
A new patented methodology for implementing

cryptography in order to increase the security of data.

INTRODUCTION

I. Background

II. Current “state of the art” of data transmission cryptography

III. Failures, vulnerabilities of currently used cryptography

CAPZUL

I. A new methodology for implementing existing cryptography

II. Key elements of the New Cryptographic Methodology

III. Automatic Certification Elements

IV. Implementation

Public Key Server [PKS]

Public Key Index Server [PKIS]

Devices Communication with PKS and PKIS

Accessing New Correspondents’ Public Keys

Accessing New Correspondents’ Public Keys

Encrypting & Sending Data

Encrypting & Sending Data

Receiving & Decrypting Data

Receiving & Decrypting Data

Generating & Sending New Public Keys to Public Key Server

Generating & Sending New Public Keys to Public Key Server

ICON GLOSSARY

3

4

5

7

9

10

12

16

17

18

19

20

21

22

23

24

25

26

27

28

29

indicates a schematic

INTRODUCTION

Data security is of paramount importance as more and more data is collected and

maintained in network-based systems. An important component of this security is

securing communications between devices. Specifically, huge amounts of data are

constantly exchanged among network-connected devices. Exchanges are in the form

of messages, documents and other data communicated between devices, including

emails, attachments, instant messages, files and others.

Today, a large volume of data including but not limited to emails,
documents and other files are communicated with either no security
or limited and ineffective security, meaning that such communications
can be readily intercepted and misappropriated by malicious, ill-inten-
tioned third-party devices.

While mechanisms exist for securing such communications, they can be complex to

implement and burdensome to operate, and as has been proven, they can frequently

be compromised. For example, most existing systems for securing communications

rely on asymmetric encryption methods where a publicly available key is used to

encrypt data and a private key is used to decrypt it. Asymmetric encryption methods

are problematic in that they do not offer as strong a protection as symmetric ones.

Moreover, since the public/private key pair remains unchanged, once a key pair is

compromised, a vast amount of communications can be deciphered.

Symmetric encryption methods also exist for securing communications that offer

stronger protection than asymmetric methods. However, such methods are cumbersome

to use. For example, they typically involve exchanging keys out of band, making the setting

or renewal of keys cumbersome and therefore, infrequently effected. Accordingly, there

is a need for a system and method for a secure communications that both affords much

stronger protection and is convenient to use.

BACKGROUND

4

Whatever the origin, destination or type of data (e.g. text/audio/video), the use of

encryption is required to protect this data against interception during transmission.

There are several symmetric cryptographic algorithms that achieve an extremely high

level of protection. However, these are precluded from being used in many everyday

cases because the encryption key cannot be shared.

For example, access can realistically only be granted to a Home Banking client or a

customer shopping in an on-line store with the use of asymmetric cryptography.

There is no way for the private cryptographic key to be shared between the client/

customer and the provider without security being compromised.

The effective use of symmetric encryption is only possible when the same person(s)/

system(s) of the same hierarchical level both encrypts and decrypts, for example, a

single User encrypting a file to be stored in an otherwise insecure cloud storage system.

Consequently, only that User would be able to decrypt and use the file.

Currently, in the great majority of cases where data is exchanged between different

users (or servers or systems), the use of asymmetric encryption is required. Asymmetric

encryption is the only cryptographic solution that enables the exchange of encrypted

messages between two or more users, without one knowing the private cryptographic

key of the other.

Asymmetric encryption was a major evolution in securing data, during transmission

or while in storage. A major challenge/problem is that no mathematics exists to prove

the extent to which any asymmetric cryptography algorithm is in fact safe, or safer than

others. Evaluation of, and conclusion about security levels can only be achieved empirically.

These conclusions of the security level are based on the difficulty of, and the computa-

tional time that is required to perform complex calculations. Consequently, the optimal

way to try to improve the security of any implementation that uses asymmetric cryptography

has been the increase of the public cryptographic key size.

CURRENT “STATE OF THE ART” OF DATA TRANSMISSION CRYPTOGRAPHY

The use of encryption is essential to providing even a minimum
level of security for data transmitted or shared over the Internet.

5

There are a small number of asymmetric cryptographic algorithms that are in use. It

is extremely difficult to develop a new one, and even more difficult to prove that it is a

better and safer algorithm than the ones in use.

RSA is by far the most widely used asymmetric encryption worldwide. Arguably, the

main reason for this is the cumulative effect, and the respectability gained as a result

of approximately 40 years of testing. Although several vulnerabilities have been found

in RSA, none of these has completely compromised the solution.

It is also thought that there are other vulnerabilities, ones that are kept secret by, for

example groups working for government intelligences agencies, and equally likely,

by others.

Despite these acknowledged and suspected vulnerabilities, the principal corrective

undertaken during the RSA-use era to combat its vulnerabilities was to increase the size

of the keys. This is done to offset the inevitable computational gains made by the devel-

opment of technology and new methods of factoring very large numbers, which have

been used as weapons by hackers.

Asymmetric cryptography solutions that are in use today are static, and it is safe to

assume that the vast majority of algorithms are open and known, as is the demand of

the marketplace. Discovering and gaining acceptance for new asymmetrical algorithms

is itself an extremely difficult, complex task. The current practice of using open and

known algorithms would somewhat mitigate the potential gains of a new algorithm,

as its openness would increase its vulnerability to attacks.

The protection strength of the most popular asymmetric encryption algorithm, RSA,

and the Diffie Hellman key exchange method are premised on the difficulty in factoring

big numbers and the difficulty in calculating discreet logarithms; any new protection

based on this philosophy will potentially only increase the difficulty, but would essentially

be the same in terms of the target and the attack method.

The current state of IT security levels demands a solution such as CAPZUL, a methodology

of open and known algorithms that when implemented, provides levels of security attained

by symmetric cryptography even when asymmetric cryptography is incorporated in

the solution.

Ultimately one can only expect to attain greater protection for mobile data with the

introduction of a new solution / methodology for implementing asymmetric cryptography.

6

An inherent issue with RSA and other asymmetric cryptography is that one needs to

encrypt in a way that the key to decrypt cannot be the same as the key to encrypt. There

must be a mathematic formula that relates the two cryptographic keys. In order to provide

the greatest level of security, this formula has to be such that to extract the private key

from the public key requires complex mathematic calculation, in a way that is not possible

with the current, known technology.

The creation of this mathematical formula is entirely empirical. There is no exact process

that leads to the creation of a formula with the level of efficiency that is desired. As a

consequence, it is virtually impossible to arrive at a completely accurate conclusion as to

which formula is best in terms of resistance to attack.

To state the obvious, encryption only creates protection for data for the period between

the encryption of the data and its decryption; that is, during transport or storage of

encrypted data.

There are basically three ways to attack encrypted data by brute force:

FAILURES, VULNERABILITIES OF CURRENTLY USED CRYPTOGRAPHY

Unfortunately, as history has proven, it inevitably becomes possible
to effect this extraction when new, faster, technology is developed.

Try all the possible combinations to get the desired result, which is the discovery

of the key. It is difficult to ascertain the time required for these attacks to succeed –

determining factors include speed of machine, number of machines, algorithms

used for acceleration of factoring the numbers – and good fortune. It is essential

to recognize that all encryptions are vulnerable to these types of attacks. The

extent to which these attacks are successful is determined by the quality of the

cryptographic algorithm.

1.

This method can be used to try to attack both symmetric and asymmetric encryption

7

There are several methods of attack other then those perpetrated with the use of brute force

that can be used against both symmetric and asymmetric encryption.

Several attacks are possible, predicated on, and determined by specific weaknesses and ten-

dencies of the algorithms involved. The more random is the result of encryption of the data,

the more difficult it is to find such weaknesses.

Attack using reverse engineering can be initiated in various ways. An example of a basic

one involves analyzing the memory (automatically or manually) when the program that

implements the cryptography is running. This type of attack, when successful, will result

in the discovery of the targeted cryptographic key.

Try to discover the private key from the public key, given that the public key is

known. As an example, in the case of RSA one would get the private key by

factoring the public key thus discovering the two prime numbers that were

used to generate the keys.

2.

Try to discover the data from the public key, without using the private key.

This is a less explored method of attack, but one that nevertheless needs

to be considered as a distinctly realistic possibility.

3.

This method can only be used for attacking asymmetric encryption.

This method can only be used for attacking asymmetric encryption.

8

CAPZUL

CAPZUL is a new security solution that exponentially elevates the
security levels of applications, services and solutions with which it is
used. It provides a level of security for asymmetric cryptography
previously only available in symmetric cryptography – critical if
mobile data is to be truly secure.

The four basic components of CAPZUL are as follows:

A NEW METHODOLOGY FOR IMPLEMENTING EXISTING CRYPTOGRAPHY

A Patent Pending new methodology of using asymmetric encryption. All forms

of attacks mentioned above (other than attacks based on reverse engineering)

are avoided or made exponentially more difficult with this new encryption

methodology.

1.

It is essential to note that no new algorithms are being introduced with CAPZUL; standard

industry cryptography is implemented with a far more secure methodology.

Various protections against reverse engineering-based attacks have been im-

plemented. These protections, rarely used or implemented effectively elsewhere,

are essential, as there is no mathematic protection to thwart this type of attack

at the end points. No encryption itself is immune to such attack. Several ways

of protection against reverse engineering in the implementation of any solution

have to be created in order to ensure success in warding off these attacks. These

protections are not related to cryptographic algorithms or methodologies.

CAPZUL does this to complement the protection provided with the new

methodology of using cryptographies, because reverse engineering attacks are

ultimately the most common way to break the security of a computer system.

2.

10

CAPZUL implements the new methodology and protection against reverse

engineering in a monolithic way. It makes identifying software layers or

software interfaces extremely difficult. If the solution is not monolithic, reverse

engineering attacks pose much greater danger and are, ultimately, effective.

3.

APIs that facilitate the seamless integration of the new methodology with any

application, solution or service that requires heightened data security.

4.

11

KEY ELEMENTS OF THE NEW CRYPTOGRAPHIC METHODOLOGY

Several keys, both symmetric and asymmetric, are used. In
most cases these keys are independent of each other. Because
of this independence, in the highly unlikely event that an attack
successfully breaks one key, the others still protect the data.

1.

Because the exchange of the public, private and symmetric keys is very frequent for each

User, in the most unlikely of situation that a group of keys were actually to be broken, only

one message would be compromised. Nothing will have been gained so as to provide the

intercepting party with any insight that would facilitate further compromises, as each

subsequent encryption would use a new set of keys.

High frequency of generation of asymmetric and symmetric
cryptographic keys.

2.

After the generation of the first key, when the User is accepted by the system, the certifi-

cation of new keys is already part of mathematics implemented by the new methodology.

Automatic certification.3.

When the first exchange of messages between two Users starts, there is an exchange

of information that allows them to establish and then maintain the synchronization

with each other. It is crucial to understand the implication here; unless all the keys of all

historical communication between these Users are broken and available (and this is only

available to the two Users), there will not be enough information to decrypt or encrypt

the next message. In addition to creating a much stronger cryptographic protection

than could be achievable without this synchronization, this provides the highest level of

certainty of the source and destination of the message (or encrypted data).

Airtight synchronization between system Users.4.

12

The simultaneous existence of multiple public keys for each User.5.

This means that essentially, every message (data packet) has a new (different) public key.

In using a new public key for every message, there is a situation created where the public

key is in fact secret. Only those who will use it, at a given precise moment, need to, and

will know this public key. The clear implication of a secret public key is that all specific

attacks against asymmetric encryption are unfeasible, because in order to initiate such

attacks the prerequisite need is to know the public key.

Ability to use a public key unique for each message and User.6.

...and then sent to public key server. A buffer exists in User’s installation and in the public

key server that allows for the management of multiple keys.

The public keys are generated locally7.

Multiple public key servers can be deployed, and they do not need to be synchronized.

Public key servers can be easily replicated.8.

Anyone attacking the system has no way to predict which of the multiple public keys will

be the next public key to be used, since there may be thousands valid public keys at all

times from which the public key to be used is chosen.

The public key servers do not contain any information required to decrypt any message

encrypted by the system. The implication is clear: even if one is compelled, legally or

otherwise, to open a message, it can be shown that it is technically impossible to do

so on any server used in the system. Messages can only be decrypted at the endpoint

(message destination).

The public key servers do not contain sufficient information to
decrypt any message protected by the system.

9.

13

Automatic synchronization of all User’s devices.10.

Specifically, one can use any known (open or closed) asymmetric and symmetric algo-

rithm. The independence of the new methodology from the cryptographic algorithms

being used is critically important. This capability provides two significant benefits:

The methodology is independent of the cryptographic
algorithms used.

11.

The fixed component has one or more of the key owner’s identifications, e.g. an email

address. This provides an external certification of the ownership of the key. The variable

part changes frequently, greatly diminishing the likelihood of a successful brute force

attack. Only the key in its entirety (that is, both fixed and variable components) can be

used in the encryption process.

The public key has both fixed and variable components.12.

Because of the critical need for synchronization between all of a User’s devices, under

the currently operative paradigm, the introduction of a new device (e.g. a new smart-

phone) by a User would be problematic; a sent message that is not received on any one

of a User’s devices would cause the system to lose synchronization. CAPZUL’s new

methodology is designed to auto-synchronize all the devices of the User.

When introducing a new algorithm, especially if it is for asymmetric cryptography, it

is very time consuming and difficult to prove and thus accept its efficiency and safety,

making it an onerous process that has to be undertaken in order to conclude that the new

method is better than the algorithm already in use. One is, however, able to conclude that

the safety and efficiency of the algorithm used in the new methodology is in fact greatly

enhanced in comparison with the same algorithm without the new methodology.

If a new algorithm that has been introduced does in fact show much better results than

the ones in current use, it can easily be incorporated with this new methodology.

14

Exponentially increase the security level of any asymmetric
encryption algorithm used in the new methodology.

13.

In order to break the security of a message, it is always necessary to break the asymmetric

encryption and at least one symmetric encryption. Unlike almost all solutions on the

market that use asymmetric encryption to encrypt a random symmetric key (in which

case it is sufficient to break the asymmetric encryption key to obtain the symmetric), in the

new methodology, the asymmetric and symmetric encryptions are not directly connected.

Therefore, if one is in fact broken, the other will not be exposed. Further consideration

has to be given to the use of a public key unique to each message that effectively renders

the public key secret. All specific types of attack against asymmetric encryption are made

impossible – the public key is not known to those attacking the encryption.

Provides the functionality of asymmetric encryption with the
security level of symmetric encryption.

14.

Due to all the new elements introduced with the new methodology, the breaking of

encrypted data is rendered futile because there is not enough information to initiate var-

ious kinds of attacks. For example, when trying to break a private key of an asymmetric

encryption, one requires substantial computational power. With this new solution, one

would be required to use the equivalent computational power for each newly generated

public and private key. As this occurs several times per second, the multiplier-of-difficulty

effect is daunting. Furthermore, in the most unlikely scenario of a successful break of the

asymmetric part in the new methodology, one would still be faced with the need to break

the symmetrical parts. Due to the strong synchronization between the users, where the

keys are constantly being exchanged, only the communicating Users know the correct

keys that were used for each message. With CAPZUL’s new methodology, the inherent

difficulty level of a man in the middle attack would be exponentially increased, to a level

that would make such an attack impractical and ultimately, ineffective.

The variable part of the public key is generated by an algorithm that
uses among other methods, random number generators, making the
keys unpredictable, i.e. there is no pattern in the generated keys. The
generation of key is based on random generators. As well, part of the
data in the public key is symmetrically encrypted.

15

There are three levels of security for certification:

AUTOMATIC CERTIFICATION ELEMENTS

After the user has entered and registered in the system, and his/her identity

has been confirmed by an external procedure that will have been included in

the process.

1.

After at least one public key has been generated for each PKS, the user will be

automatically certified by the PKS and only this user’s UD will be able to generate

new public keys for this user.

2.

After the first exchange of messages between two users, the inherent synchronization

between two users is guaranteed by the use of the synchronized shared key,

which has the internal mechanism to be changed automatically and recognized

by only the two correspondents.

3.

As UD uses the same cryptographic methodology to communicate with each PKS

[recursion], there is extremely strong certification between the UD and all the Public

Key Servers used by that UD.

The mechanism that verifies the authenticity of the UD that is generating a new public

key checks if the UD is an authorized one, and also confirms the authenticity of the PKS.

After the first message exchange between two users, any attempt to introduce an

unauthorized PKS or PKIS into the process [as part of an effort to hack the system] will

be immediately recognized by the users.

For this self-certification and data encryption to be hacked, it would be necessary that all

historical communication that has taken place between the two is available and is then

successfully broken.

16

IMPLEMENTATION

17

PUBLIC KEY SERVER

The PKS constantly receives the keys generated by users at their UD, and stores them in the

built-in buffer for each user.

The PKS distributes these keys when requested by the UD of other users who wish to commu-

nicate with another, specified user.

The number of a user’s keys buffered in the PKS will determine if, and how frequently, any one

key is used more than one time.

When new keys are received from a user’s UD, the PKS will certify that the origin of the keys is

from the authorized source [user] of those keys.

Certification of the new key generator is made using symmetric encryption, in such a way that

only the authorized UD is able to provide the correct data to PKS; PKS will use the symmetric

encryption to verify if the data is correct; the UD will receive data from the PKS and will use the

symmetric encryption to verify if PKS is the correct one.

All communication between a UD and PKS, other than when the UD requests the PKS’s own

public key, is encrypted using CAPZUL [it is a recursive solution].

The capacity of the server and the volume of keys to be served per second determine the

number of users in each PKS.

The PKS address is provided to all PKIS in the system.

For redundancy and desired performance enhancement [e.g. geographic proximity], each user is

able to distribute keys to various PKS; however, the keys of a user in each PKS must be different.

All User Devices of a specific user will be synchronized, as they must use the same Public Key Servers.

The PKS can be public and its data is open. If data includes encrypted data, the server will not

have the keys to open this data, the only exception being the encrypted data from the server itself.

The Public Key Servers need not be synchronized with each other.

18

PUBLIC KEY INDEX SERVER

Each PKS sends the list of all the IDs on their server to the PKIS.

Communication between the PKIS and the PKS will only occur when there is a change, i.e.

an addition or deletion of IDs in any of the PKS. This communication is secured by CAPZUL

as well, as the PKS and PKIS have their own keys.

All communication between the PKIS and users is secured by CAPZUL. The key of PKIS can

only be provided by the PKIS itself. For all other public key queries by users, the PKIS provides

the address of all PKS used by a specified user.

All communication between a UD and PKIS is encrypted using CAPZUL [recursive solution].

When a UD sends a request for another user’s key, it stores the response in its internal cache.

This eliminates repetitive requests for the same user ID and optimizes performance.

As the traffic of data to and from the PKIS is minimal, the determining factor for the memory

requirement is the number of users listed in the PKIS. As an example, if there are one billion

users listed in all PIKS, the memory required will be approximately 100 Giga Bytes.

Redundancy is the only reason to have more than one PKIS; the volume of queries is so low

that performance is not an issue.

The PKIS can be public and all data stored in it is openly available. If for any reason this includes

encrypted data, the server will not have the keys to open this data, with the exception of the

encrypted data from the server itself.

There does not need to be a specific action to synchronize the PKI Servers with each other, as

the Public Key Servers already keeps them synchronized.

The PK and the PKI Servers, and the software utilized in both, are essentially the same, with

only the configuration needing to be changed.

19

DEVICE COMMUNICATION WITH PKS AND PKIS

20

User 1 Device

User 2 Device

PKS 1

PKS 2

PKS 3

PKS 4

PKS 5

PKIS 1

PKIS 2

PKIS 3

Public Key Servers and Public Key Index Servers are the only external hardware required for

the deployment and implementation of a CAPZUL-secured application/solution/service.

The intra-system communication that CAPZUL requires occurs when a user is I) accessing

the required information of a new correspondent from the PKIS and PKS, and II) when addi-

tional correspondents’ public keys are required because none are left in the UD cache.

ACCESSING NEW CORRESPONDENTS’ PUBLIC KEYS

When the UD needs another user’s key, it first searches its own cache for the address of the

PKS that stores that user’s keys. If it is not found there, it will access the PKIS to get the address.

If the address of the other user is in the cache but an error is sent from the PKS, then contact

will be made with the PKIS to access the new address.

 The UD cache is able to store the PKS of thousands of its correspondents.

21

ACCESSING NEW CORRESPONDENTS’ PUBLIC KEYS

1. User Device checks

if its cache has Public

Key Server address of

intended Correspon-

dent Public Keys

2. If User Device does

not have the PKS

address in its cache,

User Device request

the address from PKIS

3. Public Key Server

sends requested PKS

address to User Device

22

ENCRYPTING & SENDING DATA

UD checks its cache for PKS address of intended correspondent;

 If address of PKS exists, send a request to the PKS.

If there is not in the cache or if this request fails, send the request to the PKIS.

The PKIS returns the addresses of PKS requested for the intended correspondent.

UD stores the response [the PKS address of the intended correspondent] from the PKIS in its cache.

UD requests a key for the intended correspondent from the PKS.

PKS provides a key of the intended correspondent. When more than one key is in the buffer of

the PKS, this will be a secret [public] key, known only to the sender and intended correspondent.

UD generates a temporary symmetric key – to be used for one transmission only.

UD calculate a synchronized shared key and generates new synchronizing data in order to

synchronize the next communication between these users.

UD uses the temporary symmetric key to encrypt the data [the original message] + synchro-

nizing data.

UD uses the public key + the current synchronized shared key [between sender and recipient]

for encrypting the temporary symmetric key.

The encrypted temporary symmetric key + encrypted data [message data + synchronizing

data] are concatenated and sent by the regular channel through which the original message

would be sent without encryption, e.g. Gmail.

23

ENCRYPTING & SENDING DATA

1. Request Public Key

for User 2

2. One User 2 Public Key

is sent to User 1 Device

3. Generate Temporary

Symmetric Key

4. Calculate current

Synchronized Shared Key

5. Generate Synchronizing

Data for the subsequent

correspondence

6.

7.

8.

Public Key Synchronized
Shared Key

User 2
Public Key

encrypts+ =

User 2
Public Key

encrypts

Synchronizing Data

+ =

User Data

+

Encrypted
Temporary

Symmetric Key

Concatenate

9. Send encrypted data via

solution to User 2 Device

24

Encrypted
Temporary

Symmetric Key

Encrypted User &
Synchronizing

Data

Encrypted User &
Synchronizing

Data

RECEIVING & DECRYPTING DATA

UD receives encrypted data through any normal channel, e.g. Gmail.

UD calculates the current synchronized shared key.

The current synchronized shared key + private key [associated with the public key that was

used to encrypt the data] is used to decrypt the encrypted temporary symmetric key.

The temporary symmetric key decrypts the encrypted data.

UD stores the synchronizing data for calculation of the next synchronized shared key that

will be used to communicate the next messages with this same user.

25

1. User 2 Device receives

encrypted message

from User 1

RECEIVING & DECRYPTING DATA

2. Calculate current

Synchronized Shared Key

3.

4.

5. Store Synchronizing Data

for the calculation of next

synchronized shared key

6. User Data is open and

available for User!

Temporary
Symmetric Key

decrypts

Encrypted User &
Synchronizing

Data

= +

Synchronizing
Data

User Data

Current
Synchronized

Shared Key

User Private Key

=

Encrypted
Temporary

Symmetric Key

Temporary
Symmetric Key

+ decrypts

26

GENERATING & SENDING NEW PUBLIC KEYS TO PKS

From time to time, UD communicates with PKS to find out if PKS needs new public keys.

If there is no communication between UD and PKS, the UD attempts to connect to the PKS

from time to time, until successful.

When necessary, UD generates new public keys at such time as it will not degrade the device’s

performance, and then sends them to the PKS.

27

GENERATING & SENDING NEW PUBLIC KEYS TO PKS

1. User Device Inquires

if PKS needs more

User’s Public Keys

2. If more Public

Keys are needed,

PKS notifies UD

4. User Device sends

Public Keys to PKS

3. User Device generates

Public Keys and stores

them in its Buffer

28

ICON GLOSSARY

User Private Key

Asymmetric cryptography key, generated at the User Device, only known to the user

User Public Key

Asymmetric cryptography key, generated at the User Device, known only to the correspondents

Temporary Symmetric Key

Symmetric cryptography key, generated at sender’s User Device, used to encrypt User Data

& Synchronizing Data at the sender’s device

Synchronized Shared Key

A symmetric key, calculated at a User Device, using historical synchronization data

between correspondents

Encrypted Temporary Symmetric Key

The Temporary Symmetric Key that is encrypted by the recipient’s Public Key + the Current

Synchronized Shared Key - this Synchronized Shared Key will only be used for this one transmission

30

Public Key Server

Public Key Server that has a cache of users’ multiple public keys

Public Key Index Server

Public Key Index Server lists all CAPZUL User IDs received from every Public Key Servers

User Data

Message data [text/audio/video] to be transmitted

Synchronizing Data

Data generated in the User Device in order to synchronize the next communication

between Users 1 & 2

Encrypted User & Synchronizing Data

The User Data + Synchronizing Data that is encrypted by the Temporary Symmetric Key

31

User 1 Device

User Device transmitting CAPZUL-encrypted data

User 2 Device

User Device receiving CAPZUL-encrypted data

User Device Cache

Cache in the User Device that stores the Public Key Server addresses of its correspondents

Public Key Buffer

Buffer in the User Device that stores its own Public Keys that it generates, to be then sent to PKS

