Objective: To develop automated methods for creating geofences for GM dealerships and apply the geofences to visitation-related business use cases.

Methods

1. **Clustering**
 - Grouping points near a dealership together ➔ clustering
 - Clustering algorithms: DBSCAN is best at outlining shapes

 ![DBSCAN hyperparameter epsilon (ε)](image)

 - Small ε
 - Big ε

 - Dense clusters
 - Less dense clusters

2. **Tuning hyperparameters**
 - No existing metrics for this application ➔ Create our own

 - Capture red points that are “close” to blue points (more likely to be at dealership)
 - Do not capture red points that are “not close” to blue points

 - Proportion of “close” points captured ➔ true positive rate
 - Proportion of “not close” points captured ➔ false positive rate

 - Final rule: max \(\epsilon \) s.t. false positive rate = 0

 ![Geofence accuracy metric](image)

 - Median value (MI & TX dealers): Precision = 0.9779, Recall = 0.9861, Daily visit correlation = 0.9947

3. **Results**

Use case 1 – Sales prediction

Today: Dec 15
Goal: get the Dec 1-31 sales prediction

- Get the visit for Dec 1-15 by geofence
- Predict the visit for Dec 16-31
- Predict the sales by using Dec 1-31 visit
- Generate the early warning list

![Linear regression](image)

Use case 2: Conversion rate = sales/visits

- Avg conversion rate by week, TX
- Conversion rate distribution, TX

- Incentivize dealerships in 0-3% conversion rate bin to improve sales processes

Use case 3 - Oil change duration

- Incentivize poor-performing dealerships to improve service processes

Impact

- Immediate: $20K
- Near term: $20M/yr
- Long term: Unlock full potential of location data

- Early detection + resource reallocation to boost sales
- Real-time personalized promotions

Kiran Gite
Pei-Pei Kuo