Finding the Needle in the Haystack
Anomaly Detection in the Cybersecurity Industry

AT A GLANCE

Capstone Company: Rapid7 Location: Boston, USA

Problem Statement: Develop and implement an algorithm that reduces the amount of time necessary for analysts to detect intrusions of bad actors in client networks and facilitates the detection of new intrusions not discovered before.

Impact

1. Direct Labor Savings

$1M+

Impact to Security Analysts:
Created machine learning models to classify 90% of the data as "normal", significantly reducing manual review of client network data at a projected $1M+

2. Avoidance Savings

$35M+

Impact to Clients:
By laying the foundation for modern machine learning in cybersecurity and driving initial findings, Rapid7 and their clients can avoid costs of at least $35M+ annually

3. Novel ML Tools

patentable research

IMPACT

Rapid7 deploys “hunts” on client computer networks, which are deep downloads of computer behavior in a two week period; we used this data to conduct our anomaly detection analysis:

Hunt Data Statistics
- 4TB+ of data from 300+ clients
- Unstructured raw data
- 100% unlabeled without prior examples of intrusions

DATASET

TWO-PART METHODOLOGY

1. Tree Approach to Contextualize Data

To contextualize data, we used paths to create a tree grouping similar processes together into leaves

2. Machine Learning Pipeline

Within each leaf, we processed the data to reduce dimensionality and executed machine learning models automatically tuned with Bayesian optimization to identify anomalies and designate anomaly scores

KEY RESULTS

Synthetic Data
To test model efficacy, we ran multiple analyses on synthetic data; 85% accuracy on synthetic anomalies

Client Data
The anomaly distribution score is narrow: 95% of client data lies within ±2.5σ of the mean

Examples of Anomalous Activities
- Data transfer software connected to Russia and Ukraine
- Unregistered remote control software installed on user files
- Malware installed on user desktops

INTERPRETABILITY

In order to add a layer of interpretability to our models, we devised two simple approaches to tie feature importance to our anomaly scores:
- Interpretable regression model against anomaly scores on the original features
- Individual feature anomaly scores for each process

FUTURE DIRECTION

- Confirm results with additional analyses using synthetic data
- Develop cross feature interpretability
- Apply machine learning pipeline on other datasets for future research
- Create database of labeled intrusions and hacks for improved machine learning
- Continue developing key relationships with security analysts for feedback