Is it Elastic?
Inflation, Problematic. Prices, Automatic.

A MODEL BASED APPROACH TO DECOMPOSE SALES SIGNALS AND ESTIMATE SALES CHANGE GIVEN PRICE
Faculty Advisor: Thodoris Lykouris, Ph.D | Unilever Leads: Syed Haider Ph.D, Zeya Luo, Saloni Mishra | MIT Team: Rahul Kasar, Jay Li

REDUCED DOLLAR ERROR OF SALES PREDICTIONS BY $5 MILLION AFTER PRICE CHANGES

SALES BREAKDOWN FOR OVER 20000 TIME SERIES INTO SEASONAL AND MACROECONOMIC FACTORS

A 14% INCREASE IN ACCURACY FROM MODEL COMPARED TO PREVIOUS ESTIMATES OF ELASTICITY

MOTIVATION

Problem
Unprecedented inflation has led to necessary price increases.

Goal: Find Elasticity
1% increase in Price → ?% change in Demand

Business Impact
Accurate Elasticities → Informed Price Change → Increased Sales Revenue

DATASETS USED:

- **POS Sales Data:** Product, Weekly Sales, Average Price, Region
- **Macroeconomic Features:** Inflation, Supply Chain, Distribution unique to Unilever

Number of Categories: 19
Number of Regions: 226
Total number of Products: 1707
Total number of rows in Sales data: 30 million

CURRENT METHOD:

\[
\text{Elasticity} = \frac{\log_{10}(1 + \%\text{UnitChg})}{\log_{10}(1 + \%\text{PriceChg})}
\]

Used For:
- Estimating the effects of price changes,
- Categorizing Unilever’s products.

Issues:
- Creates estimate from two points in the data.
- Does not consider seasonality and trend.
- Does not account for macroeconomic factors.

BUSINESS READY POWERBI DASHBOARD

SHOWS
How each signal contributes to a product’s sales

IMPACT
Understanding of product behavior and reactions

SHOWS
Expected sales for a given price increase

IMPACT
Dynamic and more accurate predictions

SHOWS
Elasticity values and metrics for all products

IMPACT
Category outlook and sorting of products tiers

STEP 1: GOAL: Remove impact of all features except price

HOW: Using Prophet model with seasonality and external regressors

Original Sales Data
Premium Ice Cream Brand

Price Independent Sales
Adjusted using Additive, Zero Trend

PRICE Driven SALES
Calculated as: Original Sales – Price Independent Sales

Elasticity Coefficients

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>Revenue Elasticity</th>
<th>Sales Elasticity</th>
<th>Auctual Sales</th>
<th>Dollar Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>0.046</td>
<td>0.125</td>
<td>12381</td>
<td>1382</td>
</tr>
<tr>
<td>2021</td>
<td>0.126</td>
<td>0.257</td>
<td>24863</td>
<td>3053</td>
</tr>
</tbody>
</table>

STEP 2: GOAL: Use price to explain the remaining variation in sales

HOW: Linear regression, shifting 52-week window

STAKEHOLDERS
We would like to thank all the members of the Unilever team for their feedback during this process. Special thanks to the Data and Analytics team: Syed Haider, Zeya Luo and Saloni Mishra. The Pricing team: Marc Becker and Brett Griswold. And the project leads: Ansu Kurian and Matt Algar.

NEXT STEPS
Implemented Model in Cloud to update automatically
Follow up on Business team after series of price changes.

CITATIONS