1. Problem Statement and Motivation

Context: Without sites there would be no clinical trials and no new medications.

Takeda has **multiple clinical site options** to choose from and thus, site performance is critical.

Sub-objectives

1. Will a site be non-enrolling?
2. Will a site be a low-moderate or high enroller?
3. What's the time point when a site will never enroll?
4. What is the optimal site selection for a given study?

Why does it matter?

- Getting drugs out faster to patients in need
- Better allocate resources on new drugs development
- Decrease costs and study delays:
 - A typical trial can cost ~$86M
 - Delayed trials take +1-6 months

2. Data

We created 3 distinct datasets for our analysis leveraging internal trials data mostly after 2010.

~140 modelling factors including both site and study characteristics

3. Exploratory Analysis

of sites per performance category

<table>
<thead>
<tr>
<th>% of sites</th>
<th>non-enrolling</th>
<th>low- moderate</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>35%</td>
<td>50%</td>
<td>10%</td>
</tr>
<tr>
<td>10%</td>
<td>30%</td>
<td>10%</td>
<td>60%</td>
</tr>
</tbody>
</table>

~30% of all site-studies are non enrolling, with that % decreasing in recent years

4. Methodology

3 Predictive Machine Learning Models

1. Classification model to predict probability of non-enrolling sites
2. Multi classification model to predict low-med-high enrolling sites
3. Survival model (log-logistic AFT) to predict time inflection point of never enrolling

1 Prescriptive Optimization model

Dynamic optimization model for site selection:
- Using closed form expression of classification models as constraints
- Accounting for complex interactions with dynamic optimization
- Maximize expected enrollment while minimizing costs
- Control over minimal proportion of high enroller and minimal proportion of low enrollers
- Piecewise linear approximation of the sigmoid

These 4 analytics models built will allow Takeda to act on three different parts of the site selection & management process

5. Results

Built high performing models:

- AUC for best performing model: ~0.93
- 2nd model: ~0.8 AUC
- 3rd model: ~0.7 C-index

That provided actionable recommendations: Identified subset of most impactful site and study characteristics affecting enrollment

Impact and Correlation Matrix

Impact of our work

$200M Avg. 5-year cost savings just by considering non-enrolling sites. Could even be more (i.e.: entry to market saving)

Accelerate drug development: Getting drugs out faster to patients – advancing society

Implementation

Currently testing our solution on a two-study pilot

Our project will be implemented in the clinical analytics hub in a 2–3-year horizon

Future Areas of work

Data collecting: Incorporate external data and plan to collect further information from CROs

Expand scope: Include in analysis other KPIs (i.e.: retention) and to include ongoing effect of other actions

Higher performing sites contribute to most of total patient enrollment (~50%) while being the minority in number of sites (~20%)

Impact and Correlation Matrix

<table>
<thead>
<tr>
<th>Impact</th>
<th>Correlation</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient experience</td>
<td>Site density per State</td>
<td>Free experience working with site</td>
</tr>
<tr>
<td>Site density per City</td>
<td>Site density per PCU</td>
<td>Pediatric study</td>
</tr>
<tr>
<td>Site density per PCU</td>
<td>Site density per PCU</td>
<td>Site density per PCU</td>
</tr>
</tbody>
</table>

Both study and site characteristics significantly affect enrollment outcome

Faculty Advisor

Retsef Levi

Takeda Team

Saurabh Awasthi
Stephen Cue
Melissa Chiasson

Capstone Team

Maria Camila Marenco
Aziz Ayed

Shujaullah Mohammed

Scion Li