Reducing Costs at The RIDE

The RIDE delivers significant impact to lower-mobility people in the Boston area by providing accessible alternatives to public transportation:
- ~2M annual trips
- $100M annual operational costs
- Operates 365 days a year
- From 5AM to 1AM
- In 58 cities and towns

SEARCH: IM/725/700

** HOW? **

- **Best Garage Locations**
 - Reduce time between garage and pick-up

- **Cancellation Predictions**
 - Probability of cancellation for every trip

DATA

- ~1.8M Rows
- 44 Columns

TRIP DATABASE OF 2018

- Client ID
- Pick up/Drop off Time
- Pick up/Drop off Location
- Equipment

GARAGE LOCATION PROBLEM

- Process
 1. Bypass bias in demand due to existing garage locations
 2. Create frequency of first/last trips given time of the day
 3. Sum these weights for all trips at the postcode level
 4. Incorporate weights to the objective function
 5. Run the optimization solver

Formulation

- Objective
 - Minimize Operational Costs

- Constraints
 1. Satisfy every demand point
 2. Given number of garages
 3. Size of garages
 4. Exclude downtown Boston zip codes
 5. Certain locations are fixed

- Decisions
 1. Assign garages to a location
 2. Assign demand to a garage

Delivered results from data generation algorithm

- **January**
 - Interview & Matching with MBTA

- **February**
 - Data & Scoping

- **March**
 - Exploratory Analysis

- **April**
 - Formulated garage problem
 - Designed preliminary cancellation models

- **May**

- **June**
 - Finalized garage problem
 - Evaluated the garage problem solution on the native MBTA engine
 - Evaluated impact of cancellations model

- **July**

- **August**

CANCELLATIONS PREDICTION

Features

- **Trip Features**
- **Weather Features**
- **Client Features**

Models & Results

- **SELECTED MODEL**
 - Model: Neural Network
 - Out of Sample AUC: 0.79

- Other Models:
 - Optimal Trees: 0.70
 - XGBoost: 0.63
 - CART: 0.63
 - Random Forest: 0.60

Results

- **$5.8M**
 - Reduction of total costs

- **6.5%**
 - Reduction of "dead head"

- **$1.1M**
 - Reduction of total costs

- **~80%**
 - Prediction Accuracy

NEXT STEPS

- Relocate garages according to the results of the optimization problem
- Operationalize the cancellation prediction model
- Explore different policies regarding trips with high cancellation risk

Amal Rar
Mason Grimshaw
Diogo Lousa
Abhishek Rai
Dimitris Bertsimas
Julia Yan

1. Data from: https://www.ncdc.noaa.gov/cdo-web/