Motivation

Aerial Refueling: Air Force missions require mid-air refueling due to limited fuel capacity in our aircraft

Room for Improvement: Air Force’s current refueling scheduler leads to suboptimal scheduling—could leverage better approach

Expensive: Air Force spends hundreds of millions of dollars on each individual refueling and billions of dollars on fuel every year

Baseline Scheduler

- Consider the first request in the list
- Assign closest refueler which can get to request
- Keep a refueler airborne while it can satisfy requests
- Once each request is checked

EDA

When looking at the request start times of a multi-day scenario, we see requests happen at all times of the day with a small full between 0300 and 0800 hours.

Looking at the request sizes (based on number of requests at a location) and distances to bases we notice there is an uneven distribution of requests as well as some well-positioned bases.

Analysis

Through exploratory data analysis (EDA) and a variety of different approaches eventually led to an innovative and successful algorithm

Objective

Redesign the current refueling scheduler, improving the initial ‘naive’ algorithm to a more holistic approach, quickly minimizing the number of refuelers and fuel burned while meeting all requests

Scope

The target is where aircraft (e.g., fighters, bombers) are focusing their efforts.

They request refueling at one of several predefined request locations.

The scheduler assigns refuelers from the various refueling bases to the requests.

Approaches

- Developed and implemented several approaches to improve upon the baseline... with little success
- Refueler-Centric
 - Let refuelers maximize their requests
- Trip Comparison
 - Compare each base’s refueler’s trips
- Combined Trip Savings
 - Combine trips that maximize savings
- Geospatial Clustering
 - Vary request order by location

These failures led to a final approach: Run the baseline scheduler multiple times with randomized requests orderings, then merge the resulting schedules to minimize refuelers and fuel burned

Baseline Solution

- 500 Chronological Requests
- Baseline Scheduler
- n Refueler Schedules

Optimized Solution

- 500 Randomly Ordered Requests
- Baseline Scheduler
- ~15n Refueler Schedules
- Schedule Optimizer
- ≤ n Refueler Schedules (usually)

The Schedule Optimizer first filters through the best resulting scenario schedules (based on number of refuelers) and, of those, employs a mixed integer program which treats individual refueling schedules as decision variables, and then minimizes fuel subject to every request being met

Results and Impact

Results

Tested across 200 unique scenarios, the optimized scheduler results in...

- **5.0%** Fewer Refuelers
- **0.7%** Less Fuel Burned
- **97.5%** of cases had ≤ baseline number of refuelers

All done with a slight, yet innovative modification to the baseline scheduler (i.e. easily implementable for host company)

Potential Impact

KC - 46

- **~$250M** Total Fleet lifetime Cost
- **~$150M** Estimated Size of Fleet
- **179** Assuming 5% Fewer Refuelers Needed

Potential Savings

- **~$3.6B**

Future Work

- Find programmatic way to order requests to produce an optimal schedule
- Add heuristics to the proposed scheduler to more quickly minimize both fuel and number of refuelers