PROBLEM STATEMENT

The RIDE is MBTA’s door-to-door shared-ride paratransit service managing large complex operations.

- **$115M** Annual budget in 2019
- **1.65M** Number of trips in 2019
- **1238** Number of drivers trained by 4 providers

Objectives: Quantify and include driver behavior in the RIDE’s operations management schemes and reduce demand and supply mismatch.

Problem definition

February-March

Feature analysis and engineering

April-May

Driver score design and delivery

June

Demand forecasting model

July

DRIVER BEHAVIOR

Quantifying behaviors

Our exploration analysis on the GPS data lead to three comprehensive categories of driver behaviors:

1. *Drivers’ Deviations from The RIDE’s schedule*
2. *Drivers’ Breaks and start behaviors*
3. *Drivers’ Interactions with the system*

Driver score definition

Two goals were defined for a driver score: Capture the most important behaviors and differentiate drivers based on their performance. A survey conducted with the RIDE’s managers assessed the importance of each feature. Hence, for driver j on day d we get the following score:

\[
\text{score}_{j,d} = -1 \times \sum_{i=1}^{n} \text{Behavior}_{i,j}(\alpha_i + \beta_i) / \sum_{i=1}^{n} (\alpha_i + \beta_i)
\]

Higher score for better drivers

Case study

Driver score catches the overall behavior and enable comparison while each provider has its own distinctive behavioral patterns.

DATA SOURCES

Transportation and scheduling data sources requiring massive data computing:

- **90M** GPS points every 2 minutes indicating driver’s position, speed and system interaction
- **2M** Trips data on scheduled trips, their timings and associated driver
- **200K** Routes data on the overall system schedule

Quarterly run-structure: supplied driving hours in the overall network

DEMAND FORECAST

Identifying non-revenue time

In the overall network, we identified that 50% of the supply time is spent without any client interaction. The supply is defined by hour, by provider, by route lead to the idea of a geographic approach:

Geographic clustering

K-means clustering helped us identify 8 stable geographical clusters for trip pick-ups and departures.

Model building

Timeseries’ analysis with *tsfresh* and gradient boosting model for prediction:

- Training on 2018: June 1st to Nov. 23rd
- Testing on 2019: June 1st to Nov. 23rd

Results

Maintaining high-resolution prediction with only one month of prior observations:

- Prior data period: Six months, One month
 - Operating time: 70.1%, 69.1%
 - Number of trips: 79.5%, 78.8%

BUSINESS IMPACT

- Link with the garage location for drivers depending on geographical demand.
- New design of the run-structure precisely identifying which areas are served at each time-bin.
- Moving from a scheduling system based on optimizing only to a system based on prediction-prescription methods.

Links

- [John Nicholas & El Ghali Zerhouni](#)
- [Faculty Advisor: Prof. Dimitris Bertsimas](#)
- [The RIDE advisors: Abhishek Rai & Christopher Jurek](#)