys Lys Val Val Asn Leu Pro Asp Tyr His Phe Val Asp
180 185 190
His Arg Ile Glu Ile Leu Ser His Asp Lys Tyr Ser Lys Val Lys
195 200 205
Leu Tyr Glu Asn Ala Val Ala Arg Tyr Ser Met Leu Pro Ser Glu Ala
210 215 220
Lys 225

<210> SEQ ID NO 15
<211> LENGTH: 797
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 15
agenacagtc gagaaaaat aagacttgcag ggtgctacat ctactttcag tcctacatca 60
tgatgtaaa cacaactaa aagatgatag aagctcttag gagaagacagg gtaaaaaggggac 120
aatcctattc gagatgagga ggaaaacag gaaaccctta gagaagacac gagaagatgaga 180
actaagcat cacagagagt cacatcaggt cttcaggttc cggagcagtc cggagcagtc 240
tcgagcagtc t ataact ctaact ctaaact ctaact ctaact ctaact 300
agarctttttc tggggatatt tcgggataa gagaacgaga tttgagaac gagaagcat 360
tgatcataac aagatgatac aagatggttt ctagtattact ctggctttta 420
agagaagcc caaatcccc caagttctcc aagcttgttc cagttgtcag aagctgtcag 480
catcagcaag aagatgtac agtggcttcc ggggttggtaa aatcaggtc 540
ctttctggtaa tggcattgct gatctctact actaccag aagagcagag 600
aggtttctgct ctgctactgct aatacttctt ctagcagcc cagctattc aggccagtgc 660
aacagaata cagtaaggt aagctgttaag agaagagcgtag gttgctcttt 720
cagagcagc cagataggtctt bctacagaa ccagagtgcag acctacagaa gacgaacctt 780
cttgcaagtt cagttggt 797
<table>
<thead>
<tr>
<th>Ala</th>
<th>Leu</th>
<th>Gly</th>
<th>Ile</th>
<th>Cys</th>
<th>Leu</th>
<th>Ala</th>
<th>Thr</th>
<th>Asn</th>
<th>Asp</th>
<th>Ile</th>
<th>Thr</th>
<th>Leu</th>
<th>Lys</th>
<th>Gly</th>
<th>Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Leu</td>
<td>Arg</td>
<td>Met</td>
<td>Val</td>
<td>Gly</td>
<td>Ala</td>
<td>Val</td>
<td>Asn</td>
<td>Gly</td>
<td>His</td>
<td>Lys</td>
<td>Phe</td>
<td>Glu</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Glu</td>
<td>Gly</td>
<td>Lys</td>
<td>Gly</td>
<td>Lys</td>
<td>Pro</td>
<td>Phe</td>
<td>Glu</td>
<td>Gly</td>
<td>Lys</td>
<td>Gln</td>
<td>Thr</td>
<td>Met</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
<td>Val</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td>Pro</td>
<td>Leu</td>
<td>Pro</td>
<td>Phe</td>
<td>Ala</td>
<td>Tyr</td>
<td>Asp</td>
<td>Ile</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Thr</td>
<td>Val</td>
<td>Phe</td>
<td>Asp</td>
<td>Tyr</td>
<td>Gly</td>
<td>Asn</td>
<td>Arg</td>
<td>Val</td>
<td>Phe</td>
<td>Val</td>
<td>Lys</td>
<td>Tyr</td>
<td>Pro</td>
<td>Axx</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Aux</td>
<td>Ile</td>
<td>Glu</td>
<td>Gly</td>
<td>His</td>
<td>Phe</td>
<td>Lys</td>
<td>Glu</td>
<td>Ser</td>
<td>Phe</td>
<td>Pro</td>
<td>Glu</td>
<td>Gly</td>
<td>Phe</td>
<td>Ser</td>
<td>Trp</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Arg</td>
<td>Ser</td>
<td>Met</td>
<td>Ala</td>
<td>Tyr</td>
<td>Glu</td>
<td>Asp</td>
<td>Gly</td>
<td>Ile</td>
<td>Cys</td>
<td>Leu</td>
<td>Ala</td>
<td>Thr</td>
<td>Asn</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Ile</td>
<td>Thr</td>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
<td>Cys</td>
<td>Phe</td>
<td>Tyr</td>
<td>Glu</td>
<td>Ile</td>
<td>Arg</td>
<td>Phe</td>
<td>Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Val</td>
<td>Asn</td>
<td>Phe</td>
<td>Pro</td>
<td>Ala</td>
<td>Asn</td>
<td>Ser</td>
<td>Pro</td>
<td>Val</td>
<td>Met</td>
<td>Gln</td>
<td>Lys</td>
<td>Thr</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Trp</td>
<td>Glu</td>
<td>Pro</td>
<td>Ser</td>
<td>Thr</td>
<td>Glu</td>
<td>Leu</td>
<td>Tyr</td>
<td>Val</td>
<td>Arg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 17
<211> LENGTH: 469
<212> TYPE: DNA
<213> ORGANISM: Lobophyllia hampichii

<400> SEQUENCE: 17

```
gcctttgca ttgctctgc cacaagagc atacatttg aagcgcaccg taagctcgcga
atggtggcg ctgtaaacgg gcacaagtc gcattccgac gagaagggaa aggcaagcct
```

469
<table>
<thead>
<tr>
<th>43</th>
<th>-continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Gly Gly Ile Cys Ile Ala Thr Asp Ile Thr Leu Lys Gly Asp</td>
<td>100</td>
</tr>
<tr>
<td>Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe Pro Ala Asn</td>
<td>115</td>
</tr>
<tr>
<td>Ser Pro Val Met Gln Arg Thr Val Lys Trp Glu Pro Ser Thr Glu</td>
<td>130</td>
</tr>
<tr>
<td>Lys Leu</td>
<td>145</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 19
<211> LENGTH: 466
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 466

gcccctggca tttgatcgcc cacaacgac ataaccatgca aagggactg tgaagatgaa 60
gtgctgatct gtagcctgtc taaagggcga ccaagtccga aatccgagg aagggaaag 120
cagcgcttctt agggagaac aggcatgttga cctaagggct ctagtgtagg gacctctgc 180
ttcgcctttc gatactctgca cacaagttat cgattacggc aacggagggt tggcacaata 240
cocaaacagt atacagatc attataagca gtaggttttc gaaaggtttt catgggagag 300
aagcactgtct ataggaagcg gggcatttc ctcgaccaaa cagagacatt cattggaag 360
cgactgtttt ctctatgaa ttcgattgga tgaagttgc accttctgca atagccagt 420
tgcgagga agaagctggt aaagggagcc atcgactgag aattg 466

<210> SEQ ID NO 20
<211> LENGTH: 137
<212> TYPE: PRT
<213> ORGANISM: Lobophyllia hemprichii

<400> SEQUENCE: 20

Met Asn Val Ile Lys Thr Asp Met Lys Met Lys Leu Arg Met Val Gly | 1 | 5 | 10 | 15 |
Ala Val Asn Gly His Lys Phe Glu Ile Ala Gly Glu Gly Lys Gly Lys | 20 | 25 | 30 |
Pro Phe Glu Gly Lys Gin Thr Met Asn Leu Glu Val Leu Val Gly Gly | 35 | 40 | 45 |
Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly | 50 | 55 | 60 |
Asn Arg Val Phe Val Lys Tyr Pro Arg Asp Ile Ala Asp Tyr Phe Lys | 65 | 70 | 75 | 80 |
Gln Ser Phe Pro Glu Gly Phe Ser Trp Glu Arg Ser Met Ala Tyr Glu | 85 | 90 | 95 |
Asp Gly Gly Ile Cys Leu Ala Thr Asn Ile Thr Leu Lys Gly Glu Asp | 100 | 105 | 110 |
Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe Pro Ala Asn | 115 | 120 | 125 |
Ser Pro Val Leu Gln Lys Lys Thr Val | 130 | 135 |

<210> SEQ ID NO 21
<211> LENGTH: 497
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp
<220> FEATURE:
<221> NAME/KEY: misc.feature
<222> LOCATION: (14) . . (14)
<223> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 21

caatcacca gggntgtatt ggaagagagg agatcagaa caacctgaa tctataaggc 60
acatctcta acctgtgcct ctcctcgaa tgggttattag acagacatga agatgaatg 120
ggcattgta ggcgggtga assggcacaag ttcgaagatc gcaggagaag ggaagaagca 180
gcctttgag ggcgaaccaga ctataaacc gcagttctca ctgtgcttctt 240
cgttctcgat atctgtag acaggtgga taagggccag cgggtgtggtg tcaaatccc 300
aagagatata gcagactatt tcaagcagtc gttcaggag ggtttttcat ggagagcag 360
catgctttac ggaagaggggg gcattgctct gcgcacaacac gacataaact tgaagagcga 420
cgttttctt ttagaattct gattttgag aagtaacctt cctgcaasta gcccagtttt 480
gcagaagag acagtgag 497

<210> SEQ ID NO: 22
<211> LENGTH: 225
<212> TYPE: RNA
<213> ORGANISM: Scleractinia sp
<220> FEATURE: NAME/KEY: UNSURE
<222> LOCATION: (15)–(15)
<223> OTHER INFORMATION: Xaa is any amino acid

<400> SEQUENCE: 22

Met Asn Val Ile Lys Thr Arg Met Lys Met Lys Leu Arg Met Xaa Gly
1 5 10 15
 Ala Val Asn Gly His Lys Phe Val Ile Ala Gly Gly Arg Gly Gin
 20 25 30
 Pro Phe Glu Gly Lys Thr Met Asp Leu Xaa Val Xaa Glu Gly Gly
 35 40 45
 Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly
 50 55 60
 Asn Arg Val Phe Val Lys Tyr Pro Arg Asp Ile Ala Asp Tyr Phe Lys
 65 70 75 80
 Glu Ser Phe Pro Glu Gly Phe Ser Trp Glu Arg Ser Met Ala Tyr Glu
 95 90 95
 Asp Gly Gly Ile Cys Ile Ala Thr Asn Asn Ile Thr Leu Met Lys Gly
100 105 110
 Asp Cys Phe Leu Tyr Glu Ile Arg Phe Glu Val Asn Phe Pro Ala
115 120 125
 Asn Ser Pro Val Met Gln Lys Arg Thr Val Lys Trp Glu Pro Ser Thr
130 135 140
 Glu Lys Leu Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val Asn Met
145 150 155 160
 Ala Leu Leu Leu Glu Gly Gly His Tyr Arg Cys Asp Phe Lys Thr
165 170 175
 Thr Tyr Lys Ser Lys Val Val Glu Leu Pro Asp Tyr His Phe Val
180 185 190
 Asp His Arg Ile Glu Ile Glu Ser His Asp Lys Asp Tyr Asp Ile Lys Val
195 200 205
Lys Leu Cys Glu His Ala Glu Ala His Ser Gly Leu Pro Arg Gln Ala
210 215 220

Lys
225

<210> SEQ ID NO 23
<211> LENGTH: 798
<212> TYPE: DNA
<213> ORGANISM: Soleractinia sp

<400> SEQUENCE: 23

caatctcca ggtgtattc gagaagagga gatcagagac aacagaact gtataaggca
60
catactcat ctagtacct cagcatgaa ttataaggca cagacacagca tattagatgytg
120
cgtgctgag cggctgaa cggccacag tttggtgattt caggccgaag tggccagcgag
180
cgttcagag gaaatcagcag tataattgac gttgcgag ctgcccgtgctctctc
240
gttccgcta cttgcagac agtattgagc taagggcagaa ggttttttgt tataactcaca
300
gagatgtag cagactacttc caagcaagct ttctcgcagag gttcctctag ggagcaagac
360
tagggctattc gagaaggggg ctattctac ggcacacacac acaataacact gattgaagag
420
gacttcttt ctttttagata tctatttgct ggaatgtatc ttcgtgcocac tagccggattt
480
tagagtttag gacgcgggca attggctgccc gcttccacag caataacaca atgaagaggg
540
gttctggag cggcctgaa cagctgccac cttcttgatc cgggtcgtag gatgcgttccggtgc
600
gcctggctg cttgcttag tcgtgctgcct tgggctgctggt gcggcgtggt gtcctgtgtct
660
gctggagtt gcgcggtcag cagttctatt ggcttgctgctgc gctgccttttt tcgggtggggt
720
gctggagtt gctggagtt gctggagtt gctggagtt gctggagtt gctggagtt
780
ggagagccgg aaccgaaa
798

<210> SEQ ID NO 24
<211> LENGTH: 138
<212> TYPE: PRT
<213> ORGANISM: Lobophyllia hemprichii

<400> SEQUENCE: 24

Met Asn Val Ile Lys Thr Asp Met Lys Met Lys Leu Arg Met Val Gly
1 5 10 15

Ala Val Asn Gly His Lys Phe Glu Ile Ala Gly Gly Lys Gly Lys
20 25 30

Pro Phe Glu Gly Lys Glu Gln Thr Met Asn Leu Gly Val Leu Val Gly
35 40 45

Pro Leu Pro Phe Ala Asp Ile Leu Thr Val Phe Tyr Gly
50 55 60

Asn Arg Val Phe Val Lys Tyr Pro Arg Ile Ala Asp Tyr Phe Lys
65 70 75 80

Gln Ser Phe Pro Glu Gly Phe Ser Trp Glu Arg Ser Met Ala Tyr Gly
85 90 95

Asp Gly Lys Ile Cys Leu Ala Thr Asn Ile Thr Leu Met Lys Gly
100 105 110

Asp Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe Pro Ala
115 120 125

Asn Ser Pro Val Leu Gly Lys Lys Thr Val
130 135

<210> SEQ ID NO 25
<210> SEQ ID NO 26
<211> LENGTH: 172
<212> TYPE: PRT
<213> ORGANISM: goniatresta australensis
<220> FEATURE:
<221> NAME/KEY: UNSURB
<222> LOCATION: (111)...(113)
<223> OTHER INFORMATION: Xaa is any amino acid
<220> FEATURE:
<221> NAME/KEY: UNSURB
<222> LOCATION: (136)...(136)
<223> OTHER INFORMATION: Xaa is any amino acid

<400> SEQUENCE: 26

Gly Thr Arg Leu Lys Tyr Leu Trp Phe Ala Asn Val Lys Asp Ser Met
 1 5 10 15
Gly Lys Gln Thr Met Asp Leu Thr Val Ile Glu Gly Ala Pro Leu Pro
 20 25 30
Phe Ala Phe Asp Ile Leu Thr Val Phe Glu Tyr Gly Lys Asn Arg Val
 35 40 45
Phe Ala Lys Tyr Pro Lys Glu Ile Pro Asp Tyr Phe Lys Gin Ser Phe
 50 55 60
Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Thr Tyr Glu Amo Gly Gln
 65 70 75 80
Val Cys Glu Alan Ser Asp Ile Lys Ile Lys Glu Asp Asp Arg Ser
 85 90 95
Cys Phe Val Tyr Gly Ile Arg Phe Asp Gly Val Alan Phe Pro Xaa Xaa
 100 105 110
Xaa Pro Val Met Glu Lys Tyr Val Lys Trp Gly Pro Ser Thr Glu
 115 120 125
Lys Met Tyr Val Arg Asp Gly Xaa Leu Lys Gly Asp Val Alan Met Ala
 130 135 140
Leu Leu Leu Gin Gly Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr
 145 150 155 160
Tyr Lys Ala Lys Lys Ala Val Gin Leu Pro Arg Ala
 165 170

<210> SEQ ID NO 27
<211> LENGTH: 510
<210> SEQ ID NO 29
<211> LENGTH: 236
<212> TYPE: PRT
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 28

Met Ser Ala Ile Lys Pro Asp Met Lys Ile Lys Leu His Met Lys Gly
1 5
10 15
Ala Val Asn Gly His Ile Phe Glu Ile Asp Gly Glu Gly Asn Gly Lys
20 25
30
Pro Phe Glu Gly Lys Gin Thr Ile Glu Leu Val Val Asp Gly Gly
35 40
45
Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe Glu Tyr Gly
50 55
60
Asn Arg Val Phe Ala Lys Tyr Pro Pro Glu Ile Val Asp Tyr Phe Lys
65 70
75 80
Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Met Tyr Gly
85 90
95
Asp Gly Gly Ile Cys Ile Ala Thr Asn Asn Ile Thr Leu Leu Lys Asp
100 105
110
Ala His Gly Val Asp Tyr Phe Tyr Asn Ile Arg Phe Asp Gly Val
115 120
125
Asn Phe Pro Thr Asn Gly Pro Val Met Glu Gly Thr Val Lys Trp
130 135
140
Glu Pro Ser Thr Glu Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly
145 150
155 160
Asp Val Asn Met Ala Leu Leu Ile Glu Gly Gly His Asn Arg Cys
165 170
175
Asp Phe Lys Thr Thr Tyr Lys Ala Arg Lys Ala Val Pro Leu Pro Arg
180 185
190
Tyr His Phe Val Asp His Arg Ile Glu Ile Val Ser His Arg Asp
195 200
205
Tyr Asn His Val Lys Leu Cys Glu His Ala Glu Ala His Ser Gly Leu
210 215
220
Pro Ser Ser Arg Lys Ala Arg Glu Ile Ser Thr Glu
225 230
235
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 29

gcagaactct aagccaaag gtgtataac gggatatcc acctttaaact ctaccatatc
60
gagttgcaat aacgagcata gtagccatag aaggggctg taaacgggca
120
cattttgagg atgtgagag aagggaggg ggacgttttt gagggaacg agaccatcga
180
gctggaacgt gtagaagccc gaccctttgc ggtggtcttc gatattctga caacggtatt
240
cgatatagcc aacagaggtct tcgcaaaaaa tccccctcgg aatagtgaat attcacaga
300
gctcattacct gaaaggttac cccgggaaag aagcatagtg tcaagaatgt gaggccattg
360
cattgcctca aacaacattaa cactctggaa aagcggccac gggtttgact atttctacta
420
taaccatcga ttgatggtg tgaaccttcc caccaatgt ccaaggatgc agaaxaacag
480
cgtaaaggg gagccagcga ctgaaasat gtagcggcc ggtgaggtgc taaggggtga
540
tggtaacgct ctggattgaag ggtggtatac cgtaggtgct ccaaaaaactc
600
ttatataac ggagagggct tccggtttgc aacactatc ctggtgggc ggcaacctga
660
gatgctcag caacagcagag attacaacct cgttaagctg tggtcagcat cgagacgtca
720
tccgggctga cagagcggcg cccaaattcc aacagaaaag ttggcagcga
780
gggtgttcc gcaaatatcc acctgagata tga
814

<210> SEQ ID NO 30
<211> LSEQ: 234
<212> TYPE: PRT
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 30

Glu Ser Tyr Phe Ser Pro Pro Glu Glu Ser Val Ile Ser Ser Val Met Aam
1 5 10 16
Ile Lys Leu Arg Met Glu Gly Glu Val Aam Gly His Lys Phe Thr Val
20 25 30
Glu Gly Glu Gly Ser Gly Lys Pro Tyr Glu Gly Thr Glu Thr Ile Asp
35 40 45
Leu Gly Val Thr Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile Leu
50 55 60
Thr Thr Ala Phe Gin Tyr Gly Aam Arg Ala Phe Thr Tyr Pro Ala
65 70 75 80
Asp Ile Pro Asp Tyr Phe Gin Lys Ser Phe Pro Pro Gly Gly His Ser Ser Thr
95 100 105 110
Val Arg Thr Met Val Phe Asp Asp Gly Gly Val Cys Asp Val Thr Asn
115 120
Asp Ile Arg Met Tyr Gin Aam Val Phe Glu Tyr Gin Ile Thr Phe His
125
Cys Aam Aam Phe Gin Lys Ser Pro Ile Met Gin Lys Glu Thr Leu
135 140
Lys Thr Glu Pro Ser Cys Gin Glu Gly Met Tyr Ala Gly Aam Gly Val
145 150 155 160
Leu Leu Gly Asp Glu Phe Arg His Leu Leu Val Gly Gly Gly His
165 170 175
Phe Arg Cys Asp Cys Ser Pro Ser Tyr Ser Ala Lys Arg Val Glu
180 185 190
Met Pro Lys Tyr His Phe Ile Asp His Arg Ile Glu Ile Val Ser His
195 200 205
Asp Lys Asp Tyr Gin Lys Val Lys Val Tyr Glu Ile Ala Glu Ala Lys
<210> SEQ ID NO: 31
<211> LENGTH: 849
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 31

```
atttgcaga agtcttacat cgccaagtc ccaatggcgc cccttttcg togttatatc  
0
ctgtctgct tgggtggtt ccggtaaccg tgtccataag aacaaogac gcagaagag  
120
gtccttcttt tcacgtgga aaggtgctat tagctcagtc tggaaactca agtcgcgtat  
180
ggaagggcga gtaaagggcc acacagtccac cgttgaagga gaaggtacag ggaagccc  
240
cgaagggac ccagctcag accttggaat cccaggaagc ggctctctcc ctgtgtcct  
300
gagcatcttt tcaagagct cccctctgaag caacagggcgc ttacaccaaat acccagcaga  
360
catagccgacctcattga aacctctctgc tggggtctat ccctggctgc caacccatgt  
420
ttttgcagac ggaaggggtc ggacgtgac ccagacagc caaagttcag gtaacgtttt  
480
tgaatagc atcaaccttt attgcaacaa ctttgaaacc atggctccaa ttatcgcaga  
540
agagaccttg aataggggac catcgtctga ggaatgtatg cggcttaaaa aagggtttt  
600
actgtgaag gccggaggtc atcgggtgct tggaggagcg ggcccttttc gatgtgattt  
660
cacgcctttt tacagctgca aagagaggt ccagagccgc atacacactct tcctgacc  
720
cgcctgtga atggctagcc atgcacaaag ttaccaagtg taagaggttgt atgagatgc  
780
tgaagctaa tactctcact tcggcggagc taaggcagaa tgaggtcttc aagcggcc  
840
taagcaagg
849
```

<210> SEQ ID NO: 32
<211> LENGTH: 224
<212> TYPE: PRT
<213> ORGANISM: Scleractinia sp

<220> FEATURE:

<222> LOCATION: 73...73
<223> OTHER INFORMATION: Xaa is any amino acid

<220> FEATURE:

<222> LOCATION: 76...77
<223> OTHER INFORMATION: Xaa is any amino acid

<220> FEATURE:

<222> LOCATION: 127...127
<223> OTHER INFORMATION: Xaa is any amino acid

<220> FEATURE:

<222> LOCATION: 129...129
<223> OTHER INFORMATION: Xaa is any amino acid

<220> FEATURE:

<222> LOCATION: 146...146
<223> OTHER INFORMATION: Xaa is any amino acid

<400> SEQUENCE: 32

```
Met Ser Val Ile Lys Ala Arg Met Lys Met Lys Leu Arg Met Val Gly  
1  5  10  16
Ala Val Aen Gly His Lys Phe Glu Ile Ala Gly Glu Gly Lys Gly Lys  
20 25 30
Pro Phe Glu Gly Lys Gln Thr Met Arg Leu Lys Val Leu Val Gly Gly
35 40 45
```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly</td>
<td>Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly</td>
<td>Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly</td>
<td>Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Asn Arg Val Phe Val Lys Tyr Pro Xaa Asp Ile Xaa Xaa Tyr Phe Lys</td>
<td>Asn Arg Val Phe Val Lys Tyr Pro Xaa Asp Ile Xaa Xaa Tyr Phe Lys</td>
<td>Asn Arg Val Phe Val Lys Tyr Pro Xaa Asp Ile Xaa Xaa Tyr Phe Lys</td>
<td>Asn Arg Val Phe Val Lys Tyr Pro Xaa Asp Ile Xaa Xaa Tyr Phe Lys</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Gln Ser Phe Pro Glu Gly Phe Ser Thr Gln Arg Ser Met Ala Tyr Glu</td>
<td>Gln Ser Phe Pro Glu Gly Phe Ser Thr Gln Arg Ser Met Ala Tyr Glu</td>
<td>Gln Ser Phe Pro Glu Gly Phe Ser Thr Gln Arg Ser Met Ala Tyr Glu</td>
<td>Gln Ser Phe Pro Glu Gly Phe Ser Thr Gln Arg Ser Met Ala Tyr Glu</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Asp Gly Gly Ile Cys Leu Ala Thr Asn Asp Ile Thr Leu Arg Gly Asp</td>
<td>Asp Gly Gly Ile Cys Leu Ala Thr Asn Asp Ile Thr Leu Arg Gly Asp</td>
<td>Asp Gly Gly Ile Cys Leu Ala Thr Asn Asp Ile Thr Leu Arg Gly Asp</td>
<td>Asp Gly Gly Ile Cys Leu Ala Thr Asn Asp Ile Thr Leu Arg Gly Asp</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Arg Phe Pro Xaa Asn</td>
<td>Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Arg Phe Pro Xaa Asn</td>
<td>Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Arg Phe Pro Xaa Asn</td>
<td>Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Arg Phe Pro Xaa Asn</td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Xaa Pro Val Met Gln Lys Thr Val Lys Thr Ile Thr Glu Pro Ser Thr</td>
<td>Xaa Pro Val Met Gln Lys Thr Val Lys Thr Ile Thr Glu Pro Ser Thr</td>
<td>Xaa Pro Val Met Gln Lys Thr Val Lys Thr Ile Thr Glu Pro Ser Thr</td>
<td>Xaa Pro Val Met Gln Lys Thr Val Lys Thr Ile Thr Glu Pro Ser Thr</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td>155</td>
<td>160</td>
</tr>
<tr>
<td>Leu Leu Leu Gly Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr</td>
<td>Leu Leu Leu Gly Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr</td>
<td>Leu Leu Leu Gly Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr</td>
<td>Leu Leu Leu Gly Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Tyr Ile Ser Lys Val Val Gln Leu Pro Asp Tyr His Phe Val Asp</td>
<td>Tyr Ile Ser Lys Val Val Gln Leu Pro Asp Tyr His Phe Val Asp</td>
<td>Tyr Ile Ser Lys Val Val Gln Leu Pro Asp Tyr His Phe Val Asp</td>
<td>Tyr Ile Ser Lys Val Val Gln Leu Pro Asp Tyr His Phe Val Asp</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>His Arg Ile Glu Ile Glu Ser His Asp Lys Asp Tyr Asn Asn Val Lys</td>
<td>His Arg Ile Glu Ile Glu Ser His Asp Lys Asp Tyr Asn Asn Val Lys</td>
<td>His Arg Ile Glu Ile Glu Ser His Asp Lys Asp Tyr Asn Asn Val Lys</td>
<td>His Arg Ile Glu Ile Glu Ser His Asp Lys Asp Tyr Asn Asn Val Lys</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Leu Tyr Glu His Ala Glu Ala His Ser Gly Leu Pro Arg Glu Ala Lys</td>
<td>Leu Tyr Glu His Ala Glu Ala His Ser Gly Leu Pro Arg Glu Ala Lys</td>
<td>Leu Tyr Glu His Ala Glu Ala His Ser Gly Leu Pro Arg Glu Ala Lys</td>
<td>Leu Tyr Glu His Ala Glu Ala His Ser Gly Leu Pro Arg Glu Ala Lys</td>
</tr>
<tr>
<td>210</td>
<td>215</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>
Ala Val Asn Gly His Lys Phe Val Ile Ala Gly Glu Gly Arg Gly Glu 20 25 30
Pro Phe Glu Gly Lys Gln Thr Met Asp Leu Thr Val Lys Glu Gly Glu 35 40 45
Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly 50 55 60
Asn Arg Val Phe Val Lys Tyr Pro Arg Asp Ile Ala Asp Tyr Phe Lys 65 70 75 80
Gln Ser Phe Pro Glu Gly Phe Ser Trp Glu Arg Ser Met Ala Tyr Glu 95 90 95

Asp Gly Gly Ile Cys Ile Ala Thr Asn Asn Ile Thr Leu Met Lys Gly 100 105 110
Asp Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe Pro Ala 115 120 125
Asn Ser Pro Val Met Gln Lys Arg Thr Val Lys Trp Glu Pro Ser Thr 130 135 140
Glu Lys Leu 145
Amp Gly Gly Ile Cys Leu Ala Thr Asn Asp Ile Thr Leu Asn Gly Asp
100 105 110
Cys Phe Leu Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe Pro Ala Asn
115 120 125
Ser Pro Val Met Gln Arg Thr Val Lys Trp Glu Pro Ser Thr Glu
130 135 140
Lys Leu
145

<210> SEQ ID NO 37
<211> LENGTH: 497
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 37
tgactaag taagatact gcctcacaca gcctctgtgt tgtctctatact ctgattgtgat
 60
taaaccagac atgaatgagt atgtgcatg ggaagggcag tgaaaagggc acaagtgtgtg
 120
gattcggat gaggagagag gcacgtctgtc ggggagaaaa cagcactataga aacgcgtgagt
180
tcattgctggc gacctctggt ctttctgtttc tgtatctgtg aacaacgatg tgcattctcg
240
cacaggtggt ttgctcaaat accaaaagca tatagcagac tatctcaacaag atgctttttc
300
caggggtcttt tctggtattc agacagagac ttaggtgattg ctttctattttttatcctttgaattgt
360
ttcctctgcg atagcggagag cagctgggat ggaagaatgg aatgctcttc cttcagatggt
420
gaaattgg
487

<210> SEQ ID NO 38
<211> LENGTH: 175
<212> TYPE: PRT
<213> ORGANISM: Scleractinia sp

<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (114)...(114)
<223> OTHER INFORMATION: Xaa is any amino acid
<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (116)...(116)
<223> OTHER INFORMATION: Xaa is any amino acid
<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (128)...(128)
<223> OTHER INFORMATION: Xaa is any amino acid
<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (136)...(136)
<223> OTHER INFORMATION: Xaa is any amino acid

<400> SEQUENCE: 38
Ala Ile Lys Pro Asp Met Lys Ile Lys Leu Cys Met Glu Gly Ala Val
 1 5 10 15
Asn Gly His Pro Phe Met Ile Glu Gly Gly Lys Gly Lys Pro Phe
 20 25 30
Asp Gly Lys Gln Asn Met Glu Leu Lys Gly Val Lys Glu Gly Gly Pro Leu
 35 40 45
Pro Phe Ala Tyr Asp Ile Leu Thr Thr Val Phe Asn Tyr Gly Asn Arg
 50 55 60
Val Phe Ala Lys Tyr Pro Arg Asp Ile Ala Asp Tyr Phe Lys Gin Ser
 65 70 75 80
Phe Pro Glu Gly Phe Ser Trp Glu Arg Ser Met Ala Tyr Glu Asp Gly
 95 90 95
Gly Ile Cys Ile Ala Thr Asn Asn Ile Thr Leu Met Lys Gly Asp Cys
100
105
110
Phe Xaa Tyr Xaa Ile Arg Phe Asp Gly Val Asn Phe Pro Ala Asn Xaa
115
120
125
Pro Val Met Gin Lys Xaa Val Lys Trp Glu Pro Ser Thr Glu Lys
130
135
140
Leu Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Ile Asn Met Ala Leu
145
150
155
160
Leu Leu Glu Gly Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr
165
170
175

<210> SEQ ID NO 39
<211> LENGTH: 525
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (463)...(463)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 39

tgcagtaagg ccaagacatga agatcagctt tgtatggag gcgctgtgaa acgagccccc 60
gttccatgatt gaaggaagaag gaaagcctaa gccttcggac ggaaacacag ataacggaact 120
caagasgaa gaaggcggcc cctgctgcttt cgttatcagt atotgaccc cagtgctaa 180
ttagccagc aggctgtaag ccaatgcc acacatatt ctcaaggctc 240
tttccgctag ggctgttctgg gagaacagga cgagctttt catgaaggtt gacatggctat 300
cgcacaacctaacataaatcgccttgaaag ccgcctgtttt ccgtatcagcatcccc 360
ttgagtttgcag aatgtccagc atgccagaag aagaytgcga aataaggggcc 420
atgcacgctaa aatctgtgat tggcgtgaag agcgcggagggcttatttta 480
gttggctgaa ggcgtggtggtc attgctgctga cctctgctaa actaac 525

<210> SEQ ID NO 40
<211> LENGTH: 182
<212> TYPE: PRT
<213> ORGANISM: Scleractinia sp
<400> SEQUENCE: 40

Met Asn Ile Lys Leu Arg Met Glu Gly Glu Val Asn Gly His Lys Phe 1
5
10
15
Thr Val Glu Gly Gly Ser Gly Lys Pro Tyr Glu Gly Thr Gin Thr
20
25
30
Ile Asp Leu Glu Val Thr Glu Gly Gly Pro Leu Pro Phe Ala Phe Asp
35
40
45
Ile Leu Thr Thr Ala Phe Gin Tyr Gly Asn Arg Ala Phe Thr Lys Tyr
50
55
60
Pro Ala Asp Ile Pro Asp Tyr Phe Lys Glu Ser Phe Pro Glu Gly His
65
70
75
80
Ser Trp Val Arg Thr Met Val Phe Asp Gly Gly Val Cys Asp Val
85
90
95
Thr Asn Asp Ile Arg Met Tyr Gly Val Phe Thr Gin Thr Thr
100
105
110
Phe His Cys Asn Asn Phe Asp Pro Ser Gly Pro Val Met Gin Lys Gly
115
120
125
Thr Leu Lys Trp Glu Pro Ser Cys Glu Gly Met Tyr Ala Gly Lys Asn
130
135
140
Gly Val Leu Leu Gly Asp Glu Phe Arg His Leu Leu Leu Val Gly Gly
145 150 155 160
Gly His Phe Arg Cys Asp Phe Arg Ser Thr Tyr Ser Ala Arg Lys Arg
165 170 175
Val Glu Met Pro Glu Tyr
190

<210> SEQ ID NO 41
<211> LENGTH: 594
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp

<400> SEQUENCE: 41

tttctgtttc ctataaacct tccttcaggg tgaaaaatag gcagctcagtg aacatacaac 60
tgctgtgataa aggcggagtt aaacgacaca aagtccacggt tgaaggagaa ggtacaggg 120
agcccttcagga agggacgcag cacatagcac tggaagctc agaagcgggg cgcgtctcctt 180
tgtgcttcagac acgcwwttccc aagtaagggaa caggggcttc accaatacc 240
cagcaagcat acctgctacct tcacagagtg cgtttcttcga ggtgcattccc tgggtgcga 300
cactggttttg cgtacagcgg gggtttggcg acgtgacaaag caacataaga atgtgatgta 360
agcgggttttc atatgagacc acatatctc aaacacaacttg agcggcagctg ggtcgggtta 420
tgcaagagggcggttggcagctc tctgttggag cttgtgacggg aatgtatgct ggtaaaaaog 480
gctttttcg aggagttgac ttcagggcaca tcttgcgttctc agagggcggct catttctcgat 540
gtgggttttcag aagttctctac agtgccagga agagggctgaa gttggccgaa tacc 594

<210> SEQ ID NO 42
<211> LENGTH: 226
<212> TYPE: PRT
<213> ORGANISM: Lobophyllum henspichii

<400> SEQUENCE: 42

Met Ser Val Ile Lys Pro Asp Met Lys Ile Lys Leu Arg Met Glu Gly
1 5 10 16
Thr Val Aen Gly His Ser Phe Val Ile Asp Gly Asp Gly Lys Gly Lys
20 25 30
Pro Phe Glu Gly Lys Gln Ser Met Ser Leu Glu Val Lys Glu Gly Gly
35 40 45
Pro Leu Pro Phe Ser Tyr Asp Ile Leu Thr Thr Ala Phe Aen Tyr Gly
50 55 60
Aen Arg Val Phe Ala Gyr Tyr Pro Asp His Ile Gln Asp Tyr Phe Lys
65 70 75 80
Gln Ser Phe Pro Lys Gly Tyr Ser Trp Glu Arg Ser Leu Thr Phe Glu
85 90 95
Asp Gly Gly Ile Cys Ile Ala Arg Aen Asp Ile Thr Leu Gly Asp
100 105 110
Thr Phe Tyr Aen Lys Val Arg Phe Tyr Gly Val Aen Phe Pro Pro Aen
115 120 125
Gly Pro Val Met Gln Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140
Lys Met Tyr Val Arg Asp Gly Val Leu Thr Gly Asp Ile Thr Met Ala
145 150 155 160
Leu Leu Leu Ile Gly Asp Val His Tyr Cys Asp Phe Arg Thr Thr
165 170 175
Tyr Lys Ala Arg Glu Lys Gly Val Lys Leu Pro Gly Tyr His Phe Val
Lys His Arg Ile Glu Ile Ser Ser His Asp Lys Asp Tyr Asn Lys Val
190 195 200 205
Lys Leu Cys Glu His Ala Val Ala His Ser Gly Leu Pro Asn Asn Ala
210 215 220 225
Arg Met

<210> SEQ ID NO 43
<211> LENGTH: 1191
<212> TYPE: DNA
<213> ORGANISM: Solenactinia sp

<400> SEQUENCE: 43

gagcccctgt gccgatcgag aagcactaa gctgttaasg gttaacattct ttggtgctgttt 60
tccatccag actgtgctta aagcagcact gaaatcaag ctgctgatgg aagcaccagt 120
aaccgctcag acgtttttag gtgaagagga tggtaaaagg aagcctttttg aggaaaaaca 180
gacacagag cttgagaaas aagaagggcg acctgtccgc ttcctctactg atatctcaga 240
aaccagcact aaaaaagca aacaggttgtt cgcggaaatt tccagccagt tccaagacgg 300
atctcaccgtct cttgcttccaa aaggtgattc tgttaggaagca aagcttggtc ttaaagagc 360
gagccattgc gattggtgag aagcagcactt accggaggtg gcctggcttct ataataaagtt 420
tgccttctt ggtgtaaatt ttcctccctaa aggctcgatt atcagcagag aagctttgaa 480
atggagacca tctacgtaga aatagtctg gctttgataa gttgtaagg gcatttactac 540
catgctcttcttgcttactag gatagctgca ttgctcttgct gccctcggaa gttattcctaa 600
agctagggag aagggctcag acggcgaagg cccctaccttc gttggagca asacagagat 660
tctcagcact acacaaagtt taagcttcttg gacatgctcg tgcctcatc 720
tggtttgccc aasactggtca gatagtaaa aaaaaaaa gacagcagaa gcagaaaaaat 780
gatcttttgc gttgtttctct gttgattttct ctttggtggc ctctcagaggg 840
ccttcatttg gataacgctt tctagctaat gcggcaaga agtttattcg gcggatttaa 900
}gagcgctgtt gcagagaagcg aagacagaga gattttaag gttgagtcct ttgctctgcgg 960
gacactcag gatagaattt ttaaattgtct gatagtaaa catataaagct ttaaggttac 1020
tgattgtgc gttggtttgc taggttttct ggcgtctctct catctcaggct ttaaggttac 1080
tggaattttct gttggtttgc padttttgct gcggcatctg gtaaggttac 1140
}tttggtgaaa ttaaatagttt caagtttttt aatttttg ttttttatt 1191

<210> SEQ ID NO 44
<211> LENGTH: 221
<212> TYPE: PRT
<213> ORGANISM: Solenactinia sp

<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (41)...(41)
<223> OTHER INFORMATION: Xaa is any amino acid

<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (53)...(53)
<223> OTHER INFORMATION: Xaa is any amino acid

<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (206)...(206)
<223> OTHER INFORMATION: Xaa is any amino acid

<400> SEQUENCE: 44

Met Ser Val Ile Ala Lys Gln Met Thr Tyr Lys Val Tyr Met Ser Gly
Thr Val Aen Gly His Tyr Phe Glu Val Glu Gly Asp Gly Lye Gly Lye
Pro Tyr Glu Gly Glu Gln Thr Val Xaa Leu Thr Val Thr Lye Gly Gly
Pro Leu Pro Phe Xaa Trp Asp Ile Leu Ser Pro Gln Thr Gln Tyr Gly
Ser Ile Pro Phe Thr Lye Tyr Pro Glu Asp Ile Pro Asp Tyr Val Lye
Gln Ser Phe Pro Glu Gly Tyr Thr Trp Glu Arg Ile Met Asn Phe Glu
Amp Gly Ala Val Cys Thr Val Ser Asn Asp Ser Ser Ile Gin Gin Gly Ain
Cys Phe Ile Tyr Asn Val Lye Ile Ser Gin Leu Ain Phe Pro Pro Ain
Gly Pro Val Met Gin Lye Thr Gin Gin Glu Trp Glu Pro Asn Thr Gin
Arg Leu Phe Ala Arg Asp Gly Met Lye Ile Gin Ain Asn Phe Met Ala
Leu Lye Leu Gin Glu Gly Gin His Tyr Leu Cys Gin Phe Lye Ser Thr
Leu Lye Leu Lye Lye Pro Val Gin Gin Pro Gin Tyr His Tyr Val Gin
Arg Lye Leu Gin Val Thr Ser His Asn Lye Gin Asp Tyr Thr Xaa Val Lye
Gln Cys Gin Ile Ser Ile Ala Arg His Ser Leu Leu Gin

<210> SEQ ID NO 45
<211> LENGTH: 883
<212> TYPE: DNA
<213> ORGANISM: Scleractinia sp
<400> SEQUENCE: 45
cacagagg cgcattgtag ttaagagcg tttgmaaatt tttgtatccg gctactattag 60
ctcaatarga gttgtagtoc taaacaaaag cccatacagc tttatagctg aggcacgggc 120
aagtagacact acttttaggt gaaagccgat gaaaagggaa acggctttcga tggtgagcag 180
aacgttagtct ctcctgtcag caagggagaa ctcttctcag tcctttgtag gcattttttaca 240
ccacagact gcacaggaag cattcatcct accaagaacct cggtaagacat cctgtattat 300
gttaagacag ctattcgcc gaagatataca tcgctgagaa cttgagatcc tcaagatggt 360
gcagctgtag cttcagccag atcagcttcag acggcagctg ctatcaagttcgc 420
aataacgctg tgggttaacct toctcccaact gacacctgta tcgcaagaaac gcacagggc 480
tgagccaccc acacagtgcgc tctcttctgg cgagatggaa cttgatagac aaaaacatct 540
atggtctgga agttgagaa agtgcctgac atctctgtag aatcaaaatc ttcctcatag 600
gcagcagagc cctgttagat gcagggctgc cactctgttg accgaaacct gcagtaacc 660
agcaccraca agtagtacac atgtygtagc aatcatggaat tcatctctgc acgccactct 720
tctcctgctg gacyaacctt tcgctgctca caccacactg cagrrgctta aaaaaaaaact 780
cgtagatttgy gattctagct tgyaggatgt aaaaacaagaa agttgaacac acctttcagt 840
attaaccttg tgaaacacaa aaaaaaaaaaa aaaaaaaaaaaa aaaa 883
Arg Xaa Arg Xaa Xaa Xaa
1 5

Glu Glu Ile Tyr Xaa Xaa Phe
1 5

Net Val Ser Tyr Ser Lys Gln Gly Ile Ala Gln Glu Net Arg Thr Lys
1 5 10 15
<table>
<thead>
<tr>
<th>73</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>-continued</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Arg Met Glu Gly Ser Val Asn Gly His Glu Phe Thr Ile Glu Gly</td>
<td>20</td>
</tr>
<tr>
<td>Val Gly Thr Gly Asn Pro Tyr Glu Gly Lys Gin Met Ser Glu Leu Val</td>
<td>35</td>
</tr>
<tr>
<td>Ile Ile Lys Ser Lys Gly Lys Pro Leu Pro Phe Ser Phe Asp Ile Leu</td>
<td>50</td>
</tr>
<tr>
<td>Ser Thr Ala Phe Gin Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala</td>
<td>65</td>
</tr>
<tr>
<td>Asp Met Pro Asp Tyr Phe Gin Ala Asp Pro Asp Gly Met Ser Tyr</td>
<td>85</td>
</tr>
<tr>
<td>Glu Arg Ser Phe Leu Phe Glu Asp Gly Gly Val Ala Thr Ala Ser Trp</td>
<td>100</td>
</tr>
<tr>
<td>Ser Ile Arg Leu Gin Asn Cys Phe Ile His Asn Ser Ile Tyr His</td>
<td>115</td>
</tr>
<tr>
<td>Gly Val Asn Pro Ala Asp Gly Pro Met Lys Lys Gin Thr Ile</td>
<td>130</td>
</tr>
<tr>
<td>Gly Thr Asp Lys Ser Phe Glu Lys Met Ser Val Ala Lys Glu Val Leu</td>
<td>145</td>
</tr>
<tr>
<td>Arg Gly Asp Val Thr Gin Phe Leu Leu Leu Glu Gly Gly Gly Tyr Gin</td>
<td>165</td>
</tr>
<tr>
<td>Arg Cys Arg Phe His Ser Thr Tyr Lys Thr Glu Lys Pro Val Ala Met</td>
<td>180</td>
</tr>
<tr>
<td>Pro Pro Ser His Val Val Gin Ile Val Arg Thr Asp Leu Gly</td>
<td>195</td>
</tr>
<tr>
<td>Gin Thr Ala Lys Gly Phe Lys Val Lys Glu Gin Ala Glu Ala</td>
<td>210</td>
</tr>
<tr>
<td>His Val Asn Pro Leu Lys Val Lys</td>
<td>225</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 50
<211> LENGTH: 238
<212> TYPE: PRT
<213> ORGANISM: Aequorea victoria

<400> SEQUENCE: 50
Met Ser Lys Glu Glu Glu Leu Phe Thr Gly Val Val Val Pro Ile Leu Val	1
Gly Leu Asp Gly Asp Val Asn Gly His Lys Phe Val Ser Gly Gly	5
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys	20
Thr Thr Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe	35
Ser Tyr Gly Val Gin Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gin	50
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gin Glu Arg	65
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val	80
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Gin Leu Lys Gly Ile	95
Asp Phe Lys Glu Asp Gly Asn Ile Val Gly His Lys Leu Glu Tyr Asn	110
Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gin Lys Asn Gly	125
Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
180 185 190

Val Leu Leu Pro Asp His Tyr Ser Thr Gln Ser Ala Leu Ser
195 200 205

Lys Asp Pro Asn Lys Lys Arg Asp His Met Val Leu Leu Glu Phe Val
210 215 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
225 230 235

<210> SEQ ID NO 51
<211> LENGTH: 228
<212> TYPE: PRT
<213> ORGANISM: Anemonia sulcata

<400> SEQUENCE: 51

Met Tyr Pro Ser Ile Lys Glu Thr Met Arg Val Gln Leu Ser Met Glu
1 6 10 15

Gly Ser Val Asn Tyr His Ala Phe Cys Thr Gly Lys Gly Glu Gly
20 25 30

Lys Pro Tyr Glu Gly Thr Gln Ser Leu Asn Ile Thr Ile Thr Glu Gly
35 40 45

Gly Pro Leu Pro Phe Ala Phe Asp Ile Leu Ser His Ala Phe Glu Tyr
50 55 60

Gly Ile Lys Val Phe Ala Lys Tyr Pro Lys Gln Ile Pro Asp Phe Phe
65 70 75 80

Lys Glu Ser Leu Pro Gly Gly Phe Ser Trp Glu Arg Val Ser Thr Tyr
95 100 105 110

Glu Asp Gly Gly Val Leu Ser Ala Thr Gln Gly Thr Ser Leu Glu Gly
100 105 110

Asp Cys Ile Ile Cys Lys Val Lys Val Leu Gly Thr Asn Phe Pro Ala
115 120 125

Asn Gly Pro Val Met Gln Lys Thr Cys Gly Trp Glu Pro Ser Thr
130 135 140

Glu Thr Val Ile Pro Arg Asp Gly Gly Leu Leu Arg Asp Thr Pro
145 150 155 160

Asa Leu Met Leu Ala Asp Gly His Leu Ser Cys Phe Met Gln Thr
165 170 175

Thr Tyr Lys Ser Lys Glu Val Lys Leu Pro Glu Leu His Phe His
180 185 190

His Leu Arg Met Glu Lys Leu Asn Ile Ser Asp Trp Lys Thr Val
195 200 205

Glu Gin His Glu Ser Val Val Ala Ser Tyr Ser Gin Val Pro Ser Lys
210 215 220

Leu Gly His Asn
225

<210> SEQ ID NO 52
<211> LENGTH: 232
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: amino acid
sequence is identical to that accorded Genbank No. AAB25350, but
omitting residues 8 to 37, inclusive

<400> SEQUENCE: 52
Met **Asn** **Val** **Met** **Arg** **Tyr** **Asn** **Met** **Thr** **Thr** **Glu** **Thr** **Phe** **Gln** **Lys** **Lys** **Leu**

1 5 10 15

Pro **Tyr** **Lys** **Leu** **Glu** **Leu** **Asp** **Gly** **Asp** **Val** **Arg** **Gly** **Thr** **Phe** **Lys**

20 25 30

Val **Ile** **Gly** **Glu** **Val** **Gly** **Asp** **Ala** **Thr** **Thr** **Gly** **Val** **Ile** **Glu** **Gly**

35 40 45

Lys **Tyr** **Val** **Cys** **Thr** **Glu** **Gly** **Val** **Pro** **Ile** **Ser** **Trp** **Val** **Ser** **Leu**

50 55 60

Ile **Thr** **Ser** **Leu** **Ser** **Tyr** **Gly** **Ala** **Lys** **Cys** **Phe** **Val** **Arg** **Tyr** **Pro** **Asn**

65 70 75 80

Glu **Ile** **Asn** **Asp** **Phe** **Phe** **Ser** **Thr** **Phe** **Pro** **Ser** **Gly** **Tyr** **His** **Gln**

85 90 95

Glu **Arg** **Lys** **Ile** **Thr** **Tyr** **Glu** **Asn** **Asp** **Gly** **Val** **Leu** **Glu** **Thr** **Ala** **Ala**

100 105 110

Lys **Ile** **Thr** **Met** **Glu** **Ser** **Gly** **Ala** **Ile** **Val** **Asn** **Arg** **Ile** **Asn** **Val** **Lys**

115 120 125

Gly **Thr** **Gly** **Phe** **Asp** **Lys** **Asp** **Gly** **His** **Val** **Cys** **Gln** **Lys** **Asn** **Val** **Glu**

130 135 140

Ser **Ser** **Pro** **Pro** **Ser** **Thr** **Tyr** **Val** **Val** **Pro** **Glu** **Gly** **Gly** **Ile**

145 150 155 160

Arg **Ile** **Thr** **Asn** **Ile** **Tyr** **Arg** **Pro** **Thr** **Lys** **Asp** **Gly** **His** **Tyr** **Val**

165 170 175

Val **Ala** **Asp** **Thr** **Gln** **Gln** **Val** **Asn** **Arg** **Pro** **Ile** **Arg** **Ala** **Gln** **Gly** **Thr**

180 185 190

Ser **Ala** **Ile** **Pro** **Thr** **Tyr** **His** **His** **Ile** **Ser** **Val** **Asp** **Leu** **Ser**

195 200 205

Thr **Asp** **Pro** **Glu** **Gln** **Asn** **Phe** **His** **Ile** **Ile** **Ile** **Lys** **Glu** **Thr** **Asn**

210 215 220

Cys **Ala** **Phe** **Asp** **Ala** **Asp** **Phe** **Ser**

225 230

SEQ ID NO 53
LENGTH: 223
TYPE: PRT
ORGANISM: Astrengia lajollaensis

SEQUENCE: 53

Met **Ser** **Leu** **Ser** **Lys** **Gln** **Val** **Ile** **Gly** **Lys** **Glu** **Met** **Asn** **Met** **Thr** **Tyr**

1 5 10 15

Leu **Met** **Asp** **Gly** **Ser** **Val** **Asn** **Gly** **His** **Asn** **Phe** **Thr** **Val** **Glu** **Gly** **Glu**

20 25 30

Gly **Asp** **Gly** **Lys** **Pro** **Tyr** **Glu** **Gly** **His** **Gln** **Cys** **Leu** **Lys** **Leu** **Arg** **Ile**

35 40 45

Thr **Lys** **Gly** **Glu** **Pro** **Leu** **Pro** **Phe** **Ala** **Phe** **Asp** **Ile** **Leu** **Thr** **Ala** **Ala**

50 55 60

Phe **Cys** **Tyr** **Gly** **Asn** **Arg** **Cys** **Phe** **Val** **Asn** **Phe** **Asp** **Ile** **Ala**

65 70 75 80

Asp **Tyr** **Phe** **Gly** **Ala** **Phe** **Pro** **Glu** **Gly** **Leu** **Thr** **Trp** **Glu** **Arg** **Ser**

85 90 95

Met **Thr** **Phe** **Glu** **Asp** **Gly** **Phe** **Ala** **Ala** **Val** **Ser** **Ala** **Asp** **Ile** **Ser**

100 105 110

Leu **Asn** **Gly** **Asn** **Cys** **Phe** **Val** **His** **Gln** **Ser** **Lys** **Phe** **Val** **Gly** **Val** **Asn**

115 120 125

Phe **Pro** **Ala** **Asp** **Gly** **Pro** **Val** **Met** **Gln** **Lys** **Thr** **Val** **Gly** **Trp** **Glu**

130 135 140
<210> SEQ ID NO 54
<211> LENGTH: 218
<212> TYPE: PRT
<213> ORGANISM: Branchiostoma floridae

<400> SEQUENCE: 54

Met Ser Leu Pro Thr His Asp Leu His Ile Phe Gly Ser Val Asn
 6 10 15
Gly Ala Glu Phe Asp Leu Val Gly Gly Gly Lys Gly Asn Pro Asn Asp
 20 25 30
Gly Thr Leu Glu Thr Ser Val Gly Gly Ala Leu Pro Cys
 35 40 45
Ser Pro Leu Leu Ile Gly Pro Asn Leu Gly Tyr Gly Phe Tyr Glu Tyr
 50 55 60
Leu Pro Phe Pro Gly Ala Ser Pro Phe Glu Thr Ala Ile Thr Asp
 65 70 75 80
Gly Gly Tyr Glu Val His Arg Val Phe Gly Asp Gly Gly Val
 90 95
Leu Ser Cys Asn Phe Arg Tyr Thr Tyr Gly Gly Lys Ile Lys Gly
 100 105 110
Glu Phe Gin Leu Ile Gly Ser Gly Phe Pro Ala Gly Gly Pro Val Met
 115 120 125
Ser Gly Gly Leu Thr Leu Asp Arg Ser Val Ala Lys Leu Gin Cys
 130 135 140
Ser Asp Asp Cys Thr Ile Thr Gly Thr Asn Asp Thr Ser Phe Cys Thr
 145 150 155 160
Thr Asp Gly Lys Arg His Gin Ala Asp Val Gin Thr Asn Tyr Thr Phe
 165 170 175
Ala Gly Leu Val Pro Leu Pro Ala Gly Leu Lys Glu Lys Met Pro Ile Phe Leu
 180 185 190
Gly His Gin Ile Glu Val Lys Ala Ser Lys Thr Glu Ile Thr Leu Ser
 195 200 205
Glu Lys Val Lys Ala Phe Ile Asp Thr Val
 210 215

<210> SEQ ID NO 55
<211> LENGTH: 222
<212> TYPE: PRT
<213> ORGANISM: Cerianthus sp

<400> SEQUENCE: 55

Met Asn Leu Ser Lys Asn Val Ser Val Ser Val Tyr Met Lys Gly Asn
 1 5 10 15
Val Asn Asn His Glu Phe Glu Tyr Asp Gly Gly Gly Gly Gly Asp Pro
 20 25 30
Tyr Thr Gly Lys Tyr Ser Met Lys Met Thr Leu Arg Gly Gin Asn Cys
 210 215
<table>
<thead>
<tr>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Pro Phe Ser Tyr Asp Ile Ile Thr Thr Ala Phe Gln Tyr Gly Phe</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Arg Val Phe Thr Lys Tyr Pro Glu Gly Ile Val Asp Tyr Phe Lys Asp</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Ser Leu Pro Asp Ala Phe Gln Trp Arg Arg Arg Ile Val Phe Gly Asp</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Gly Gly Val Leu Asn Met Ser Ser Asp Ile Thr Tyr Lys Asp Asn Val</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Leu His Gly Asp Val Trp Ala Val Gly Val Asn Phe Pro Pro Asn Gly</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>Pro Val Met Lys Asn Glu Ile Val Met Glu Glu Pro Thr Glu Glu Thr</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>PheThr Pro Lys Gly Val Leu Val Gly Phe Cys Pro Lys Ala Tyr</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>Leu Leu Lys Asp Gly Ser Tyr Tyr Gly Asn Met Thr Thr Phe Tyr</td>
<td>165</td>
<td>170</td>
</tr>
<tr>
<td>Arg Ser Lys Ser Gly Gln Ala Pro Pro Gly Tyr His Phe Val Lys</td>
<td>180</td>
<td>185</td>
</tr>
<tr>
<td>His Arg Leu Val Lys Thr Asn Val Glu His Gly Phe Lys Thr Val Glu</td>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>Gln Thr Glu Tyr Thr Ala Thr Ala His Val Ser Asp Leu Pro Lys</td>
<td>210</td>
<td>215</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 56
<211> LENGTH: 221
<212> TYPE: PRT
<213> ORGANISM: Corynactis californica

<400> SEQUENCE: 56

Met Ser Leu Ser Lys Gln Val Val Lys Glu Asp Met Lys Met Thr Tyr | 1 | 5 | 10 | 15 |
His Met Asp Gly Cys Val Asn Gly His Tyr Phe Thr Ile Glu Gly Glu | 20 | 25 | 30 |
Gly Thr Gly Lys Pro Phe Lys Gly Gln Lys Thr Leu Lys Leu Arg Val | 35 | 40 | 45 |
Thr Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile Leu Ser Ala Thr | 50 | 55 | 60 |
Phe Thr Tyr Gly Asn Arg Cys Phe Cys Asp Tyr Pro Glu Asp Met Pro | 65 | 70 | 75 | 80 |
Asp Tyr Phe Lys Gln Ser Leu Pro Glu Gly Tyr Ser Trp Glu Arg Thr | 95 | 100 | 105 | 110 |
Met Met Tyr Glu Asp Gly Ala Cys Gly Thr Ala Ser Ala His Ile Ser | 130 | 135 |
Leu Asp Lys Asn Glu Phe Val His Asn Ser Thr Phe His Gly Val Asn | 140 | 145 |
Phe Pro Ala Asn Gly Pro Val Met Lys Lys Gly Val Asn Thr Glu | 160 | 165 | 170 | 175 |
Pro Ser Glu Lys Ile Thr Ala Cys Asp Gly Ile Leu Lys Gly Asp | 180 | 185 |
Val Thr Met Phe Leu Val Leu Glu Gly His Arg Leu Lys Cys Leu | 190 |
His Ile Ile Glu His Arg Leu Val Arg Ser Glu Asp Gly Asp Ala Val
Gln Ile Glu His Ala Val Ala Lys Tyr Phe Thr Val
210 215 220

<210> SEQ ID NO: 57
<211> LENGTH: 227
<212> TYPE: PRT
<213> ORGANISM: Pavia favus

<400> SEQUENCE: 57
Met Ser Val Ile Thr Ser Glu Met Lys Ile Glu Leu Arg Met Glu Gly
1 5 10 15
Ala Val Asn Gly His Lys Phe Val Ile Thr Gly Lys Gly Ser Gly Gln
20 25 30
Pro Phe Glu Gly Ile Gln Asn Val Asp Leu Thr Val Ile Glu Gly Gly
35 40 45
Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Ala Phe His Tyr Gly
50 55 60
Asn Arg Val Phe Val Glu Tyr Pro Glu Glu Ile Val Asp Tyr Phe Lys
65 70 75 80
Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Ser Tyr Glu
85 90 95
Asp Gly Gly Ile Cys Leu Ala Thr Asn Ile Thr Met Lys Lys Asp
100 105 110
Gly Ser Asn Cys Phe Val Asn Glu Ile Arg Phe Gly Val Asn Phe
115 120 125
Pro Ala Asn Gly Pro Val Met Gln Arg Lys Thr Val Lys Trp Glu Pro
130 135 140
Ser Thr Glu Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val
145 150 155 160
Asn Met Ala Leu Leu Leu Gln Gly Gly His Tyr Arg Cys Asp Phe
165 170 175
Arg Thr Thr Tyr Lys Ala Lys Val Val Glu Leu Pro Asp Tyr His
180 185 190
Phe Val Asp His Gln Met Ile Thr Ser His Asp Lys Asp Tyr Asn
195 200 205
Lys Val Lys Leu Tyr Glu His Ala Lys Ala His Ser Gly Leu Pro Arg
210 215 220
Leu Ala Lys
225

<210> SEQ ID NO: 59
<211> LENGTH: 217
<212> TYPE: PRT
<213> ORGANISM: Fungia concinna

<400> SEQUENCE: 58
Met Ser Val Ile Lys Pro Glu Met Lys Met Lys Tyr Phe Met Asp Gly
1 5 10 15
Ser Val Asn Gly His Glu Phe Thr Val Glu Gly Glu Gly Thr Gly Lys
20 25 30
Pro Tyr Glu His Gln Met Thr Leu Arg Val Thr Met Ala Lys
35 40 45
Gly Gly Pro Met Pro Phe Ser Phe Asp Leu Val Ser His Thr Phe Cys
50 55 60
Tyr Gly His Arg Pro Phe Thr Lys Tyr Pro Glu Glu Ile Pro Asp Tyr
65 70 75 80
Phe Lys Gin Ala Phe Pro Glu Gly Leu Ser Trp Glu Arg Ser Leu Gin
85 90 95
Phe Glu Asp Gly Gly Phe Ala Ala Val Ser Ala His Ile Ser Leu Arg
100 105 110
Gly Asn Cys Phe Glu His Lys Ser Lys Phe Val Gly Val Asn Phe Pro
115 120 125
Ala Asp Gly Pro Val Met Gin Asn Gin Ser Ser Asp Trp Glu Pro Ser
130 135 140
Thr Glu Lys Ile Thr Thr Cys Asp Gly Val Leu Lys Gly Asp Val Thr
145 150 155 160
Met Phe Leu Lys Leu Ala Gly Gly Gly Asn His Lys Cys Gin Phe Lys
165 170 175
Thr Thr Tyr Lys Ala Ala Lys Ile Leu Lys Met Pro Gin Ser His
180 185 190
Phe Ile Gly His Arg Leu Val Arg Lys Thr Glu Gly Asn Ile Thr Glu
195 200 205
Leu Val Glu Asp Ala Val Ala His Cys
210 215

<210> SEQ ID NO 59
<211> LENGTH: 225
<212> TYPE: PRT
<213> ORGANISM: Galaxea fascicularis

<400> SEQUENCE: 59
Met Ser Val Ile Lys Pro Glu Met Lys Ile Lys Leu Cys Met Arg Gly
1 5 10 15
Thr Val Asn Gly His Asn Phe Val Ile Glu Gly Gly Lys Gly Asn
20 25 30
Pro Tyr Glu Gly Thr Gin Ile Leu Asp Leu Asn Val Thr Glu Gly Ala
35 40 45
Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Val Phe Gin Tyr Gly
50 55 60
Asn Arg Ala Phe Thr Lys Tyr Pro Ala Asp Ile Gin Asp Tyr Phe Lys
65 70 75 80
Gln Thr Phe Pro Glu Gly Tyr His Trp Glu Arg Ser Met Thr Tyr Glu
95 99 100
Amp Gin Gly Ile Cys Thr Ala Thr Ser Ser Ile Ser Met Arg Gly Asp
100 105 110
Cys Phe Phe Tyr Asp Ile Arg Phe Asp Gly Val Asn Phe Pro Pro Asn
115 120 125
Gly Pro Val Met Gin Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140
Lys Met Tyr Val Arg Gly Val Leu Lys Gly Asp Val Asn Met Ala
145 150 155 160
Leu Leu Leu Glu Gly Gly His Tyr Arg Cys Asp Phe Lys Thr Thr
165 170 175
Tyr Lys Ala Lys Lys Asp Val Arg Leu Pro Asp Tyr His Phe Val Asp
180 185 190
His Arg Ile Glu Ile Leu Lys His Amp Asp Tyr Asn Lys Val Lys
195 200 205
Leu Tyr Glu Asn Ala Val Ala Arg Tyr Ser Met Leu Pro Ser Gin Ala
210 215 220

Lys
225
<210> SEQ ID NO 60
<211> LENGTH: 227
<212> TYPE: PRT
<213> ORGANISM: Heteractis crispa

<400> SEQUENCE: 61

Met Ala Gly Leu Leu Lys Glu Ser Met Arg Ile Lys Met Tyr Met Glu
1 5 10 15
Gly Thr Val Asn Gly His Tyr Phe Lys Gly Glu Gly Asp Gly
20 25 30
Asn Pro Phe Thr Gly Thr Glu Ser Met Arg Ile His Val Thr Glu Gly
35 40 45
Ala Pro Leu Pro Phe Ala Phe Arg Ile Leu Ala Pro Cys Gly Thr
50 55 60
Gly Ser Arg Thr Phe Val His Thr Ala Glu Ile Pro Asp Phe Phe
65 70 75 80
Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Tyr
95 99 100
Glu Asp Gly Glu Ile Leu Thr Ala His Gln Asp Thr Ser Leu Glu Gly
105 110 115
Asn Cys Leu Ile Tyr Lys Val Lys Val Leu Gly Thr Asn Phe Pro Ala
115 120 125
Asp Gly Pro Val Met Lys Asn Lys Ser Gly Gly Trp Glu Pro Cys Thr
130 135 140
Glu Val Val Tyr Pro Glu Asn Gly Val Leu Cys Gly Arg Asn Val Met
145 150 155 160
Ala Leu Lys Val Gly Arg Arg Leu Ile Cys His Leu Tyr Thr Ser
165 170 175
Tyr Arg Ser Lys Ala Val Arg Ala Leu Thr Met Pro Gly Phe His
180 185 190
Phe Thr Asp Ile Arg Leu Gin Met Pro Arg Lys Lys Asp Glu Tyr
195 200 205
Phe Glu Leu Tyr Glu Ala Ser Val Ala Arg Tyr Ser Asp Leu Pro Glu
210 215 220
Lys Ala Asn
225

<210> SEQ ID NO 62
<211> LENGTH: 222
<212> TYPE: PRT
<213> ORGANISM: Labidocera aestiva

<400> SEQUENCE: 62
Met Pro Val Met Lys Ile Glu Cys Arg Ile Ser Gly Thr Met Asn Gly
1 5 10 15
Glu Phe Glu Leu Val Gly Ala Gly Asp Gly Asn Thr Asp Glu Gly
20 25 30
Arg Met Thr Asn Met Lys Ser Thr Lys Gly Pro Leu Ser Phe Ser
35 40 45
Pro Tyr Leu Leu Ser His Ile Met Gly Tyr Phe Tyr His Tyr Ala
50 55 60
Thr Phe Pro Ala Gly Tyr Glu Asn Val Tyr Leu His Ala Ala Lys Asn
65 70 75 80
Gly Gly Tyr Thr Asn Thr Arg Thr Glu Arg Tyr Glu Asp Gly Gly Ile
95 100 105 110
Ile Ser Val Asn Phe Thr Tyr Arg Tyr Glu Gly Asn Lys Val Ile Gly
100 105 110
Asp Phe Lys Val Gly Ser Gly Phe Pro Ala Asn Ser Val Ile Phe
115 120 125
Thr Asp Lys Ile Ile Lys Ser Asn Pro Thr Cys Glu His Ile Tyr Pro
130 135 140
Lys Gly Asp Lys Ile Leu Val Ala Tyr Thr Arg Thr Trp Met Leu
145 150 155 160
Arg Asp Gly Gly Tyr Tyr Ser Ala Gin Val Asn Asn His Leu His Phe
165 170 175
Lys Thr Ala Met His Pro Thr Met Leu Gin Asn Gly Gly Ser Met Phe
180 185 190
Thr Tyr Arg Lys Val Glu Leu His Ser Gin Ser Asp Val Gly Ile
195 200 205
Val Glu Tyr Gin His Val Phe Lys Thr Pro Thr Ala Phe Ala
210 215 220

<210> SEQ ID NO 63
<211> LENGTH: 226
<212> TYPE: PRT
<213> ORGANISM: Lobophyllia hemprichii
<400> SEQUENCE: 63

Met Ser Ala Ile Lys Pro Asp Met Lys Ile Arg Leu Arg Met Glu Gly
1 5 10 15

Asn Val Asn Gly His His Phe Val Ile Asp Gly Asp Gly Thr Gly Lys
20 25 30

Pro Phe Glu Gly Lys Gin Ser Met Asp Leu Glu Val Lys Gly Gly Gly
35 40 45

Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Ala Phe His Tyr Gly
50 55 60

Asn Arg Val Phe Ala Glu Tyr Pro His Ile Gin Asp Tyr Phe Lys
65 70 75 80

Gln Ser Phe Pro Lys Gly Tyr Ser Trp Glu Arg Ser Leu Thr Phe Glu
85 90 95

Asp Gly Gly Ile Cys Ile Ala Arg Asn Asp Ile Thr Met Glu Gly Asp
100 105 110

Thr Phe Tyr Asn Lys Val Arg Phe His Gly Val Asn Phe Pro Ala Asn
115 120 125

Gly Pro Val Met Gin Lys Lys Thr Leu Lys Trp Glu Pro Ser Thr Glu
130 135 140

Lys Met Tyr Val Arg Gin Gin Leu Thr Lys Gin Asp Ile Thr Met Ala
145 150 155 160

Leu Leu Leu Glu Gin Ala His Tyr Arg Cys Asp Phe Arg Thr Thr
165 170 175

Tyr Lys Ala Lys Glu Gin Gin Leu Thr Pro Gin Tyr His Phe Val
180 185 190

Asp His Cys Ile Glu Ile Leu Ser His Gin Asp Gin Asp Gin Thr Gin
195 200 205

Lys Leu Tyr Glu His Ile Val Ala His Ser Gin Leu Gin Gin Gin Gin
210 215 220

Arg Arg
225

<210> SEQ ID NO: 64
<211> LENGTH: 214
<212> TYPE: PRT
<213> ORGANISM: Neandrina meandrites

<400> SEQUENCE: 64

Met Ala Val Pro Thr Gin Val Lys Met Lys Tyr Ser Met Asp Gin Gin
1 5 10 15

Phe Gin Gin Gin Ser Phe Thr Val Gin Gin Gin Thr Gin Gin Gin Gin
20 25 30

Tyr Gin Gin Gin Gin Ser Gin Gin Leu Gin Gin Gin Gin Gin Gin
35 40

Pro Phe Ala Phe Asp Ile Leu Ser Ala Thr Phe Thr Tyr Gin Gin Gin
50 55 60

Val Phe Thr Lys Tyr Pro Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
65 70 75 80

Phe Pro Gin Gin Gin Gin Gin Thr Gin Gin Gin Gin Gin Gin Gin
85 90 95

Gly Gin Gin Gin Thr Gin Gin Gin Gin Gin Gin Gin Gin Gin Gin
100 105 110

Glu Gin Gin
115 120 125

Val Gin Gin
130 135 140

Gln Gin Gin
145 150 155

Thr Gin Gin
165 170 175

Glu Gin Gin
185 190 195

Asp Gin Gin
205 210 215

Arg Arg
220
US 8,709,981 B2

<table>
<thead>
<tr>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Asn</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Arg</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Arg</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 65
<211> LENGTH: 225
<212> TYPE: PRT
<213> ORGANISM: Montastraea cavernosa

<400> SEQUENCE: 65

1	5	10	15															
Met	Ser	Val	Ile	Lys	Pro	Ile	Met	Glu	Ile	Lys	Leu	Arg	Met	Gln	Gly			
20	25	30																
Val	Val	Asn	Gly	His	Lys	Phe	Val	Ile	Lys	Gly	Gly	Glu	Gly	Lys	Lys			
35	40	45																
Pro	Phe	Glu	Gly	Thr	Gln	Thr	Ile	Asn	Leu	Thr	Val	Lys	Glu	Gly	Ala			
50	55	60																
Pro	Leu	Pro	Phe	Ala	Tyr	Asp	Ile	Leu	Thr	Ser	Ala	Phe	Gln	Tyr	Gly			
65	70	75	80															
Asn	Arg	Val	Phe	Thr	Lys	Tyr	Pro	Asp	Asp	Ile	Pro	Asp	Tyr	Phe	Lys			
85	90	95																
Gln	Thr	Phe	Pro	Gly	Tyr	Ser	Trp	Glu	Arg	Ile	Met	Ala	Tyr	Glu	100			
105	110																	
Asp	Gln	Ser	Ile	Cys	Thr	Ala	Thr	Ser	Asp	Ile	Lys	Met	Glu	Gly	Asp			
115	120	125																
Cys	Phe	Ile	Tyr	Glu	Ile	Glu	Phe	His	Gly	Val	Asn	Phe	Pro	Pro	Asn			
130	135	140																
Gly	Pro	Val	Met	Glu	Lys	Lys	Thr	Leu	Lys	Trp	Glu	Pro	Ser	Thr	Glu			
Leu	Leu	Leu	Glu	Gly	Gly	His	Tyr	Arg	Cys	Asp	Phe	Arg	Ser	Thr	165	170	175	
Tyr	Lys	Ala	Lys	Arg	Val	Glu	Leu	Pro	Asp	Tyr	His	Phe	Val	Asp	180	185	190	
His	Arg	Ile	Glu	Ile	Leu	Ser	His	Arg	Asp	Asn	Tyr	Asn	Thr	Val	Lys	195	200	205
Leu	Ser	Glu	Asp	Ala	Glu	Ala	Arg	Tyr	Ser	Met	Leu	Pro	Ser	Glu	Ala	210	215	220

Lys

<210> SEQ ID NO 66
<211> LENGTH: 234
<212> TYPE: PRT
<213> ORGANISM: Phialidium sp

<400> SEQUENCE: 66

| 1 | 5 | 10 | 15 |
| Met | Ser | Ser | Gly | Ala | Leu | Leu | Phe | His | Gly | Lys | Ile | Pro | Tyr | Val | Val | 1 | 5 | 10 | 15 |
Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys
20 25 30
Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys
35 40 45
Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu
50 55 60
Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp
65 70 75 80
Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile
95 90 95
Thr Phe Glu Gly Asp Gly Val Phe Lys Thr Arg Ala Glu Val Thr Phe
100 105 110
Glu Arg Gly Ser Val Tyr Arg Glu Val Lys Leu Arg Gly Gln Gly Phe
115 120 125
Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Arg Phe Thr
130 135 140
Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys
145 150 155 160
Ser Ala Phe Lys Ile Met His Glu Ile Thr Gly Ser Lys Glu Asp Phe
165 170 175
Val His Ala Asp Phe Thr Gln Ser Asn Thr Pro Ile Gly Gly Gly Pro
180 185 190
Val His Val Pro Glu Tyr His His Ile Thr Tyr His Val Thr Leu Ser
195 200 205
Lys Asp Val Thr Asp His Arg Asp Met Ser Leu Val Glu Thr Thr Val
210 215 220
Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu
225 230

<210> SEQ ID NO 67
<211> LENGTH: 222
<212> TYPE: PRT
<213> ORGANISM: Pocilopora damicornis
<400> SEQUENCE: 67
Met Ser Leu Ser Lys Gin Val Ile Leu Lys Asp Met Asn Leu Lys Phe
1 5 10 15
Glu Met Lys Gly Ser Val Asn Gly His Tyr Phe Glu Ile Glu Gly Glu
20 25 30
Gly Arg Lys Pro Tyr Glu Gly Val Gin Lys Ser Thr Phe Trp Val
35 40 45
Thr Lys Gly Pro Leu Pro Phe Ser Phe Asp Ile Leu Ser Ser Ala
50 55 60
Phe Lys Tyr Gly Asn Arg Cys Phe Thr Lys Tyr Pro Ala Asp Met Pro
65 70 75 80
Asp Tyr Phe Lys Ala Phe Pro Ala Gly Met Ser Phe Glu Arg Thr
95 90 95
Phe Thr Phe Glu Arg Gly Gly Val Ala Thr Ala Ser Gly His Ile Cys
100 105 110
Leu Glu Gly Asn Trp Phe Lys His Thr Ser Met Phe His Gly Val Asn
115 120 125
Phe Pro Ala Asn Gly Pro Ile Met Gin Arg Thr Ile Gly Trp Asp
130 135 140
Pro Ser Phe Glu Lys Met Thr Val Ser Asn Asn Ile Leu Arg Gly Asp
145 150 155 160
<table>
<thead>
<tr>
<th>Val Thr Met Phe Leu Gln Leu Lys Gly Gly Gly Tyr His Ser Cys Gln</th>
<th>165</th>
<th>170</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe His Thr Ser Tyr Lys Thr Lys Glu Pro Val Thr Leu Pro Gln Asn</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>His Val Val Glu His Arg Ile Thr Arg Thr Asp Ile Glu Asp Lys Lys</td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Val Leu Leu Glu Glu Thr Ala Val Ala His Val Asn Pro Leu</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td><210> SEQ ID NO 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><211> LENGTH: 222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><212> TYPE: PRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><213> ORGANISM: Pontellina plumata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td><400> SEQUENCE: 69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met Pro Ala Met Lys Ile Glu Cys Arg Ile Ser Gly Thr Leu Asn Gly</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Val Val Phe Glu Leu Val Gly Gly Gly Gly Ile Pro Glu Glu Gly</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Arg Met Thr Asn Lys Met Lys Ser Thr Lys Gly Ala Leu Thr Phe Ser</td>
<td>38</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Pro Tyr Leu Leu Ser His Val Met Gly Tyr Gly Phe Tyr His Phe Gly</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Thr Tyr Pro Ser Gly Tyr Glu Asn Pro Phe Leu His Ala Ala Asn Asn</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Gly Gly Tyr Thr Asn Thr Arg Ile Glu Lys Tyr Glu Asp Gly Gly Val</td>
<td>85</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Leu His Val Ser Phe Ser Tyr Arg Tyr Glu Ala Gly Arg Val Ile Gly</td>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Asp Phe Lys Val Val Gly Thr Gly Phe Pro Glu Asp Ser Val Ile Phe</td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Thr Asp Lys Ile Ile Arg Ser Asn Ala Thr Val Glu His Leu His Pro</td>
<td>130</td>
<td>135</td>
<td>140</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Met Gly Asp Asn Val Leu Val Gly Ser Phe Ala Arg Thr Phe Ser Leu</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Arg Asp Gly Gly Tyr Tyr Ser Phe Val Val Asp Ser His Met His Phe</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Lys Ser Ala Ile His Pro Ser Ile Leu Gln Asn Gly Gly Ser Met Phe</td>
<td>190</td>
<td>195</td>
<td>200</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ala Phe Arg Arg Val Glu Leu His Ser Asn Thr Glu Leu Gly Ile</td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Val Glu Tyr Glu His Ala Phe Lys Thr Pro Thr Ala Phe Ala</td>
<td>210</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td><210> SEQ ID NO 69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><211> LENGTH: 231</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><212> TYPE: PRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><213> ORGANISM: Ricordia florida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td><400> SEQUENCE: 69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met Ser Ala Leu Lys Glu Glu Met Lys Ile Lys Leu Lys Met Val Gly</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Val Val Asn Gly Glu Ser Phe Glu Ile Asp Gly Gly Gly Gly Lys Gly</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Pro Tyr Gly Ser Ser Gly Lys Thr Leu Glu Val Val Glu Gly Gly</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>
Pro Leu Leu Phe Ser Tyr Asp Ile Leu Thr Thr Ile Phe Gln Tyr Gly
50 55 60
Asn Arg Ala Phe Val Asn Tyr Pro Lys Asp Ile Pro Asp Ile Phe Lys
65 75 80
Gln Thr Cys Ser Gly Pro Asp Gly Gly Phe Ser Trp Gln Arg Thr Met
85 90 95
Thr Tyr Glu Asp Gly Gly Val Cys Thr Ala Ser Asn His Ile Ser Val
100 105 110
Amp Gly Asp Thr Phe Tyr Tyr Val Ile Arg Phe Asn Gly Gln Arg Phe
115 120 125
Pro Pro Asn Gly Pro Val Met Glu Arg Thr Val Lys Trp Glu Pro
130 135 140
Ser Thr Glu Ile Met Phe Glu Arg Asp Gly Leu Leu Arg Gly Asp Ile
145 150 155 160
Ala Met Ser Leu Leu Leu Gly Gly His Tyr Arg Cys Asp Phe
165 170 175
Lys Thr Ile Tyr Thr Pro Lys Arg Lys Val Asn Met Pro Gly Tyr His
180 185 190
Phe Val Asp His Cys Ile Glu Ile Gly Gly His Asp Asp Tyr Asn
195 200 205
Met Ala Val Leu Ser Glu Asp Ala Val Ala His Asn Ser Pro Leu Glu
210 215 220
Lys Lys Ser Gln Ala Lys Ala
225 230

<210> SEQ ID NO 70
<211> LENGTH: 225
<212> TYPE: PRT
<213> ORGANISM: Trachyphylla geoffroyi
<400> SEQUENCE: 70

Met Ser Leu Ile Lys Pro Glu Met Lys Ile Lys Leu Leu Met Glu Gly
1 5 10 15
Asn Val Asn Gly His Gln Phe Val Ile Glu Gly Asp Gly Lys Gly His
20 25 30
Pro Phe Glu Gly Lys Glu Ser Met Asp Leu Val Val Lys Glu Gly Ala
35 40 45
Pro Leu Pro Phe Ala Tyr Asp Ile Leu Thr Thr Ala Phe His Tyr Gly
50 55 60
Asn Arg Val Phe Ala Lys Tyr Pro Asp His Ile Pro Asp Tyr Phe Lys
65 70 75 80
Gln Ser Phe Pro Lys Gly Phe Ser Trp Glu Arg Ser Leu Met Phe Glu
85 90 95
Amp Gly Gly Val Cys Ile Ala Thr Asn Asp Ile Thr Leu Lys Gly Asp
100 105 110
Thr Phe Phe Asn Lys Val Arg Asp Gly Val Asn Phe Pro Pro Asn
115 120 125
Gly Pro Val Met Glu Lys Thr Leu Lys Thr Phe Val Leu Asp Ser Thr Glu
130 135 140
Lys Met Tyr Leu Arg Asp Gly Val Leu Thr Gly Asp Ile Thr Met Ala
145 150 155 160
Leu Leu Leu Lys Gly Asp Val His Tyr Arg Cys Asp Phe Arg Thr Thr
165 170 175
Tyr Lys Ser Arg Glu Gly Val Lys Leu Pro Gly Tyr His Phe Val
180 185 190
What is claimed is:

1. An isolated fluorescent polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 and 44.

2. An isolated fluorescent polypeptide variant, wherein the fluorescent polypeptide variant comprises at least 90% sequence identity to SEQ ID NO: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, or 40.

3. A fusion protein comprising an amino acid sequence of a protein of interest operatively joined to an amino acid sequence selected from the group consisting of SEQ ID Nos: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 and 44.

4. A fusion protein comprising an amino acid sequence of a protein of interest operatively joined to an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, or 40.

5. A kit for the detection of protein-protein interactions, comprising the isolated fluorescent polypeptide or variant thereof of claim 1 or 2.
6. A FRET pair comprising at least one isolated fluorescent protein of claim 1 or 2.

7. An isolated protein comprising the amino acid sequence of SEQ ID NO: 10 and further comprising at least one heterologous consensus sequence for phosphorylation by a protein kinase inserted into the amino acid sequence of SEQ ID NO: 10.

8. The isolated fluorescent polypeptide variant of claim 2, wherein the fluorescent polypeptide variant comprises SEQ ID NO: 28.

9. The isolated fluorescent polypeptide variant of claim 2, wherein the fluorescent polypeptide variant comprises SEQ ID NO: 14.

* * * * *