Experiential Learning in Health

Gabriella Fleischman, HKS

Gabriella Fleischman (Harvard Kennedy School)
April 24, 2024

Economics of Health Inequality
Table of Contents

1. Motivation

2. Literature Review

3. Akram and Mendelsohn (2021)
 Experimental Design

4. Akram et al. (forthcoming)
 Model of Experiential and Social Learning
 Experimental Design
 Model of experiential and social learning
 Health Results

5. Appendix
Motivation
How do we learn about health?

• Experts
 – Inequities in trust (Alsan and Wanamaker, 2018; Banerjee et al., 2023; Lowes and Montero, 2021; Martinez-Bravo and Stegmann, 2021)
 – Inequities in access

• Laypeople
 – Can improve issues of trust (Alsan and Eichmeyer, 2024)
 – Can improve issues of information dissemination (Banerjee et al., 2019)
 – Inequities in information in the network
 – Inequities in information sharing

• Experiences
 – Large literature about experiential learning in agriculture
 ● Bound by limited attention (Hanna et al., 2014)
 ● Internalizing neighbor’s experiences (Foster and Rosenzweig, 1995; Conley and Udry, 2010)
 – Similarities between learning in agriculture and health
 ● Noisy, uncertain outcomes
 ● Complex, high dimensional problems
 ● Subject to exogenous shocks
 ● High stakes
Motivation

Experiential learning about health

• Cons
 – Difficult to observe outcomes
 – Difficult to attribute outcomes to inputs
 – Misattribution could bias beliefs

• Pros
 – Trustworthy
 – Unconstrained by social marginalization

Preview of results:

1. Aiding individuals in experiential learning about health technology (chlorine tablets) \rightarrow technology adoption and improved health
2. Experiential learning and social learning are complementary
 – Only learn about health technology from others if you have both sender and receiver have gone through experiential learning
 – Can learn from positive signals in the network \rightarrow moderates potential for negative draws from nature to lead to misattribution
Outline:

1. Brief literature review: learning about health and agriculture
2. **Paper 1** (Akram and Mendelsohn, 2021) : Diaries to Increase the Adoption of Chlorine tablets for Water Purification by Poor Households
 - Can experiential information improve take-up of health technologies relative to expert information alone?
 * Setting: chlorine tablets in peri-urban Karachi, Pakistan
 * Recording diarrhea leads to higher rates of chlorine adoption than standard information about chlorine efficacy from CHW
 * Experiential + Expert information > Expert information
3. **Paper 2** (Akram et al., in progress): Title Forthcoming
 - How does experiential learning about health work?
 * Stronger signals versus many signals?
 * Habit formation as a confounder?
 * Complementarities with social learning?
 - **Policy 1**: (a) get people to adopt, versus (b) **direct attention**
 - **Policy 2**: (a) **saturate treatment**, versus (b) seed treatment
Literature Review
Farmers learn through experimentation... (Foster and Rosenzweig, 1995)

- Farmers are more likely to adopt technologies (high-yield varietals in the Green Revolution in India) if they experiment with them.
- Farmers are more likely to adopt technologies if their neighbors use them and experience high yields.

... but attention is bound (Hanna et al., 2014)

- Encouraging experimentation did not lead to changes in behavior without showing farmers a summary of changes in inputs/outputs.
- Information is not useful without noticing.
Learning by doing among providers: Volume-outcome relationship

- Meta-analysis: positive and stat. sig. relationship, but magnitudes vary, and cannot rule out selective referrals (Halm et al., 2002)
- Non-elective C-sections: 1SD ↑ in recent experience ⇒ ↓ 13.8% NICU admission (Facchini, 2022)

Learning by observing among patients (Bennett et al., 2018)

- Standard hygiene instruction versus showing microbes under a microscope – seeing is believing
 → improved hygiene (visible check of hands, nails, feet, and clothes)
 → improved health (child anthropometrics)
 → effects moderated by stronger traditional beliefs, which teach that overconsumption and heat cause diarrhea
Akram and Mendelsohn (2021)
Setting

Preventive health behaviors: Long-term, persistent use → amenable to learning by doing

Technology: Chlorine tablets (effective water purification technology)
- 7.1% of Pakistani households use any water purification technology (Pakistan DHS, 2017-18)
- 34% take-up with free distribution (Dupas et al., 2016)
- Requires daily use

Setting: peri-urban Karachi
- Data from our baseline (Akram et al., forthcoming)
 - 21% do nothing to clean drinking water
 - 64.5% use (largely ineffective) methods to filter particles
 - 14.5% use a method to disinfect (mostly boiling)
 - 75% report dirt in drinking water (baseline)
 - Enumerator observed dirt in drinking water in 16% (38%) of households during baseline (any survey)
Setting
مین یہ کام اس وقت پر کروں گا:

10:00 AM

300 PM

30 مین.

کلورین کی گولیاں استعمال کریں

جب پھی پانی بہرین

2+2
Hypothesis – Health effects of water purification through chlorine tablet are not immediately observable, so:

- Making these effects easier to observe
- \[\Rightarrow \] learning about efficacy over time through repeated use
- \[\Rightarrow \] long-run behavioral change

Test of learning: Short-term drawing attention to health signals \[\Rightarrow \] long-term behavioral change

Treatment – cluster-randomized (neighborhoods):

- Pen-and-paper chart for caregivers to track children’s diarrhea
- Every 2 weeks: Comparison bar chart with expected diarrhea rate (from epidemiological literature: Luby et al., 2006)
- Comparison: Active Control (chlorine distribution and consultation)
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#2</td>
<td>#3</td>
<td>#4</td>
</tr>
<tr>
<td>#5</td>
<td>#6</td>
<td>#7</td>
<td>#8</td>
</tr>
<tr>
<td>#9</td>
<td>#10</td>
<td>#11</td>
<td>#12</td>
</tr>
<tr>
<td>#13</td>
<td>#14</td>
<td>#15</td>
<td>#16</td>
</tr>
<tr>
<td>#17</td>
<td>#18</td>
<td>#19</td>
<td>#20</td>
</tr>
<tr>
<td>#21</td>
<td>#22</td>
<td>#23</td>
<td>#24</td>
</tr>
<tr>
<td>#25</td>
<td>#26</td>
<td>#27</td>
<td>#28</td>
</tr>
<tr>
<td>#29</td>
<td>#30</td>
<td>#31</td>
<td>#32</td>
</tr>
<tr>
<td>#33</td>
<td>#34</td>
<td>#35</td>
<td>#36</td>
</tr>
</tbody>
</table>

KD-034
Figure 1: Akram and Mendelsohn (2021): Timeline

Figure 2. Experiment Structure
Figure 2: Akram and Mendelsohn (2021): Chlorine Acceptance
Results

Figure 3: Akram and Mendelsohn (2021): Chlorine Residual Presence

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1) Baseline</th>
<th>(2) Baseline</th>
<th>(3) Endline</th>
<th>(4) Endline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.05</td>
<td>0.05</td>
<td>0.57***</td>
<td>0.55***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.03)</td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Observations</td>
<td>299</td>
<td>289</td>
<td>266</td>
<td>258</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.00</td>
<td>0.70</td>
<td>0.33</td>
<td>0.42</td>
</tr>
<tr>
<td>Mean in control</td>
<td>0.26</td>
<td>0.26</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Characteristics included</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Results

Table 4. Anthropometric Measures of Children 0–5 Years of Age

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1) Weight (kg)</th>
<th>(2) Weight (kg)</th>
<th>(3) Height (cm)</th>
<th>(4) Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>1.060* (0.589)</td>
<td>2.154* (1.080)</td>
<td>2.689*** (0.888)</td>
<td>3.834*** (0.975)</td>
</tr>
<tr>
<td>Observations</td>
<td>785</td>
<td>767</td>
<td>782</td>
<td>765</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.00</td>
<td>0.08</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>Mean in control</td>
<td>13.18</td>
<td>13.18</td>
<td>94.89</td>
<td>94.89</td>
</tr>
<tr>
<td>Vector of controls included</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Age categories included</td>
<td>0–5</td>
<td>0–5</td>
<td>0–5</td>
<td>0–5</td>
</tr>
</tbody>
</table>

Figure 4: Akram and Mendelsohn (2021): Child Anthropometrics
Akram et al. (forthcoming)
Motivation

Understanding how experiential learning about health works

- What does Info-Tool actually do?
 - Create **stronger signals** \rightarrow learning \rightarrow long-term adoption
 - Early adoption (novelty, etc.) \rightarrow **more signals** \rightarrow learning \rightarrow long-term adoption
 - Many signals: less variable information (on average more accurate), but learning constrained by limited attention
 - Stronger signals: may overweight unrepresentative signals
 - Early adoption (novelty, etc.) \rightarrow **habit formation** \rightarrow long-term adoption
 - Social learning (neighborhood-clustered randomization)
Motivation

Understanding how experiential learning about health works

- What does Info-Tool actually do?
 - **Stronger signals** versus **early adoption** \rightarrow treatment arm with early subsidies conditional on use (Incentives arm)
 - Within Incentives: **Habit formation** versus **learning** \rightarrow not addressing
 - Individual **experiential learning** versus **social learning** \rightarrow
 individual-level randomization, spillovers by treated neighbors
Experimental Design: Incentives Arm

Design borrowed from Hussam et al. (2022)

Short-term incentives ⇒ short-term use
⇒ habit formation or learning through signal aggregation
⇒ long-run behavioral change

Treatment:

- Offer paper tokens for empty chlorine tablet wrappers
- Tokens redeemable for children’s goods (lowest value: stickers, highest value: backpack)
- Possible to game
 - Main outcome: objective tests for chlorine residual in drinking water
 - Conduct unscheduled audits
- Income effect held constant (unconditional lottery for gifts in other treatment groups)
Experimental Design: Info-Tool

Design borrowed from Akram and Mendelsohn (2021)

Treatment:

• Pen-and-paper chart for caregivers to track children’s diarrhea
• Every 2 weeks: Comparison bar chart with control diarrhea rate
• One time: 3-month difference-in-difference bar charts after treatment period ends
• Individual-level randomization → random variation in treatment status of neighbors
Experimental Design: Info-Tool
Sample: 1800 caregivers in peri-urban Karachi

- At least one child < 5 years old
- Children drink from same water vessel as parents
- Water vessel is large enough for appropriate use of chlorine table
Naive DeGroot Learning:

\[\hat{S}_i^t = \frac{\sum_{j=1}^{J} \alpha_{ij}^t s_{ij}^t}{d_i^t + 1} \]

\(\hat{S}_i^t \): individual \(i \)'s net information in time \(t \)

\(s_{ij} \): information sent to individual \(i \) from individual \(j \) (my own signal: \(s_{ii} \))

\(\alpha_{ij} \): weight that individual \(i \) gives signal \(s_{ij} \)

\(d_i^t \): individual \(i \)'s degree (number of network connections) in time \(t \)

Our model of experiential and social learning:

→ model of complementarities in experiential and social learning

→ simplest version: consider the role of strong signals (assume away early adoption stories)
Our model of social and experiential learning:

\[
\hat{S}_i^T = \sum_{t=0}^T \sum_{j=1}^J \alpha_{ij}^t \cdot a_{ij}^t \cdot s_{ij}^t \quad \sum_{t=0}^T \sum_{j=1}^J a_{ij}^t
\]

\(\hat{S}_i^t\): individual \(i\)'s net information in time \(t\)

\(s_{ij}\): information sent to individual \(i\) from individual \(j\) (my own signal: \(s_{ii}\))

\(\alpha_{ij}\): weight that individual \(i\) gives signal \(s_{ij}\)

\(a_{ij}^t \in \{0, 1\}\): \(i\) received a signal from \(j\) in time \(t\)

only consider signals if \(i\) receives a signal from \(j\) in period \(t\)

\(a_{ii}^t = 1 \Rightarrow \) I adopt chlorine in period \(t\)

New observations enter each time period
Assumption: Signal weights are the believed probability that a signal is accurate, $\alpha^t_{ij} \in [0, 1]$, where:

$$\alpha^t_{ij} = \alpha^t_{ij}(\gamma^t_j, \omega^t_{\gamma^t_j, i}, \cdot)$$

$$\omega^t_{\gamma^t_j, i} = \omega^t_{\gamma^t_j, i}(\gamma^t_i - 1, \gamma^t_i - 2, \ldots, \gamma^0_i, \cdot)$$

- γ^t_j: j’s technology to observe signals in time t
- $\omega^t_{\gamma^t_j, i}$: i’s time t trust in γ^t_j (j’s time t signal-observation technology)
 - depends on technologies i has used in the past
- Assume other reasons to be skeptical towards a signal from j in time t are exogenous
 - i was distracted in time t \rightarrow low α^t_{ii}
 - i think j exaggerates often \rightarrow low $\alpha^t_{ij}, \forall t$
Adopt chlorine if:

\[\hat{S}_i^t > c_i^t \]

\(c_i^t \): cost of using chlorine

→ new decision each period (not forward-thinking, multi-period decision)
→ passive learner, not active experimenter
Chlorine Only, Incentives, and Info-Tool:

- free distribution and delivery of chlorine table in months 4-18
- \(\downarrow c_i^t, t \in (4, 18) \)
- ↑ chlorine adoption relative to Pure Control

Incentives:

- gifts conditional on chlorine use in months 4-6
- \(\downarrow c_i^t, t \in (4, 6) \)
- ↑ contemporaneous chlorine adoption relative to Chlorine Only
Info-Tool:

- chart to record children’s diarrhea rates in months 1-6
- $\uparrow \alpha_{ij}^t, t \in (1, 6)$ via γ^t_i
- \uparrow heterogeneity by early period health signals relative to Chlorine Only and Incentives
- \uparrow chlorine use in $t > 6$ relative to Incentives and Chlorine
- $\uparrow \alpha_{ij}^t, j \in IT$ via $\omega_{\gamma_{ij},i}$
- \uparrow heterogeneity by spillovers from IT households relative to Chlorine Only and Incentives
- \uparrow importance of friends’ health signals in explaining spillover effects
Heterogeneity by:

- **Health Signals**: Predicted health improvement after chlorine distribution
 - Actual health improvement

\[
\text{Diarrhea}_{t=1,2,3} - \text{Diarrhea}_{t=4,5,6} \quad \frac{n_{\text{children}} \times n_{\text{visits}}}{n_{\text{children}} \times n_{\text{visits}}}
\]

- Endogenous to treatment status \(\Rightarrow\) construct lasso-predicted measures using baseline variables in Pure Control sample
- Improved = predicted health improvement is above median

- **Spillovers**: Anyone in Info-Tool group lives within 20m
 - Recentered to purge estimates of OVB (Boryusak and Hull, 2022)
 - 20m selected using BIC-minimizing radius (Eggers et al., 2020)
✓ Higher use in chlorine groups than Pure Control, ∀t
✓ Higher use in chlorine groups than Pure Control, $\forall t$
✓ Higher short-term use in the Incentives group
✓ Higher use in chlorine groups than Pure Control, ∀t
✓ Higher short-term use in the Incentives group
✓ Higher medium-term use in the Info-Tool group
Model Predictions: Overall Chlorine Use

Take-away: Strong signals explains IT increased use one quarter, but effects fade out
Suggestive: Info-Tool short-term responsiveness to early health signals
Model Predictions: Health Signal Heterogeneity

Suggestive: Info-Tool short-term responsiveness to early health signals
✓ Info-Tool responsiveness to IT spillovers
✓ Info-Tool responsiveness to IT spillovers
✓ Info-Tool responsiveness to IT spillovers
✓ IT-to-IT spillovers driven by predicted improved neighbors
Ideal IT candidate: Early positive health signals + neighbors with early positive health signals
Complementarity between experiential and social learning moderates the potential for negative draws from nature to lead to misattribution.
What Explains Info-Tool Success?

Info-Tool sends stronger signals

- Explains immediate post-treatment higher chlorine use

Info-Tool leads to early adoption

- Can rule out early adoption as driving mechanism in Q2
- Can’t rule out frequent adoption in the long run

Info-Tool generates social learning

- Yes, but only *complementary* to experiential learning
- Complementarity between learning through noticing and social learning generates persistence
 - Optimal policy: saturate learning-through-noticing intervention
 - May explain extremely high rates of chlorine use in Akram and Mendelsohn (2021)
Our model: IT generates $\alpha^t_{ij}, j \in IT$

\[
\hat{S}_i^T = \frac{\sum_{t=0}^{T} \sum_{j=1}^{J} \alpha^t_{ij} \cdot a^t_{ij} \cdot s^t_{ij}}{\sum_{t=0}^{T} \sum_{j=1}^{J} a^t_{ij}}
\]

Alternative model: IT generates $\uparrow a^t_{ij}, j \in IT$

\[
\hat{S}_i^T = \frac{\sum_{t=0}^{T} \sum_{j=1}^{J} \alpha^t_{ij} \cdot a^t_{ij} \cdot s^t_{ij}}{\sum_{t=0}^{T} \sum_{j=1}^{J} a^t_{ij}}
\]
Table 1: Conversations about Health and Water Purification

<table>
<thead>
<tr>
<th></th>
<th>Number of Friends: Discussed Water Purification</th>
<th>Number of Friends: Discussed Health</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV OLS OLS ILS OLS ILS</td>
<td>IV OLS OLS OLS OLS</td>
</tr>
<tr>
<td>Boils, Bleaches, or Chlorinates Water</td>
<td>0.388*** 0.213*** (0.107) (0.030)</td>
<td>0.035 -0.019 (0.124) (0.034)</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.078* (0.040)</td>
<td>0.011 (0.046)</td>
</tr>
<tr>
<td>Incentives</td>
<td>0.177*** (0.040)</td>
<td>-0.006 (0.046)</td>
</tr>
<tr>
<td>Info-Tool</td>
<td>0.100** (0.040)</td>
<td>0.027 (0.046)</td>
</tr>
<tr>
<td>Observations</td>
<td>1575 1575 1575</td>
<td>1575 1575 1575</td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.245 0.245 0.307</td>
<td>1.018 1.018 1.007</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* $p < .1$, ** $p < 0.05$, *** $p < 0.01$

No differences in frequency of conversations about health/water purification across treatment groups
Alternative Explanation: Social Norms

No differences in expectations of others to chlorinate or accept chlorinated water across treatment groups

<table>
<thead>
<tr>
<th></th>
<th>Believes Guest Would Accept Chlorinated Water</th>
<th>Number of Friends Believes Uses Chlorine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV</td>
<td>OLS</td>
</tr>
<tr>
<td>Boils, Bleaches, or Chlorinates Water</td>
<td>0.360***</td>
<td>0.217***</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.081***</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Incentives</td>
<td>0.145***</td>
<td>(0.030)</td>
</tr>
<tr>
<td>Info-Tool</td>
<td>0.102***</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Observations</td>
<td>1575</td>
<td>1575</td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.657</td>
<td>54.891</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < .1$, ** $p < 0.05$, *** $p < 0.01$

Table 2: Social Norms
Health Results

<table>
<thead>
<tr>
<th></th>
<th>(1) Index (Anthropometry)</th>
<th>(2) Height-for-Age</th>
<th>(3) Weight-for-Height</th>
<th>(4) Weight-for-Age</th>
<th>(5) MUAC-for-Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine-Only</td>
<td>0.081**</td>
<td>0.020</td>
<td>0.009</td>
<td>0.082</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.084)</td>
<td>(0.099)</td>
<td>(0.081)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>Incentives</td>
<td>0.031</td>
<td>0.023</td>
<td>-0.097</td>
<td>0.069</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.078)</td>
<td>(0.101)</td>
<td>(0.079)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Info-Tool</td>
<td>0.109***</td>
<td>-0.001</td>
<td>0.077</td>
<td>0.187**</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.080)</td>
<td>(0.101)</td>
<td>(0.080)</td>
<td>(0.066)</td>
</tr>
</tbody>
</table>

| Observations | 2616 | 2371 | 2439 | 2492 | 1954 |
| Endline Control Mean | -0.019 | -1.773 | -0.291 | -1.407 | -1.453 |

P-values:

- Chlorine = Incentives: 0.191
- Chlorine = Info-Tool: 0.445
- Incentives = Info-Tool: 0.044

Table 3: Child Health: Endline
Table 4: Endline Water Treatment Method (Self-Reported)

<table>
<thead>
<tr>
<th></th>
<th>(1) Boils Water</th>
<th>(2) Uses Chlorine</th>
<th>(3) Boils or Chlorinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>-0.061***</td>
<td>0.366***</td>
<td>0.294***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.031)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>Incentives</td>
<td>-0.060***</td>
<td>0.360***</td>
<td>0.300***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.031)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>Info-Tool</td>
<td>-0.045**</td>
<td>0.365***</td>
<td>0.321***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.031)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Observations</td>
<td>1575</td>
<td>1575</td>
<td>1575</td>
</tr>
</tbody>
</table>

Control Means

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Endline Mean</td>
<td>0.158</td>
<td>0.104</td>
<td>0.255</td>
</tr>
<tr>
<td>Baseline Mean</td>
<td>0.144</td>
<td>0.004</td>
<td>0.148</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < .1$, ** $p < 0.05$, *** $p < 0.01$
Table 5: Child Health: IV

<table>
<thead>
<tr>
<th>Instrumented: ‘boils, bleaches, or chlorinates water’</th>
<th>Instrument: ‘any treatment group’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boils, Bleaches, or Chlorinates Water</td>
<td></td>
</tr>
<tr>
<td>0.244** (0.113)</td>
<td>0.043 (0.208)</td>
</tr>
<tr>
<td>-0.008 (0.261)</td>
<td>0.379* (0.213)</td>
</tr>
<tr>
<td>0.200 (0.185)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>2616</td>
</tr>
<tr>
<td>Endline Control Mean</td>
<td>2371</td>
</tr>
<tr>
<td>-0.019</td>
<td>2439</td>
</tr>
<tr>
<td>-1.773</td>
<td>2492</td>
</tr>
<tr>
<td>-1.407</td>
<td>1954</td>
</tr>
<tr>
<td>-1.453</td>
<td></td>
</tr>
<tr>
<td>Weak-IV robust F statistic</td>
<td>118.78</td>
</tr>
<tr>
<td>126.82</td>
<td>120.83</td>
</tr>
<tr>
<td>121.59</td>
<td>94.61</td>
</tr>
<tr>
<td>C-statistic p-value</td>
<td>0.025</td>
</tr>
<tr>
<td>0.530</td>
<td>0.424</td>
</tr>
<tr>
<td>0.130</td>
<td>0.056</td>
</tr>
</tbody>
</table>
Health Results

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Paper</th>
<th>HAZ</th>
<th>WHZ</th>
<th>WAZ</th>
<th>Muac-for-age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorinated Water</td>
<td>Akram et al., forthcoming</td>
<td>0.043</td>
<td>-0.008</td>
<td>0.379</td>
<td>0.200</td>
</tr>
<tr>
<td>Handwashing</td>
<td>Hussam et al., 2022</td>
<td>0.272</td>
<td>–</td>
<td>0.203</td>
<td>0.078</td>
</tr>
<tr>
<td>Hygiene</td>
<td>Bennett et al., 2018</td>
<td>0.290</td>
<td>–</td>
<td>0.270</td>
<td>–</td>
</tr>
<tr>
<td>Nutrient Supplements</td>
<td>Sazawal et al., 2013</td>
<td>0.180</td>
<td>–</td>
<td>0.030</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Soofi et al., 2022</td>
<td>0.290</td>
<td>0.050</td>
<td>0.260</td>
<td>–</td>
</tr>
<tr>
<td>ECD</td>
<td>Bos et al., 2024</td>
<td>-0.024</td>
<td>0.230</td>
<td>0.137</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 6: Benchmarking Child Health Estimates
Inequity as a potential unintended consequence of...

- ... chlorine distribution, by household bargaining power
 - Baseline: 79% involved in HH decision-making about child health
 - Baseline: 50% are sole HH decision-maker about child health
 - Endline: 11% say do not use chlorine because men do not allow it

- ... Info-tool, by education
 - Interpreting Info-Tool may require numeracy/literacy skills
 - 30% ever attended school

- ... Info-tool, by social capital
 - Social learning only positively impacts people with social capital
Caregiver Results

Equity Analysis

- Three forms of capital
 - Human capital: education, health
 - Household capital: decision-making power in the household
 - Social capital: number of friends I list, if I am listed in others’ networks, if I am listed as a network-central individual by others

- PCA: 3 social network questions, 4 household decision-making questions, 1 education question, 1 health question
 - Component 1: Loads onto decision-making questions → measure of household capital
 - Component 2: Loads onto health and education → measure of human capital
 - Component 3: Loads onto social network questions → measure of social capital
 - Social network questions collected at endline only – social capital is possibly an outcome
 - Look at engagement with relatives only (unlikely affected by treatment)
Equitable use in Chlorine and Incentives (pooled)
Caregiver Results

Not creating inequities by human capital or bargaining power (if anything, progressive)
Inequity in access social learning

Diagram: Spillover and No Spillover
- Human Capital
- Household Capital
- Social Capital

Info-Tool Post-Treatment Chlorine Use
- Less Capital
- More Capital
Caregiver Results

Pattern holds when looking at engagement with relatives only

Unlikely that engagement with relatives changes so dramatically from this treatment
Low take-up with free distribution alone
→ Not only an access problem ...

But access is still the first and foremost issue

Figure 5: Take-it-or-leave-it Demand Exercise
Conclusion

Learning by doing in health

- Evidence that “practice makes perfect” among providers
- Can we use learning by doing to effectively change health behaviors?
 - Yes!
 - Limited attention important
 - Complementarity between learning by doing and learning from others
- Does learning by doing exacerbate or close inequities?
 - Important role of social learning → induces inequity by social capital
 - Potentially progressive with regards to human and household capital
 - “Seeing is believing” – improved trust among people least likely to trust experts?
 - Limited attention binds differentially by human capital/household decision-making power?
Thank You!
gfleischman@g.harvard.edu
References

Appendix
Chlorine Use

Table 7: Chlorine Use: Aggregate Specification

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.617***</td>
<td>0.551***</td>
<td>0.268***</td>
<td>0.367***</td>
<td>0.222***</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.043)</td>
<td>(0.036)</td>
<td>(0.037)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incentives</td>
<td>0.705***</td>
<td>0.525***</td>
<td>0.343***</td>
<td>0.382***</td>
<td>0.278***</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.043)</td>
<td>(0.036)</td>
<td>(0.037)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Info-Tool</td>
<td>0.586***</td>
<td>0.622***</td>
<td>0.337***</td>
<td>0.416***</td>
<td>0.233***</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.043)</td>
<td>(0.036)</td>
<td>(0.037)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Q4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1653</td>
<td>1802</td>
<td>1802</td>
<td>1802</td>
<td>1802</td>
</tr>
</tbody>
</table>

P-values:

- Incentives = Info-Tool: 0.015, 0.024, 0.864, 0.359, 0.146
- Chlorine = Info-Tool: 0.524, 0.098, 0.056, 0.190, 0.711
- Incentives = Chlorine: 0.072, 0.552, 0.037, 0.691, 0.068

Standard errors in parentheses

* p < .1, ** p < 0.05, *** p < 0.01
Chlorine Use

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.220***</td>
<td>0.149***</td>
<td>0.103***</td>
<td>0.140***</td>
<td>0.086***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Q2</td>
<td>0.142***</td>
<td>0.129***</td>
<td>0.144***</td>
<td>0.107***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.010)</td>
<td>(0.013)</td>
<td>(0.012)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Q3</td>
<td>0.126***</td>
<td>0.157***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>0.087***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4711</td>
<td>6354</td>
<td>4719</td>
<td>4673</td>
<td>4674</td>
</tr>
</tbody>
</table>

P-values:

- Incentives = Info-Tool: 0.017 0.102 0.813 0.420 0.129
- Chlorine = Info-Tool: 0.450 0.283 0.126 0.300 0.947
- Incentives = Chlorine: 0.117 0.610 0.077 0.810 0.133

Standard errors in parentheses
* \(p < .1 \), ** \(p < 0.05 \), *** \(p < 0.01 \)

Table 8: Chlorine Use: Panel Specification
Chlorine Use

Table 9: Chlorine Use: Aggregate Specification

<table>
<thead>
<tr>
<th></th>
<th>(1) Q1</th>
<th>(2) Q2</th>
<th>(3) Q3</th>
<th>(4) Q4</th>
<th>(5) Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine × Not Improved</td>
<td>0.555***</td>
<td>0.482***</td>
<td>0.271***</td>
<td>0.376***</td>
<td>0.224***</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.061)</td>
<td>(0.051)</td>
<td>(0.052)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Chlorine × Improved</td>
<td>0.677***</td>
<td>0.616***</td>
<td>0.262***</td>
<td>0.358***</td>
<td>0.216***</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.061)</td>
<td>(0.051)</td>
<td>(0.052)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Incentives × Not Improved</td>
<td>0.677***</td>
<td>0.508***</td>
<td>0.403***</td>
<td>0.364***</td>
<td>0.326***</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.060)</td>
<td>(0.050)</td>
<td>(0.052)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Incentives × Improved</td>
<td>0.734***</td>
<td>0.544***</td>
<td>0.282***</td>
<td>0.400***</td>
<td>0.228***</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.061)</td>
<td>(0.051)</td>
<td>(0.053)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Info-Tool × Not Improved</td>
<td>0.509***</td>
<td>0.559***</td>
<td>0.327***</td>
<td>0.415***</td>
<td>0.245***</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.060)</td>
<td>(0.050)</td>
<td>(0.052)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Info-Tool × Improved</td>
<td>0.662***</td>
<td>0.688***</td>
<td>0.346***</td>
<td>0.416***</td>
<td>0.220***</td>
</tr>
<tr>
<td></td>
<td>(0.070)</td>
<td>(0.062)</td>
<td>(0.052)</td>
<td>(0.053)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Observations</td>
<td>1653</td>
<td>1802</td>
<td>1802</td>
<td>1802</td>
<td>1802</td>
</tr>
</tbody>
</table>

P-values:

- Chlorine × Improved = Chlorine × NotImproved
 - 0.214
 - 0.121
 - 0.910
 - 0.807
 - 0.892

- Incentives × Improved = Incentives × NotImproved
 - 0.559
 - 0.674
 - 0.094
 - 0.626
 - 0.115

- Info-Tool × Improved = Info – Tool × NotImproved
 - 0.119
 - 0.136
 - 0.799
 - 0.986
 - 0.698

Standard errors in parentheses

* p < .1, ** p < 0.05, *** p < 0.01
Chlorine Use

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine × Not Improved</td>
<td>0.197***</td>
<td>(0.021)</td>
<td>0.132***</td>
<td>(0.014)</td>
<td>0.102***</td>
</tr>
<tr>
<td>Chlorine × Improved</td>
<td>0.239***</td>
<td>(0.021)</td>
<td>0.164***</td>
<td>(0.016)</td>
<td>0.102***</td>
</tr>
<tr>
<td>Incentives × Not Improved</td>
<td>0.235***</td>
<td>(0.021)</td>
<td>0.138***</td>
<td>(0.013)</td>
<td>0.147***</td>
</tr>
<tr>
<td>Incentives × Improved</td>
<td>0.266***</td>
<td>(0.021)</td>
<td>0.146***</td>
<td>(0.014)</td>
<td>0.109***</td>
</tr>
<tr>
<td>Info-Tool × Not Improved</td>
<td>0.174***</td>
<td>(0.018)</td>
<td>0.152***</td>
<td>(0.015)</td>
<td>0.122***</td>
</tr>
<tr>
<td>Info-Tool × Improved</td>
<td>0.237***</td>
<td>(0.020)</td>
<td>0.178***</td>
<td>(0.016)</td>
<td>0.129***</td>
</tr>
<tr>
<td>Observations</td>
<td>4711</td>
<td>6354</td>
<td>4719</td>
<td>4673</td>
<td>4674</td>
</tr>
</tbody>
</table>

P-values:

- Chlorine × Improved = Chlorine × NotImproved
 - 0.162
- Incentives × Improved = Incentives × NotImproved
 - 0.303
- Info-Tool × Improved = Info − Tool × NotImproved
 - 0.020

Standard errors in parentheses

* p < .1, ** p < 0.05, *** p < 0.01

Table 10: Chlorine Use: Panel Specification
Chlorine Use

Table 11: Chlorine Use: Aggregate Specification

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chlorine × No Spillover</td>
<td>Chlorine × Spillover</td>
<td>Incentives × No Spillover</td>
<td>Incentives × Spillover</td>
<td>Info-Tool × No Spillover</td>
</tr>
<tr>
<td>Chlorine × No Spillover</td>
<td>0.604*** (0.061)</td>
<td>0.533*** (0.054)</td>
<td>0.249*** (0.045)</td>
<td>0.352*** (0.046)</td>
<td>0.219*** (0.039)</td>
</tr>
<tr>
<td>Chlorine × Spillover</td>
<td>0.643*** (0.084)</td>
<td>0.584*** (0.073)</td>
<td>0.302*** (0.061)</td>
<td>0.396*** (0.063)</td>
<td>0.229*** (0.052)</td>
</tr>
<tr>
<td>Incentives × No Spillover</td>
<td>0.680*** (0.060)</td>
<td>0.498*** (0.053)</td>
<td>0.356*** (0.045)</td>
<td>0.401*** (0.046)</td>
<td>0.292*** (0.038)</td>
</tr>
<tr>
<td>Incentives × Spillover</td>
<td>0.752*** (0.082)</td>
<td>0.574*** (0.073)</td>
<td>0.322*** (0.061)</td>
<td>0.351*** (0.063)</td>
<td>0.256*** (0.052)</td>
</tr>
<tr>
<td>Info-Tool × No Spillover</td>
<td>0.567*** (0.061)</td>
<td>0.558*** (0.054)</td>
<td>0.309*** (0.045)</td>
<td>0.365*** (0.046)</td>
<td>0.202*** (0.039)</td>
</tr>
<tr>
<td>Info-Tool × Spillover</td>
<td>0.620*** (0.083)</td>
<td>0.734*** (0.073)</td>
<td>0.386*** (0.061)</td>
<td>0.504*** (0.063)</td>
<td>0.289*** (0.052)</td>
</tr>
<tr>
<td>Observations</td>
<td>1653</td>
<td>1802</td>
<td>1802</td>
<td>1802</td>
<td>1802</td>
</tr>
</tbody>
</table>

P-values:
- Chlorine × Spillover = Chlorine × NoSpillover: 0.706
- Incentives × Spillover = Incentives × NoSpillover: 0.483
- Info-Tool × Spillover = Info – Tool × NoSpillover: 0.611

Standard errors in parentheses
* p < .1, ** p < 0.05, *** p < 0.01
Chlorine Use

Table 12: Chlorine Use: Panel Specification

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine × No Spillover</td>
<td>0.212***</td>
<td>0.145***</td>
<td>0.095***</td>
<td>0.134***</td>
<td>0.085***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Chlorine × Spillover</td>
<td>0.232***</td>
<td>0.156***</td>
<td>0.118***</td>
<td>0.149***</td>
<td>0.089***</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.017)</td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>Incentives × No Spillover</td>
<td>0.241***</td>
<td>0.134***</td>
<td>0.133***</td>
<td>0.152***</td>
<td>0.114***</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.012)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Incentives × Spillover</td>
<td>0.267***</td>
<td>0.157***</td>
<td>0.122***</td>
<td>0.126***</td>
<td>0.095***</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.017)</td>
<td>(0.020)</td>
<td>(0.020)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Info-Tool × No Spillover</td>
<td>0.194***</td>
<td>0.146***</td>
<td>0.115***</td>
<td>0.137***</td>
<td>0.075***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.014)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Info-Tool × Spillover</td>
<td>0.227***</td>
<td>0.197***</td>
<td>0.145***</td>
<td>0.186***</td>
<td>0.108***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.019)</td>
<td>(0.023)</td>
<td>(0.024)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Observations</td>
<td>4711</td>
<td>6354</td>
<td>4719</td>
<td>4673</td>
<td>4674</td>
</tr>
</tbody>
</table>

P-values:
- Chlorine × Spillover = Chlorine × NoSpillover
 - 0.536
- Incentives × Spillover = Incentives × NoSpillover
 - 0.391
- Info-Tool × Spillover = Info – Tool × NoSpillover
 - 0.255

Standard errors in parentheses

* p < .1, ** p < 0.05, *** p < 0.01