Problem Overview

Problem Context

- **Objective**: Control the manufacturing process to maintain the fiber diameter within a specified range.
- **Context**: Industrial controller at Sterlite Technologies.

Optical Fibers

- **The Backbone of Modern Global Connectivity**
 - Thin, flexible strands of glass
 - Transmit data through light pulses
 - Based on Total Internal Reflection

Controller

- **PID Controller**: Feedback control algorithm to regulate systems to reach desired setpoints.
- **Ziegler-Nichols Heuristic**: Chooses ideal PID parameters, without navigating the entire search space.

Solution

- **Ziegler-Nichols Heuristic**
 - Solves: Traditional PID Controller suffers from linear assumptions.
 - Solves: Reinforcement Learning Controller.

Data

- **Data Description**
 - Data sampled every ~100ms
 - High Frequency Time-Series
 - 800K Daily Datapoints
 - 1.7m Features of Interest
 - 5 Outputs (Target)

Preprocessing

1. Batching
2. Interpolation
3. Filtering
4. Sanitization
5. Smoothing

Analysis

- Cross-correlations of inputs with diameter
- Cross-correlations of inputs with tension

Methdology & Results

- **Predictive Modeling - Sequential LSTM**
 - LSTM Experiments:
 - Architecture Choice: Vanilla Model is fast and has fewer parameters without compromising on performance.
 - Modeling Choice: Multi-Output Model captures interdependencies between diameter and tension output relationship.
 - LSTM Experiments:
 - Architecture Choice: Vanilla Model is fast and has fewer parameters without compromising on performance.
 - Modeling Choice: Multi-Output Model captures interdependencies between diameter and tension output relationship.
 - LSTM Experiments:
 - Architecture Choice: Vanilla Model is fast and has fewer parameters without compromising on performance.
 - Modeling Choice: Multi-Output Model captures interdependencies between diameter and tension output relationship.

- **Parameter Optimization - Ziegler-Nichols Heuristic**
 - Controller Equation: $u(t) = K_p e(t) + K_i \int e(t) dt + K_d \frac{de(t)}{dt}$
 - Existing Controller Network at Sterlite Controls 3 Variables:
 1. Preform Velocity Controller: Feedback from Diameter (125 microns)
 2. Capstan Velocity Controller: Feedback from Diameter (125 microns)
 3. Furnace Power: Feedback from Tension (130 units)

- **Alternate Control System - Reinforcement Learning**
 - Training Setup:
 - Task: Maintain Fiber Diameter within ±0.1 microns
 - Environment: LSTM model used to simulate the manufacturing process
 - Action: Changes in input (set-points)
 - Reward: Changes in output (diameter)

- **Conclusion**
 - Built a cutting-edge solution to improve the Optical Fiber Manufacturing Process by utilizing a combination of Long Short-Term Memory (LSTM) Modeling and Reinforcement Learning (RL).

- **Impact and Future Work**
 - Maintained fiber diameter within an incredibly tight range of 125 ± 0.1 microns on test simulations, providing potential savings of $1.5 million/month.
 - Future Work:
 - Make the LSTM model more robust by training and re-training across multiple weeks.
 - Improve identified PID parameters and explore alternate heuristics for optimization.
 - Thoroughly test the RL-based control system on the physical manufacturing units.