
Computation and Natural Language

The confluence of linguistic and mathematical thought in ancient India pro-
vides a unique view of how modern mathematics and computation rely on
linguistic and cognitive skills. The linchpin of the analysis is the use of posi-
tional notation as a counting method for ancient and modern arithmetical
procedures. Positional notation is a primary contribution from India to the
development of modern mathematics, and in ancient India bridges mathe-
matics to Indian linguistics. Pān: ini’s grammar, while not thought of as math-
ematical, uses techniques essential to modern logic and the theory of
computation, and is the most thorough-going historical example of algorith-
mic and formal methods until the nineteenth century. Taken together, modern
logic and ancient algorithmics show how computation of all kinds is con-
structed from language pattern and use.

To set the stage we start with the contemporary idea that all kinds of
mathematics can be thought of as sets of formulas or sentences expressed in
some formal language. Such sets are called theories, and are often thought of
as being algorithmically generated by some precise rules of proof, such as the
rules of predicate logic applied to domain-specific, or ‘‘non-logical,’’ axioms
with specially defined terms. So there are theories of arithmetic based on
axioms for addition and multiplication; set theories based on axioms for set
membership and formation; theories of the real numbers; various kinds of
geometry, algebra, and so on. Today such proof systems can also be thought of
as computations, which mainly means spelling out the details by which an

J. Kadvany (&)
Principal, Policy & Decision Science,
1070 College Avenue,
Menlo Park, CA 94025, USA
e-mail: john@johnkadvany.com

123

J Indian Philos (2007) 35:487–520
DOI 10.1007/s10781-007-9025-5

Positional Value and Linguistic Recursion

John Kadvany

� Springer Science+Business Media B.V. 2007

axiomatic theory is constructed using a formal language and its grammar,
much as is done for modern computer programming languages.

Such a computational perspective is used here to examine Pān: ini’s creation
of a formal system and the algorithmic power afforded by positional notation.
Because Pān: ini’s grammar models spoken Sanskrit, and the grammar is
designed for oral expression, a unique nexus is created between computation
and natural language. It is rarely noticed that Pān: ini’s formalism, while
intended only to describe the Sanskrit of his time, uses techniques which can
be directly extended to represent any proof or computational system. Indian
positional notation, effectively the same as we use today, in turn had an
important linguistic representation through positional Sanskrit number words.
Hence the algorithmically powerful tool of positional notation is rigorously
expressed in a natural language described by a formal grammar expressed in
almost the same spoken language.

The analysis will show how mathematical recursion, like that found in any
computing language, but also just the basic arithmetic used throughout
mathematics, can be constructed from weaker recursive patterns typically
found in all natural languages. The formation of the Sanskrit positional
number words as compounds can be seen as an increase in computing power
and a type of language change: from a version of Sanskrit with only non-
positional number words to one with positional number words. The language
change1 is modeled as a grammaticalization, in this case a construction for
positional notation using Sanskrit number word compounds. By extending
Pān: ini’s grammar to a computational system, the construction can be assessed
in terms of the algorithmic strength associated with positional and non-
positional computations. The computational increase is due in part to
cognitive skills through which the new language pattern is created from the
old. This intentional capability is generally obscured by the role for writing in
modern formalisms and models of computation. Pān: ini’s grammar makes it
possible to use a formalized spoken language as a computational model,
leading to conjectures about the cognitive basis for modern computation and
mathematics.

The next two sections review features of Indian mathematics2 and linguistics
needed to develop this computational and linguistic framework.

Algorithms, Positional Value, Sūtras

Algorithms are a ubiquitous product of Indian mathematics from ancient
times onward. They are often the primary goal and not an incidental
by-product. There are algorithms for geometrical constructions, and arith-
metical operations including multiplication, division, and finding roots and

1 On grammaticalization and language change see Aitchison (2001), Barber (2000), Brinton &
Tragugott (2005), and Deutscher (2005).
2 On Indian mathematics see Datta & Singh (1935), Emch et al. (2005), and Keller (2006); see
Bag (1975), Nayar (1975), Ifrah (2000), Woepcke (1863) on positional number words.

488 J. Kadvany

123

powers. There are solution procedures for many basic algebra problems, and
alternative algorithms for arithmetical operations, such as multiplication or
finding roots, have computational advantages depending on how number signs
are laid out and manipulated on a dust board. Difficult algebraic problems are
solved by rapidly converging algorithms, and in some cases problems are solved
with optimal or nearly optimal efficiency. By the medieval era there are pro-
cedures for computing trigonometric and other functions as recursive arithmetic
approximations, much like power series today, e.g. sin(x) ¼ x – x2/(3 · 2) + x5/
(5 · 4 · 3 · 2) – …. These procedures provide important examples of what
Alan Turing (1936) called computable real numbers, showing the close con-
nection between arithmetic, the discrete infinite, and higher mathematics.

In all this there are unambiguous and conscious conceptions that algo-
rithmic method involves processes of symbolic manipulation. Numeric and
other symbols must be initialized in proper relative positions and then new
symbols introduced, replaced or erased with reference to an informal layout of
lines, boxes, or other perceived formats. Multiplication was described using
metaphors of ‘‘killing’’ or ‘‘destroying,’’ such as hanana, vadha, ks: aya. Those
terms referred to steps in which numerals were successively rubbed out, or
‘‘destroyed,’’ and then replaced. Such descriptions apparently were introduced
along with positional numerals and are amply justified by a variety of algo-
rithmic methods. Arithmetic was pāt: ı̄gan: ita, compounding pāt: ı̄/board and
gan: ita/science of calculation. Calculations of all kinds were carried out on dust-
boards of limited size, making erasure and replacement an essential tool of
memory management. These procedures are only meaningful with respect to
coherent views and practices of symbolic behavior. Indian algebra was dif-
ferentiated from arithmetic by its use of symbols whose values were inde-
terminate and unknown, as opposed to determinate and known values like 21
or 303. Bhāskara II around 1150 described algebra as analysis (bı̄ja) assisted
by letters or symbols (varn: a), whose properties are discovered through con-
siderable intellectual effort.

Symbol usage is a special human skill to which we will return in the formation
of positional number words. It is fundamental to the modern idea of algorithmic
thinking as generic procedural exactness. Not only written or spoken numbers,
but words, discrete sounds, bricks, weavers, beer jars or any other discretely
defined entities can be treated symbolically, with their manipulation or pro-
cessing by counting or other algorithmic methods characterized as a symbolic
procedure. The modern idea that algorithms can be defined through different
events, behaviors and media appears in ancient India outside of mathematics in
procedures for ritual design and execution, including means for the recursive
combinations of chants, marches or offerings in a larger composite ritual.
Correct execution, especially in a mostly non-literate culture, required sys-
tematic means for efficiently describing a hierarchy of activities and options for
their sequential expression. The ritual rules did that, implying what we can call
today the formation of potentially infinite ritual patterns using finite means.

For our purposes, what matters is familiarity in India with algorithmic
methods, especially recursive ones, across a range of media and behavioral

Positional Value and Linguistic Recursion 489

123

goals. That familiarity implies mastery of symbolic processing in alternative
forms. A fire altar is made out of bricks as the only practical material. But an
‘‘altar’’ is defined by its role, as is a chess board, whose pieces can be made two
feet high for games played in a public park. Neither the altar nor the chess
board mean anything, but they have symbolic roles when their functions are
defined through assigned relations and rules which dictate their use in the
context of some relevant task. The ease with which we today treat mathe-
matics and computation as symbolic manipulation arose much later in Europe
than in India, and is often associated with the ideas of François Viète, Simon
Stevin and René Descartes. These mathematicians began the interpretation of
mathematics as a symbolic language without special reference to an idealized
domain of number objects. Lacking such realist and platonist philosophies to
overcome, mathematical expertise with symbolic heuristics was for centuries a
dominant feature of Indian mathematics. Algorithmic expertise was also
widely expressed outside of mathematics, narrowly conceived, just as occurs
today.

Positional Value

Premodern Indian mathematics is generally bereft of proofs. The upside of
that is a thoroughly constructive mathematics, meaning that mathematical
facts get demonstrated through replicable procedures for carrying out con-
crete calculations. For that, a ubiquitous tool used throughout Indian math-
ematics is linear positional notation. In 2025, the sign 2 means 20 and 2000,
and in 202 it means 2 and 200. Linear means that a positional numeral a1…an
can represent 10n values with just n symbols {ai} being used, each one a sign for
0 fi 9.

The Romans and Greeks also had notations in which value was determined
by a multiplicative rule. At times Roman�M meant M multiplied by the ‘‘bar’’
factor of 1,000, two bars meant multiply by 1,000,000 and so on; the bar could
also be applied to a composite symbol like CL. Such notation is ‘‘quadratic,’’
in that up to n2 bars and base numerals (I, V, X, etc.) may be required to code
10n values, depending on how units and bars are chosen. The reduction of an
exponentially growing list of values to a quadratic number of symbols is a
significant improvement over additive notations, like Roman numerals lacking
a multiplicative bar or similar device. But multiplicative Roman numerals can
require clumsy ‘‘stacks’’ of bars to code the same information carried by linear
position. That difference leads to considerable streamlining for the simplest
arithmetical computations and especially the recursive construction of new
algorithms. For example, Indian algorithms for finding roots use the equality
a1…an ¼ a1 · 10n-1 +…+ an-1 · 101 + an to sequentially process the numerals
a1,…,an making up a1…an and whose (square or cube) root is to be calculated.

More generally, Indian algorithms use tabular and multi-line layouts to
describe arithmetic calculations over finite lists of inputs or repeated trans-
formations of equations. Input data and intermediate products in positional
form can literally be fit into the bounded and semi-standardized computing

490 J. Kadvany

123

area created by a dust board. Two-dimensional tables alone are a great boon
to arithmetic procedures, as shown by the impressive layouts of Babylonian
scribes, who also discovered a linear positional notation. But inserted or
replaced elements have to be compact enough for storage. It can be easy to
insert a short list a1…an into a table ‘‘cell,’’ and columns and rows can
recursively list such lists. But it is hard to use sizable or disorderly tables as
table elements, and even harder to recognize in them patterns suggestive of
higher-order rules. With positional notation, algorithmic steps involving
symbol manipulation, erasure, and replacement become practical, especially
for algorithms creating large outputs from small inputs. Erasure and
replacement make up the ubiquitous ‘‘assignment’’ operation of modern
computation. A programming step may assign N ‹ N + 1, meaning the value
associated with variable N is to be replaced by the value now stored for N and
incremented by 1; that value then is placed in the storage location for
N. Replacement and erasure are not trivial features of dust board use; they
reflect the necessity to manage memory and computing resources directly in
algorithmic design, and many Indian algorithms do just that. A compact base
notation for which storage requirements are minimal, and physical replace-
ment as simple as possible, is therefore of the highest value. We will see below
how replacement rules play a central role in Pān: ini’s grammar, and describe
much stronger links to modern computation.

Arithmetic and Computation

A relevant question is to ask what computational power has been made
accessible through efficient arithmetic for + and ·. For example, �2 ¼ 1.41421…
or p ¼ 3.14159…, and most other numbers needed for applied mathematics, are
computable real numbers calculated by approximating series. So given just +
and ·, and means for combining them into new algorithms, one can consider
whether all computable numbers can be so defined, or whether additional basic
operations are needed. A surprising fact from modern logic is that + and · are
sufficient to define algorithms for all computable real numbers in decimal form.
So + and · are not ‘‘merely’’ arithmetic. Properly conceived, they can be used to
construct some quite advanced mathematics and as found in the proto-calculus
and infinite series of premodern India.

Indeed, formal systems for just addition and multiplication are sufficient to
define universal computation, meaning that all algorithms for some domain,
say the natural numbers, can be listed and computed by a single algorithm
expressed in a fixed formalism. So, famously, Alan Turing defined the uni-
versal Turing machine U, really just a list of lists, so that U(m, n) equals the
value, if one exists, computed by the mth Turing machine with input n.
Similarly Kurt Gödel implicitly showed in 1931 that axiomatic theories strong
enough to represent basic properties of addition and multiplication could
represent all computable functions through a single master formula involving
just +, · and logical symbols. All models of computation or provability have
similar means for constructing a master formula or analogous representation.

Positional Value and Linguistic Recursion 491

123

Universal computation represents the theoretical computing power of a typ-
ical programming language, meaning the range of functions the language can
be used to represent and calculate.

The arithmetic of addition and multiplication therefore makes large pro-
gress toward universal computation. The algorithms and their properties have
to be discovered, and no notation does that. But by facilitating efficient
arithmetic for + and ·, positional notation makes intelligible algorithms which
are otherwise almost impossible to formulate and then compute. Much of this
paper is about this rapid unfolding of algorithmic power through such simple
arithmetic operations.

Universal computation is an important modern idea not present in Indian
algorithmic method, whether in mathematics or linguistics. Indian mathematics
lacks a formalism for algorithm expression, while Indian linguistics used
formalisms without a role for anything like universal computation. Toward
the goal of using Pān: ini grammar to formalize algorithms or axiomatized
mathematics a final observation is needed about the expression of Indian
mathematical knowledge in spoken Sanskrit.

Sūtra expression

Indian mathematical algorithms are often expressed as spoken verse, similar to
rule-like knowledge for ritual execution, moral and personal guidance, pro-
sodic analysis, and linguistic description. Hence it is tempting to identify the
sūtra style as a generic means for procedural expression. But the sūtra form is
properly a communicative style for procedural thought. Many mathematical
and linguistic sūtras express exact procedures in summary form, but sūtras
themselves are not especially rule-like. Even in Indian mathematics, sūtras are
condensed mnemonics, at times nearly cryptic. Their brevity and poetic for-
mulation aids memorization and recitation, especially when learning many by
heart. Writing materials were always scare in India, so recitation guided by the
sūtra form plays a material role in preserving and communicating knowledge.
Typically sūtra codification requires explanation by a teacher, fellow-student,
or other adept; that process therefore sustains considerable traditions of
exegesis, commentary and authorization of interpretations. The knowledge
required to execute an algorithm, even just for simple arithmetic operations, is
carried by individual memory, with procedural exactness being triggered by,
for example, actual dust board usage. That includes the ability to perceive
physical symbols, gesture to them, identify symbolic patterns, isolate working
areas, indicate erasure and replacement procedures, and comment on
inscription technique. The sūtra is an entryway to that internalized process, but
is much less than the whole.

With sūtra content so curtailed, it can be natural to minimize its importance
for the expression of mathematical algorithms. But what matters for us is the
identification of spoken Sanskrit as a standard of rigor. Orally transmitted
knowledge faces considerable challenges to accurately preserve meaning,
and one solution is to standardize the underlying language using explicit rules.

492 J. Kadvany

123

The relevant formalism is Pān: ini’s grammar, which has no direct bearing on
the content of mathematical algorithms. But Pān: ini’s grammatical rules were
codified using modern techniques for formal language definition, so the sūtra
formulation creates a shared space for computation, formal description, and
Sanskrit as a natural language.

The passage between mathematics and language is aided by Sanskrit posi-
tional number words. These words are needed for compact sūtra expression of
large numbers, just as ordinary positional numerals are needed for algorithm
execution on bounded dust boards. Such words must respect formal standards
for word formation, even as they are defined by a multiplicative rule unlike
most others in typical natural languages. But that is to get ahead of our story.
The next goal is to identify just how to express mathematical algorithms of any
kind using Pā _nini grammar as the underlying formal approach.

Pān: ini Grammar

Pān: ini’s grammar,3 composed perhaps sometime around the fifth century BC,
and likely the product of generations of Sanskrit scholars, is in some ways the
most powerful and thorough-going expression of algorithmic method in the
ancient world. Our interest lay in gross features of Pān: ini’s methods making
this claim true, rather than his approaches to specific linguistic phenomena.
With the benefit of hindsight, surprisingly little needs to be added to Pān: ini’s
techniques to make them generally useful for representing any algorithm or
axiomatic system, analogous to the use today of first-order logic to axiomatize
most any mathematical theory, or a Turing machine to model a specific
algorithm or a class of algorithms.

Our view is that Pān: ini grammar is a formal system in oral form, intended
to produce grammatically correct Sanskrit words and sentences along with
their correct pronunciation. It is the first formal system, well before Gottlob
Frege’s late nineteenth century Begriffsschrift for first-order predicate logic.
Similar steps are used to construct ancient and modern formalisms, in spite of
differences of media and purpose: an oral formalism for spoken Sanskrit
versus a written or graphical formalism for a logical or other formal calculus.
Pān: ini’s grammar has a finite symbolic basis defined by the Sanskrit pho-
nemes, verb roots, noun stems, and word affixes; these are the initial inputs for
the many types of rules ultimately generating Sanskrit expressions. The
finitely specified grammar of nearly 4,000 sūtras is also recursive, with derived
verbs or nominals re-input to formation rules, especially through word com-
pounding. In modern terms that implies the potentially infinite use of finite
resources, a primary motivation for generative grammars. The entire appa-
ratus is primarily an analytical and descriptive device for which no psycho-
logical reality is claimed. Sam: skr: t itself, prefixing the root kr: with sam: s, just
means ‘‘well-formed’’ or ‘‘well-constructed.’’

3 On Pān: ini grammar see Brough (1951), Sharma (1987), Staal (1972, 1988).

Positional Value and Linguistic Recursion 493

123

Because Sanskrit is strongly inflected, has a rich case structure, and has
powerful means for constructing word compounds, Pān: ini’s focus is on word,
rather than sentence, derivation. A derivation is created by selecting roots and
stems needed for a word or sentence, and then selecting and applying rules
which lead to the expression of some action or event in terms of syntactic
features such as tense, aspect, number, and several Sanskrit cases. The sandhi
rules use the phoneme set to adjust pronunciation as affixes are adjoined to
roots and stems, and in compound formation. No master rule enumerates or
guides word derivations. The grammar’s user decides how to start a derivation
based on some intended meaning. Kāraka rules provide means to make that
start, but their use is not automatic. These rules indicate how to mark words,
or pre-words, to represent types of action or thematic roles, as in Rāma is
piercing the deer in the forest for Sı̄tā. Once that preliminary framework is
created, a more automatic process dictates the formation of utterable
expressions. Stem and root annotation, using specially designated Sanskrit
sounds as markers, ensures that correct relations of syntactic agreement,
reference and other conditions are carried along in the derivation of arbi-
trarily complex word and sentence forms.

As in modern logic, considerable effort is expended distinguishing the
‘‘mention’’ of actual Sanskrit and the ‘‘use’’ of a formal grammar to describe
and generate it. Pān: ini constructed a formal metalanguage for linguistic
description by extending ordinary Sanskrit; this formalism then expresses the
algorithms used to derive spoken expressions. For modern logicians the
analogous task is organized through definitions of symbol sets, formulas, axi-
oms, proofs, and theorems; or computational categories such as commands,
subroutines, modules and programs. That task is considerably simplified
through writing and informal mathematical language. Because Pān: ini’s system
was orally expressed in his extended Sanskrit, the same tasks had to be
accomplished directly through language structure. Yet the steps are much the
same. Defined terms called sam: j~nās can designate categories of words or
expressions, including those created by particular rule applications. Once
named, these categorical definitions are available to construct new rules. Rule
application and derivations are guided by metarules, paribhās: ās, distinguished
from ‘‘operational’’ rules generating Sanskrit expressions proper. For example,
metarules govern the introduction of new technical terms, rule ordering in
Pān: ini’s listing, and the resolution of rule conflicts. Modern logic takes for
granted our ability to introduce symbols, organize them in lists, and combine
the symbols into varieties of defined categories, all before much of interest is
done with domain-oriented rules. Pān: ini and his predecessor grammarians had
to complete such tasks orally in a methodologically coherent way.

Pān: ini’s formal rigor should be distinguished from the intricate process of
rule application. His many rules are context-dependent and subject to mul-
tiple, prioritized interactions. As noted, no procedure exists, short of checking
all rule options, to find the individual rule leading to a target expression,
assuming such a rule exists. That situation can be typical for generative
grammars. But it is undesirable for mathematics or computation, which

494 J. Kadvany

123

require a more orderly and ultimately rule-governed approach for rule
application itself. Nonetheless, Pān: ini’s approach to rule formation demon-
strates the theoretical generality of his techniques.

To start, just one kind of ‘‘event’’ occurs in rule application and derivations:
to replace one expression E by another E¢, reflecting additions, changes,
deletions, placements, or sound changes. E could be a starting set of roots and
stems, or an intermediate product, like a compound, created by prior rule
applications. Indian mathematical algorithms use erasure and modification to
replace one dust board computation with another; here, parallel methods are
similarly universal, with replacement meaning that E¢ follows E in recitation,
or if expressed in written Sanskrit, produced on a succeeding line. A deriva-
tion is a sequence of such replacements, starting from roots, stems and guiding
kāraka roles. From Pān: ini’s perspective, the challenge is to control derivations
so that they lead only to grammatical Sanskrit. That means, for example,
maintaining case agreement between distinct words, or insuring that a word
remains plural while other changes occur, or triggering a sound change when
an affix is adjoined to some previously derived word form.

A key device for derivation control is Pān: ini’s use of Sanskrit sounds as
artificial metalinguistic affixes. The markers identify syntactic features or
linguistic constraints, and guide derivations forward when referenced by
relevant rules. For example, to derive Rāma is piercing the deer with the bow
(Rāmo dhanus: ā mr: ga _m vidhyat), Rāma can be marked as the agent; pierce /
vyadh is the verb of action; bow / dhanus: is an instrument; deer / mr: ga is the
object of piercing. That information is indicated by affixes sU, N: i, T: ā, am and
LAT: , giving new expressions rāma + sU, vyadh + LAT: , mr: ga + am, dhanus: +
T: ā. Additional rules ultimately transform these into derived words including
sound changes occurring in affixation.

The capitals represent ‘‘indicatory’’ or auxiliary sounds, called IT, which
identify the relevant syntactic information. These controlling sounds get
deleted while any remaining sounds might be combined with the stem or root.
Another example is provided by the listing of Sanskrit phonemes in the
�Sivasūtras. Largely organized in terms of a sound’s vocalization using the
speech organs, IT markers are interpolated so that several sublists can be
referenced by abbreviations in subsequent rule statements, something like
x1,…,xn for a list starting with x1 and ending with xn. IT markers can also
indicate defined categories, such as derived compounds, which then can be
recursively referenced for further compounding or other uses. Pān: ini some-
times also uses ordinary Sanskrit case endings metalinguistically. A genitive
case ending can indicate a term X to be replaced, a nominative ending marks
the replacing expression Y, and a locative case marks an adjacent term or
context Z; in modern terms these are the elements defining ‘‘context-sensi-
tive’’ rules written X fi Y/Z.

Pān: ini has no mathematical or computational content at all, but all the
tasks needed for constructing a modern axiomatic system or simple computing
scheme appear in multiple mastered forms using ordinary resources of spoken
Sanskrit extended by special markers and sounds. Hence to express formal

Positional Value and Linguistic Recursion 495

123

arithmetic or numerical algorithms using Pān: ini’s methods, one approach
would be to spell out the tasks to be performed, and then mimic Pān: ini’s
practices to create lists of symbols, categorical definitions, and rules and
constraints, say those adequate to codify a standard formulation of first-order
logic. ‘‘Mathematics’’ could be segregated from other language using new
kāraka definitions to indicate a sentence involves ‘‘computations’’, ‘‘num-
bers’’, or ‘‘proofs’’. The process would also identify new formal symbols with
Sanskrit sounds, affixes or words, so that the system, its computations, and
proofs can be expressed orally.

Such an approach to formalization is sufficient, but there is a more powerful
way of seeing that Pān: ini’s natural language methods are sufficient to define
computational processes generally. For Pā _nini has mastered a single algorith-
mic technique which is sufficient for such generic representation. The size and
complexity of Pān: ini’s system makes that accomplishment hard to recognize,
but it provides a direct link to contemporary computation and formalization. In
modern terms, Pān: ini’s replacement rules are instances of formalisms studied
by Emil Post in the 1930s and 1940s and which are used today for programming
language design. A Post production system P is defined by a finite alphabet
A ¼ {a1,…,an} of discrete symbols; rewrite rules {ri} defined on symbol lists, such
as r: aX fi aaX, meaning that any expression starting with an a can be replaced
by itself with another a prefixed to it; and axioms Ax used to begin rule
application. A possibly infinite ‘‘language’’ LP is generated by applying the
rules recursively starting with the axioms.

In general a rule can be of the form r: g0X1g1X2g2…Xngn fi h0Y1h1Y2…
Ymhm. The g’s and h’s are fixed strings of individual symbols from the finite
alphabet A, including null strings. Each Xi is an arbitrary variable string over A.
The Y’s can be any of the X’s, including repetitions, so that {Yi} ˝ {Xi}. Post has
no linguistic rules, just algorithmic ones, and Panini’s grammar as a whole is
poorly thought of as a Post system simpliciter. But the modern notation E fi E¢
is not anachronistic for Pān: ini’s rule application, nor is the notion of a succession
of rule applications by which a produced expression is derived. As needed for
Post’s approach, Pān: ini can identify lists of constant expressions, variable
expressions, and their mixture. Like a Post system, Pān: ini’s goal is descriptive: to
‘‘write out,’’ to speech, grammatically well-formed Sanskrit expressions.
Pān: ini’s grammar is essentially a set of replacement rules based on a finite
‘‘alphabet’’—ironic as that term may be for an oral culture—and conclusions can
be drawn from Post’s work not following from the many other modern
approaches to computation. The reason is Post’s rediscovery of Pān: ini’s method
of auxiliary markers.

Given a production system P generating language LP, Post showed that LP

could be replicated using rules in a standard format by using auxiliary sym-
bols. Post proved that any LP could be produced by a system P* with an
alphabet A* including A, and whose rules all have the form gX fi Xh, with g
and h fixed strings. Since A* extends A, P* produces more than just LP, which
only uses symbols from A. Post showed how to insure that the expressions
produced by P* which use only symbols from A will be exactly the expressions

496 J. Kadvany

123

LP The situation is that faced by Pān: ini: a series of potentially infinite patterns
is to be reproduced by a finite set of replacement rules. Post showed it was
possible to do that in complete generality using new auxiliary symbols in
A*~A (i.e. in A* but not A) to control the production of exactly LP over A.
The challenge in Post’s proof is eliminating auxiliary symbols once they are
used to create expressions from LP*, so that only the target expressions LP

remain. The required replacements of the form gX fi Xh are even suggestive
of affixing, through the patterns of fixed strings appended to the start or end of
any expression X.

It follows that if a grammarian can define rules using the method of aux-
iliary symbols, and apply them in rules of the form gX fi Xh, he or she can in
principle reproduce the expressions defined by any Post production system in
Post’s canonical format. Post’s methods also show that many variant systems
can be simulated, particularly axiom systems with multiple antecedents in
their production rules, such as {A, if A then B} fi B. It is similarly possible to
construct markers and productions which mimic the state-transition logic of
Turing machines. Post production systems therefore have the same algorith-
mic power as Turing machines or any other standard computational model.
The same is therefore true for Pān: ini grammar taken as a paradigm for system
construction. Post’s results show that Pān: ini’s method of auxiliary markers is a
generic method for the simulation of any production system at all, but
expressed orally using Sanskrit sounds as formal symbols. Pān: ini did not just
create a formalism. He discovered a technique adequate to represent any
typical formal system with a finite basis and recursively defined rules. His
remarkable accomplishment was to see that the devices needed to accomplish
that are already present in natural language. That shows, as a corollary, how
formal systems of virtually arbitrary computational or axiomatic power can be
directly constructed from mastered speech. Such artificial languages are the
continuation of natural language grammar by its own means; their usefulness
and ‘‘generosity’’ should be understood as extensions of otherwise typical
natural language skills.

Having accomplished the goal of showing that arbitrary computational or
axiomatic systems can be codified using Pān: ini grammar, we now return to
Indian mathematics and the expression of numbers in spoken Sanskrit using
positional number words. Pān: ini’s apparatus will be used to extend the
number word model to a formalized4 ‘‘oral arithmetic’’ below.

Positional Number Words

Sanskrit positional number words are one of several means used in Indian
mathematics for oral number representation. Other examples include
Pin:gala’s use, around the third century BC, of n short and long syllables in

4 On formalized arithmetic see Enderton (1972); Fischer & Rabin (1974) and Young (1985) on
bounded multiplication in additive arithmetic; Boolos (1979) on provability predicates. Davis et al.
(1994) and Minsky (1967) discuss Post production systems. Davis (1965) includes Post’s papers.

Positional Value and Linguistic Recursion 497

123

poetic metre to enumerate values up to 2n, with the syllables a proxy for counting
in base 2. In the sixth century, the astronomer Āryabhat:a used Sanskrit
phonemes, non-positionally, to represent values up to 1018. Like these tech-
niques, positional number words are used for codifying numbers in speech rather
than writing, and all are mostly unusable for direct computation. However for
centuries positional number words were a standard means for expressing
numeric precision in verse form by mathematicians and astronomers.

For Sanskrit number words, choices can be made from ten sets of words for
the basic numbers, 0 fi 9. As an example, one of the oldest available Sanskrit
calendar dates is expressed as �srutı̄ndriyarasa. This word is built from
�sruti.indriya.rasa with ‘‘.’’ used here as a visual separator. Translated as Veda,
properties, senses these stand for 4, 5, 6:

Veda.properties.senses
4 5 6

The number follows an early convention to give the least significant figure first,
so that the date is actually 654 (= 732 CE). �Sruti is 4 because it refers to the
four recited Vedas. Here is an example of a transliterated number verse from
the astronomical text Sūrya Siddhānta (‘‘Sun Theory’’ ca. 4th century CE):

candra ucchasya agni�sūnyā�svivasusarpārnava yuge
vāmam: pātasya vasvagniyamā�svi�sikhidasrakāh:

Here agni�sūnyā�svivasusarpārn: ava names 488,203 and vasvagniyamā�svi-
�sikhidasra names 232,238. The verse means ‘‘The number of revolutions of
the apogee of the moon in a yuga (a 4,320,000 year cycle) is 488,203, and of its
waning node, 232,238.’’ The Sanskrit positional word system is entirely rig-
orous and facilitates the easy formation of number words for recitation, even
changing words for same digit inside a numeral, just as writers change
vocabulary just to avoid repetition: instead of expressing 333 as tri.tri.tri. you
could combine agni.mūrti.loka. Varied examples occur across centuries of
Indian mathematics and astronomy. One approach was to also use names
for pairs of digits, thus reducing the number of names needed. Mādhava,
sometime around the Fourteenth century, for example, described
2,827,433,388,233, which approximates the product of p with 9 · 1011, using
individual words for the pairs 33 and 27, and single-digit number words for
the rest.

Sanskrit number names are not unique, but they are unambiguous and
efficient when used as intended. Hundreds of different number words can
have the same value, and the larger the value, the greater the number of
possible names. Such choices make it easier to find a euphonious and compact
representation for any numeric value, which again is a primary motivation for
the system. Some Sanskrit number words for 0 fi 9 were shared across dia-
lects, so some names became standardized and helped ensure accurate com-
munication across a huge land. The number words are also redundant

498 J. Kadvany

123

compared to simpler symbols for 0 fi 9, because small errors do not prevent
the word name from being correctly understood. Contextual cues provided by
word neighbors limit word endings and provide additional redundancy in the
oral communication channel. Sanskrit number words are also appropriate in
ritual contexts in which accounting numerals and even written language could
be polluting. Ritual practices were described in verse using recursive patterns,
so positional number words fit well in a tradition in which spoken Sanskrit
efficiently expressed arbitrary precision for all kinds of activities.

For a system of positional number words to be useful, the word choices and
background language need to facilitate word transitions implied by combining
the basic number words used as the basis for the positional recursion. If the
compound words are to be used poetically, morphological and phonological
rules must facilitate euphonious and memorable combinations. English may
be poor parent language to construct a positional number word system, but
ancient Sanskrit is exactly suited to it. Sanskrit grammar facilitates complex
word compounds whose pronunciation is governed by the sandhi rules
smoothly joining one word with the next. All languages have such rules, but
may be used more or less in casual versus formal speech, and may be more or
less central for how the language is used as a whole. For Sanskrit, the many
compounding and sandhi rules cover much of how the language functions.
Like ancient Greek or Latin, Sanskrit is highly inflected, and also uses a rich
case structure to mark grammatical relations. English has plural and posses-
sive cases, as in dog fi dogs or he fi his, and we inflect regular verbs with -ed to
form the past tense, as in I buttered my bread. But English is mostly ‘‘isolat-
ing’’ and non-inflectional, making syntax greatly dependent on word order and
providing limited opportunities for complex composite word forms. These are
just empirical facts about language differences and are matters of degree
rather than kind. Modern English evolved from Old English which was highly
inflected and allowed for considerable free word ordering, similar to Sanskrit
and Latin. Over several centuries the elaborate case endings of Old English
were lost, and today many individual prepositions and verbal auxiliaries have
taken their place. Hence language modification, as occurred in the use of case
rules and affixes for Pān: ini’s grammar, and the use of compounding for
number words, can be straightforward and is historically common. Indeed
languages are always in flux, and in the next section positional number word
formation will be characterized as a kind of language change.

Comparisons to English illustrate why the linguistic structure needed to
construct multiplicative positional number words are not specific to Sanskrit.
In English, 102 could be written or spoken as holy.void.love, or just holy-
voidlove. But also, say, as bodynullmarriage. Because many word beginnings
and endings are predictable (e.g. ts is a common ending but not a beginning)
position starts and stops can be recognized without additional markers
for parsing, just as additional markers are not used for usual positional
notation. In English these compounds are not particularly mellifluous, easy
to pronounce, or memorable. But that’s only because English is no longer
optimized to join word endings and beginnings so freely. English has many

Positional Value and Linguistic Recursion 499

123

phonological rules to change pronunciation when combining morphemes, like
dog + s fi /dogz/ but cat + s fi /cats/ and not /catz/. It just happens that in
English, these rules are not obviously useful or easy to implement with
number words like holyvoidlove. But given some labor, such number word
rules could be made to work smoothly. Language design also makes it possible
for number words to be treated as ‘‘formal symbols.’’ Phonemic recognition
and production makes possible the ‘‘duality of patterning’’ characteristic of
language systems: while meaningless in themselves, phonemes create symbolic
contrasts through which larger morphemes are built and differentiated, as
among /bad/, /dad/, /sad/, /mad/, /lad/. Hence treating number words as
‘‘merely’’ symbols, as needed for formal description generally, is not espe-
cially logical or mathematical. As far as numeral valuation goes, number word
semantics is based on a positional rule using the place of a word inside of the
compound. Position is often used in natural language to determine syntactic
roles and meaning—Man bites dog is news but not Dog bites man, with word
order determining the subject and direct object—so number word meaning
relies on a linguistic capability probably utilized in all languages. Notably,
positional value is calculated using a count of where a sign appears in a larger
symbol; such a ‘‘parameterized’’ rule contrasts with simpler recursive con-
structions, such as noun phrases built from other noun phrases, verb phrases
built from verb phrases, or subordinate clauses built from subordinate clauses.
Position is often used to determine meaning and syntactic roles, but gram-
matical rules typically do not rely on an increasing sequence of natural
numbers as parameters. Yet that occurs here, showing how an advanced
number concept can be constructed from generic natural language skills.

The function of Sanskrit positional number words, like the sūtra form, is
communicative and not computational. Perhaps that is why the earliest
expressions of the positional concept (without a zero) in India are as Sanskrit
number words. The positional idea may have first appeared in number words
around 200 BC to express very large numbers in compact form, but with no
arithmetical algorithms. Number words are linguistically straightforward, and
Pān: ini had described compounding rules of much greater complexity several
hundred years earlier. Strictly speaking, a recursive positional rule would have
to be added to Pān: ini’s grammar to define number word semantics, and to
mark an expression as being about a number rather than the moon, sun, or
marriage. But given the prestigious role of language and linguistics, the
positional number words must have been recognized as an elegant use of
Sanskrit recursive compounding. For computation, the positional technique
would have to be converted to orthodox written numerals along with the
invention of calculation techniques for addition, subtraction, multiplication
and division. Since the number words are still perfect for sūtras they were
retained in that role.

The Indian origin of positional notation therefore may have been in spoken
Sanskrit, but since number words have limited computational usage, there
would have been an essential role for inscription to develop even the simplest
arithmetic. Inscription is vital for mathematics because it overcomes major

500 J. Kadvany

123

limitations of short-term memory applied to rapidly fading speech. Inscription
presents number symbols using visually perspicuous patterns in stable and
effectively permanent media, making possible powerful illusions of autono-
mous computation. This undoubted benefit is due to writing’s role as a natural
language prosthesis whose extreme efficiency obscures the symbolic skills on
which it relies. The Sanskrit positional number words, combined with Pān: ini’s
oral grammar, provide an opportunity for avoiding that filter with respect to
mathematical computation. As noted, positional number words are made
possible through general language skills which may or may not be universal:
duality of patterning, the use of discrete units, a role for position as a symbolic
marker, and recursive patterning in which counting is applied to linguistic
products themselves. These features, even if present in writing, are just better
understood when expressed in speech. ‘‘Written forms,’’ wrote Ferdinand de
Saussure, ‘‘obscure our view of language. They are not so much a garment as a
disguise.’’ Because positional value is computationally powerful, and because
Pān: ini’s grammar can be used in principle to formalize any algorithm, the
positional number words provide a starting point for computations conceived
as oral instead of written expressions. In that way, the linguistic expression
of multiplicative recursion provided by positional number words can be
extended to computation generally, thereby unfolding universal computation
from natural language skills. Through such a thought-experiment, linguistic
features of positional number words can also be compared to their associated
computing strength.

To prepare the way, and as suggested by example of English language
change above, the relevant linguistic feature of positional number words is
their formation from arithmetically and linguistically simpler non-positional
predecessors. To that language change we now turn.

Grammaticalization of Position

Word compounding is the structural feature facilitating the formation of
positional number words and is the heuristic center of the Sanskrit language.
The function of the linguistic discrete infinite in any language is to efficiently
form arbitrarily complex expressions, so the use of compounding to represent
numeric precision in ultracompact positional number words is not adventi-
tious. Various compounding styles were highly mastered in Sanskrit and their
grammatical roles would have to be a focus of any systematic treatment of the
language. This does not mean that compounding, in contrast to other tech-
niques used across the world’s languages to produce new word and sentence
forms, is particularly special as a recursive device. Only that it happened to be
highly mastered in terms of poetic and scientific expressiveness, compactness,
and mnemonic optimization. That mastery was also described in detail using
formal grammatical theories expressed in extensions of oral Sanskrit. All that
expertise creates a cognitive foundation for the representational redescription
of non-positional compounds through a positional rule.

Positional Value and Linguistic Recursion 501

123

Sanskrit includes several simple compound types, analogous to, but more
inclusive than, English forms like seashore, horseback, wastepaper. English
also has dvandva compounds, in which nouns of some type are aggregated,
like Metro-Goldwyn-Mayer or murder-suicide. A Sanskrit dvandva can con-
catenate any number of items, like English constructions using … and … and
…, and that is the typical number word construction. Varied compound types
can be further recursively combined, making possible single-word formations
of arbitrary precision much like an English clause, with sandhi rules fusing
phonemes at word boundaries for correct pronunciation. Thus there is an
orderly procedure for expressing syntactically varied and arbitrarily precise
ideas in a single compound, and in Sanskrit poetry very long or complex
compounds are used to express rich, often polysemic meaning, with extreme
concision. These powerful methods make grammatical analysis of compounds
complex, but luckily, as an extension of Sanskrit compounding, positional
notation is linguistically elementary. Number words are built by combining
simple nominals, so the additional complexity generally associated with
compounds does not occur. Unlike Sanskrit as a whole, which has a mostly
free word order, word position is relevant for complex compounds, so the use
of number word position to determine place value is a straightforward
extension of standard usage.

What is remarkable about the positional words is the use of ordinal place in
the number word as parametric data for a linguistic construction. The counted
places in the word symbol itself—the ‘‘1s’’, ‘‘10s’’ position, and so on, as features
of the compound form—are used to define number word meaning. For com-
parison, English syntax marks time or its passage through, among other devices,
the past tense, verbal auxiliaries, and participles, as in She proved the theorem,
He will wash the car, or The argument is falling apart. These constructions are
useful because we can associate them with pragmatic conceptions of time and
event occurrence. Different languages use grammar to mark different features,
so while English happens to grammaticalize time using tensed verbs, Chinese
does not, and so uses other means to express temporal distinctions. In some
languages, aspects of a perceived scene, say whether a described object is
directly visible or not, is grammatically marked; other languages use syntax to
indicate the quality of knowledge expressed, such as whether one experienced
an event directly or learned of it second-hand. Gender marking in aboriginal
languages can codify cosmological classifications reflecting a conceptual model
of culturally linked categories. Even the apparently simple use of prepositions,
like a ring being on a finger, or an apple being in a bowl, rely on schemes for
spatial relations: Korean prepositions, for example, can express how ‘‘tight’’ or
‘‘loosely’’ objects fit together, a relation not directly marked at all in English.
Through the perception of linguistic form, positional number words rely on
cognitive models as in other types of syntactic marking.

For number words, what gets perceived is language itself, described using
an additive arithmetic which is more elementary than the multiplicative rule
being defined. Additive number word constructions, as in two million (+) three
hundred thousand (+) four hundred (+) twenty five are common in many

502 J. Kadvany

123

languages, perhaps because natural language syntax of many types can easily
incorporate additive constructions. For large numbers, additive constructions
also quickly become inefficient beyond the highest named unit, like trillions,
and difficult for even modest calculations. The problem is that notation size
eventually grows in proportion to the magnitude of the number named,
making it necessary to count about as high as the number just to label it.
Number systems can always be improved to overcome such difficulties,
including the addition of higher number units. The genius of positional
number words is that, like positional notation generally, higher number units
are automatically generated by the positional rule. The exponential increase
in number values so represented is perhaps the acme of Sanskrit compactifi-
cation. Multiplicative rules are not typical of natural languages and the mere
existence of positional number words in Sanskrit, regardless of computational
inconvenience, signals an unusual transition between linguistic and mathe-
matical recursion. The driver of multiplicative recursion is perceived data
about the symbol to be interpreted, and that is the revolutionary break-
through. Used perhaps in all languages to mark varied syntactic or semantic
roles, position is here used to make a numeral’s place a parameter for com-
puting a number word’s value. Instead of some folk model of spatial organi-
zation, the passage of time, the speaker’s knowledge, or an ancient cosmology,
positional notation mobilizes a cognitive model directed at the perceived
layout of the symbol, guided by additive arithmetic already available in the
language. The utilization of simpler arithmetic to count position also means
that the conception is well-founded, i.e. not viciously circular.

For us there are two basic questions. One is how such an idea could arise as
a linguistic and cognitive phenomenon. The second is what happens compu-
tationally when additive non-positional notations are improved to multipli-
cative positional notations. The remainder of this section addresses the first
question, and the next two sections address the second.

The historian Franz Woepcke proposed in 1863 that positional number
words originated as a linguistic improvement over non-positional number
words. Woepcke’s idea was that positional number words originated by
recognizing redundant patterns specific to Sanskrit non-positional number
words. Following are the building blocks for such a grammatical construction.
In just what order the developments might occur is less important than their
eventual confluence.

A first step is the use of Sanskrit names for powers of ten as number units.
In English and many other languages, the creation of number units often
proceeds in groups like millions, billions, trillions. For these, succeeding units
increase by more than one power of the base. So a (US) billion is not 10
million, but 1000 million, and a trillion is 1000 billion. To create number words
involving intermediate powers we say one hundred and six million or sixty-five
billion. Lacking terms for intermediate powers, like 107 or 108, a ‘‘hybrid’’
name is used to construct the desired value. The approach is common and
leads to additive systems mixing bounded multiplications within addi-
tions, dictated by the units skipping intermediate powers; these bounded

Positional Value and Linguistic Recursion 503

123

computations will return in the analysis below. The benefit of increasing by an
increment such as 103 is that successive number words, such as quadrillion
and quintillion, advance that much farther along the number line. A pattern
like -illions can become psychologically salient with use, and it is easy to
associate names with powers 103n. But that advantage can wrongly focus
attention on a linguistic paradigm which does not easily generalize into var-
iable powers. There is nothing wrong with skipping powers of ten, or any other
rule. But if the underlying task is to automate the lexical formation of number
units, such as millions, billions, trillions, then that iterative process of language
change has itself to be suggestive of a new procedure.

Something different than the million–billion–trillion paradigm appeared in
India before the positional breakthrough. First, individual powers of 10, like
1011, 1012, 1013, sometimes with powers in the 100s, were given arbitrary
names, rather than a following a linguistic illions-like pattern, or any linguistic
pattern at all. In addition to the use of arbitrary names, there were names for
all powers to around 1017, with no powers skipped, as happens from millions to
billions. Examples include padma (109), kharva (1010), nikharva (1011),
mahāpadma (1012), shanka (1013), samurda (1014), madhya (1015), antya
(1016), parādha (1017). Beyond 1017 there were names for various high powers
(10140 = asa _nkhyeya is ‘‘innumerable’’), perhaps developed for special prob-
lems like counting the number of ‘‘atoms’’ in the universe, and similar to the
problem of Archimedes’ Sand Reckoner. His answer [(108)10 8̂]10 8̂ was a
myriad–myriad units of the myriad–myriad-th order of the myriad–myriad-th
period. In the third century Lalitavistara, the young Buddha is reported to
have demonstrated his prowess by enumerating names for powers up to what
we would calculate as 10421, apparently without positional units. Because
names of powers are arbitrary and numerous, they would initially be harder to
learn than names following an -illions-type pattern. But the effort is com-
pensated by hypercompact compounds suitable for versification and formed
using ingrained compounding techniques. Assuming that many numbers
actually needed fell below 1018, a large magnitude for many purposes, the use
of names for all individual powers below 1017 meant that up to this limit,
numbers could be expressed uniformly using an additive rule and no ‘‘hybrid’’
multiplications. In English a bounded multiplication five hundred million is
used because no name exists for 108. The Sanskrit compound could use the
exact power needed, such as five nyarbuda, so to speak, for 5 · 108. With
names for all the powers, say to 1018, ‘‘coefficients’’ needed to express a
number could be limited to 1 fi 9, or 0 fi 9 if zero was known. Using a com-
bination of new and old to emphasize the way in which the compounds would
be perceived, 3,682,439 could be additively expressed as

(�) 9 and 3 da�sa and 4 �sata and 2 sahasra and 8 ayuta and 6 laks:a and 3 prayuta

9 3 4 2 8 6 3 (= 3,682,439)

The and (Sanskrit ca) would generally not appear because compounding
eliminates it, and then sandhi rules join phonemes at word boundaries. The

504 J. Kadvany

123

and/ca is a reminder that the value uses multiplications by 0 fi 9 and then
additions; powers were also often listed in descending order. Woepcke’s
conjecture comes down to the perceptual saliency of number words like (�), in
which names for powers are expressed without complicating coefficient cal-
culations. Because of the many substitutions possible, arbitrary names for high
powers implies that names for number units take on the role of formal place-
holders or grammatical ‘‘slots.’’

If a zero is needed, say for 205, the 101 place could be left unsaid, the verbal
equivalent of the positional blank space used by Babylonians before their
zero. Powers were arranged in ascending or descending order, and not listed
freely like colors or animals, even though named powers make permutations
possible. Hence the ordering of named powers would make it apparent
whether a particular power was present or not. Uses of numeric zero occur in
Pi _ngala as early as 200 BC, but only centuries later does a zero appear
explicitly in positional numbers. Hence it is unknown whether a zero-type
coefficient occurred in the oldest number words, and probably did not. Since
number words numbers were likely unused for calculation, ‘‘skipping’’ a
coefficient had no computing implications. However, in reciting, say, 3670832,
with a single skipped power, it is helpful to mark the zero power rather than
saying nothing, just because the listener might guess a power was missed due
to fatigue, inattention, or no expectation of a ‘‘blank.’’ That wouldn’t be
needed for 1000002, just as we say one million and two; but for 3670832 or
10101010 marking skipped powers is more useful. In this way, a spoken zero
may have been devised to complete the positional mechanism. That only
means using a word to mean none of a power, and the positional zero was
eventually named by words like �sūnya/void, abhra/sky and ambara/space, just
as names for 1 fi 9 were evocative of concepts, deities or other memorable
entities. With multiple choices possible, names for zero too would also be
perceived as formal coefficients just like names for 1 fi 9.

The zero then is an additional innovation, but not more essential than the
other positional building blocks: arbitrary named powers, their ordering, and
avoidance of hybrid coefficients. With those mastered techniques, the multi-
plicative schema implicit in the non-positional number word system is ready
for grammaticalization by a positional rule. That is the modern formulation of
Woepcke’s conjecture: patterned non-positional usage, as in (�), can be
reanalyzed into a rule which generalizes the information provided by the
named powers and their coefficients. Since the names of powers of 10 are
arbitrary, their role is just to fill a slot marking the power of ten. But then the
named powers are redundant, since the power is also identified by its place
in the compound: if any name is acceptable, none is essential. With no
‘‘hybrid’’ coefficients, names for 0 fi 9 alone are effectively positional when
interpreted as coefficients for powers of ten. The names for powers are can-
didates for linguistic grammaticalization because they merely fill variable slots
dependent on an overpracticed compounding form. This is the cognitive
means by which a perceived feature of the compound symbol could automate
the potentially infinite formation of higher number units by finite means.

Positional Value and Linguistic Recursion 505

123

For comparison, another grammaticalization example is the formation of
English auxiliaries, such as will as a future tense auxiliary, a bleached-out
version of its earlier, Old English meaning as an ordinary verb of promise or
intention. We can now say the car will work after I fix it or my dog will fetch the
bone, without meaning that the car or dog wills or intends anything at all. The
abstraction was a natural one based on general usage and a need to streamline
future-oriented speech, especially given the loss of Old English inflections
through which tenses were expressed. Similar changes created modal auxilia-
ries like must, should, can. Today these have special syntactic roles, like not
taking direct objects, while they formerly behaved like ordinary verbs. The
changes from content to function words occurred over many years, were not
the product of conscious invention, and were influenced by other shifts in
English usage, especially pronunciation. Such complexity and indeterminacy
can be typical of grammaticalization, so that new functional patterns or words,
like the many English prepositions, are the combined product of changes in
sound, word, and sentence patterns. Similar conditions for linguistic change
apply to number word formation. Sanskrit sound patterns are relevant because
to eliminate named powers, it has to be possible to create euphonious number
words using only names for 0 fi 9. That is no obstacle because of the free choice
of multiple number words for 0 fi 9, and Sanskrit was already optimized for
large, compact compounds. Similarly, word position needs to determine
numeral valuation, but inside compounds position already was used to
determine meanings of even moderately elaborate verse forms. It would be
perceptually salient that the numerical information conveyed by number
power words is also represented by word position in the sound pattern.

Therefore the change from (*) to a positional rule would rely on mental
models like those accompanying the formation of will, can or must as function
words, or other grammaticalizations. When language patterns get used to mark
possession, tense, location, speaker attitude, or much else, the pattern is often
motivated by some useful cognitive generalization. For tense that may be a
useful conception of past, present or future, while for possession some notion
of ownership or control. What typically influences grammatical change is some
first-order experience like perceptions of time or place, features of the topic or
object of interest, or the speaker’s conversational role. With positional nota-
tion, language and compounded number words themselves are the perceived
objects, principally through our linguistic behavior in structuring ever-higher
number units. That behavioral process is abstracted in grammar by taking a
number position to mark a higher number unit. One can literally observe, and
describe in a rule, how a new number unit, as a power of 10, is constructed by
appending additional individual number words to an existing number, and how
the value of the new word is recursively determined from its subwords.

Such cooperation of pattern and perception is also characteristic of historical
language change, and is here mobilized to create a new mathematical tech-
nique. An association is created between an idealized physical configuration of
the numeral symbol and new counting procedures. There a transfer of function
from the perception of symbols—described in terms of first position, last

506 J. Kadvany

123

position, symbol to the left, symbol to the right, symbol length, and so on—to
arithmetical properties of numbers. In positional value the transfer occurs by
making a variable feature of the number symbol a parameter of its interpre-
tation. The Sanskrit number words just make it easier to see how the per-
ception of symbols is transformed into an arithmetical abstraction which then
facilitates more arithmetic, computation and mathematics. As with other cases
of grammaticalization, the change is motivated by the same efficiency and
increased precision mandated by the sūtra tradition. The representational
improvement was spectacular, as decimal positional notation uniformly rep-
resents 10n numbers using just n places. Pān: ini’s grammar was likewise
described as pouring an ocean into a cow’s hoof.

We therefore have the desired linguistic and cognitive characterization of
positional number words: they are a grammaticalization of an additive non-
positional notation using arbitrary names for powers of ten. The next step is to
assess the difference in computational power using additive and multiplicative
rules.

Pān: ini Arithmetic

We now give, as a thought-experiment, algorithms, proofs and computations
expressed in two natural language fragments which are also formal arithmetic
theories. In one, the only arithmetical operation is addition, simulating the
formation of non-positional number word patterns which ‘‘look like’’ posi-
tional numbers, but without the full multiplication needed to define a uniform
positional rule. That weaker theory is called additive Pān: ini arithmetic, or
ADDPA. It represents all additive notations and the computations possible
with addition as the basic operation. The second theory is called multiplicative
Pā _nini arithmetic, or MULTPA, which extends ADDPA by adding multiplica-
tion axioms. That makes it possible to define number units, positions, powers,
and other positional features not definable using only additive rules but which
are needed to make significant use of positional numerals.

The procedure for creating these oral arithmetics is straightforward. We
saw above that Pān: ini grammar can be used to represent any formal system
using either auxiliary symbols or Pān: ini’s methods for symbol lists, category
formation and recursive definition. Here two modern formal theories are
identified with oral representations in which the Sanskrit number word par-
adigm gets extended to an entire formal system. There are ‘‘formula-words,’’
‘‘axiom-words,’’ ‘‘proof-words,’’ ‘‘computation-words,’’ and everything-else-
words as needed for that purpose. Proofs and computations in ADDPA and
MULTPA are derivations composed from these expressions, just as in modern
logic or Pān: ini grammar, but relying on spoken rather than written language
for symbol definition, formation and manipulation. Because these theories are
thought of as directly expressed in natural language, we assume that compu-
tational comparisons between ADDPA and MULTPA reflect cognitive
models at work in the grammaticalization of position and multiplicative rule

Positional Value and Linguistic Recursion 507

123

formation. The definitions of ADDPA and MULTPA make it straightforward
to compare what can be computed or proved using only addition versus
addition combined with multiplication.

Steps (a) fi (e) below sketches the codification of the two theories as spo-
ken Sanskrit. One can imagine a programming language in which basic sym-
bols are identified with phonemes, morphemes, or words, and with other
expressions generated by linguistic rules which happen to be computations.
Such correspondences can be established by fiat, but as noted, we assume that
the formation of a multiplicative rule requires cognitive and linguistic skills as
described earlier.

(a) Add to Pān: ini grammar symbols needed for a first-order theory for arithmetic,

such as ¯, ˜, =, „ , x, y, z, 0, 1, (,), ¢, $, ", �, &, fi , ~. Similar to positional

number words, these symbols are represented by selected or artificial Sanskrit

words or other markers.

(b) Add rules defining categories such as variables, constants, connectives, terms,

formulas, equations, and sentences. The categories are defined separately for

MULTPA and ADDPA reflecting whether ¯ and ˜, or only ¯, are used.

(c) Add rules identifying non-logical axioms. MULTPA uses rules for ¯ and ˜,

while ADDPA uses only rules for ¯. Rules for ADDPA define addition

recursively in terms of ‘‘add 1,’’ and multiplication is recursively in terms of

addition in MULTPA. These following axioms for ADDPA would be translated

into Sanskrit word forms: 0 ¯ 1 ¼ 1; "x(x ¯ 1 „ 0); "x(x „ 0 fi $y

(y ¯ 1 ¼ x)); "x"y (x ¯ 1 ¼ y ¯ 1 fi x ¼ y); "x(x ¯ 0 ¼ x); "x"y (x ¯
(y ¯ 1) ¼ (x ¯ y) ¯ 1); "x"y (x ¼ y � $z(z ¯ x ¼ y � z ¯ y ¼ x)); Induc-

tion schema for formulas u(x) using ¯ and with free variable x: u(0) & "x

(u(x) fi u(x ¯ 1)) fi "xu(x). The Induction schema ensures that ADDPA

is the strongest possible first-order additive theory and that any additive

notation is definable in it. MULTPA is defined by the ADDPA axioms

plus axioms recursively defining multiplication from addition: "x(x ˜ 0

0); "x"y (x ˜ (y ¯ 1) ¼(x ˜ y) ¯ x).

(d) Add rules for positional and non-positional number words to fill roles usually

played by symbols 0,…,9. Individual number powers and non-positional

number words can be defined in ADDPA because that theory allows for the

arbitrarily high but bounded multiplications needed for (*). Number word

synonyms can be created by additional axioms like śūnya ¼ abhra, forming

two names for 0.

(e) Add rules of inference for first-order logic using the above axioms for ADDPA

and MULTPA. The two theories are identified with the infinite sets of

theorems provable from their axioms.

Rules (a) fi (e) generate proofs and theorems from the given definitions, just
as Pān: ini grammar generates grammatical Sanskrit as its target. Techniques
for introducing symbols as in (a) are demonstrated in Pān: ini by his lists of
phonemes and other primitives. Definitions such as (b, c) are illustrated by
Pān: ini’s defined categories which he also uses recursively. The positional

508 J. Kadvany

123

numbers of (d) were devised after Pān: ini, but can be defined as compounds
marked as numbers. Positional number words only involve bounded multi-
plications with 0 fi 9, and so can be included in ADDPA. But using them to
multiply, calculate with exponents, or carry out multiplicative algorithms can
only occur in a stronger system like MULTPA. Individual positional number
words can be defined in the weaker system, but no rules which allow their non-
additive features to be exploited for algorithm execution. These relations
between ADDPA and MULTPA make the two theories in combination a good
model for positional grammaticalization. The logical rules of (e) are modern
but still algorithmic, and can be coded using auxiliary symbols. Grammarians
could use such modern rules following the advice of ritual theorists that the
original meanings of mantras need not be known for correct ritual execution.

The memory requirements to recite proofs or computations in oral arith-
metic are considerable. But many theoretical models of proofs and compu-
tation also assume arbitrarily large memory registers, tapes, instruction tables,
or symbol sets. ADDPA and MULTPA are just a different type of idealization.
To make the theories closer to mathematical practice, they could be extended
to describe dust board calculations. Rules could define a dust board in terms
of cells, rows, and columns, and then dictate how data is entered, modified, or
deleted from various relative or absolute locations as directed by oral
‘‘commands.’’ A procedure for converting phonemic information to dust
board representations, such as standard numerals 0,…,9, could be defined,
with computations or proofs still spoken out as they are written. An abstract
dust board is potentially infinite, but so are the compounds, sentences and
other constructions for the oral language, or the semi-infinite tape and
expressions of a modern Turing machine. Linguists as early as Pantañjali in
the third century BC recognized that the point of a grammar was to codify
linguistic generality using limited rules, so this idealizing assumption is not
anachronistic. As noted above, even before the Indian linguists recursive
ritual descriptions allowed potentially infinite behaviors composed of altar
constructions, marches, chants, and oblations.

Where we really need a modern perspective is in the enumeration of all
proofs or computations, as through (e) above; Pān: ini, recall, has no universal
procedure. With that notion we can compare the two oral arithmetical theo-
ries in terms of their computing power.

Language Change in Pān: ini Arithmetic

ADDPA and MULTPA are good proxies for the computational power afforded
by non-positional and positional notations respectively. The use of positional
notation presumes multiplication and addition, so some minimal definitional
properties of both operations have to be spelled out as in MULTPA.

ADDPA can represent all non-positional notations, as these use only
additive operations with individually defined number units, such as Roman V,
X, or L, or Sanskrit number words for powers 10n. New units can be used to

Positional Value and Linguistic Recursion 509

123

define further additive notations, and such continued unit formation is the
process automated by a positional rule. The extent of additive combinations in
ADDPA is set by bounded multiplication. Formulas Multn can be explicitly
defined in ADDPA, meaning no additional axioms are required, to represent
multiplication when one multiplicand is always less than a fixed bound: e.g.
Multn(x, y, z) correctly represents a · b ¼ c as long as a is less than 22 n̂ (with
2^n ¼ 2n), with b arbitrary. Non-positional notations like (�) can be defined by
multiplications using bounded coefficients, say 0 fi 9, multiplied against indi-
vidually defined, arbitrarily large units. Since non-positional notations are
built from bounded multiplications and additions, ADDPA includes all of
them. What cannot be arranged in ADDPA is for powers 10n to be defined for
variable n instead of individually fixed numerals; similarly the formulas
Multn(x, y, z) are defined one-by-one in ADDPA and not by a single master
formula. In ADDPA, no formula can uniformly define positional numerals in
terms of successively increasing powers, nor other basic properties making use
of arbitrary positions. This limitation corresponds to the functional ‘‘slots’’
associated with number word grammaticalization.

Such uniform definition can be accomplished in MULTPA, one of the
simplest systems in which positional properties can be defined. Positional
numerals do not define multiplication, but they rely on it, even for such a basic
notion as a ‘‘number unit’’ defined in terms of powers. Hence variable powers,
and number units as arbitrarily high powers, represent an increase in com-
puting power measured by sentences provable in MULTPA but not its weaker
subtheory ADDPA. Such provability is formally equivalent to computation.
ADDPA and MULTPA are also natural language fragments, so this computing
increment is introduced with the grammaticalization forming positional
number words. Pān: ini’s metalinguistic and derivational techniques rely only
on affixing and other grammatical devices already used in Sanskrit, so
everything in sight is a grammatical construction from natural language.
Hence the computational improvements occurring in MULTPA compared to
ADDPA should be attributed in part to cognitive capabilities making multi-
plicative rule formation possible.

The large computational increase from ADDPA to MULTPA is due to
universal computation being representable in MULTPA but not ADDPA.
Axioms for MULTPA, including general rules for logical inference, imply a
single formula T(x, y, z), using ¯ and ˜, enumerates all algorithmic compu-
tations. If A(i) ¼ j is an algorithm on the natural numbers (with no j for some i
possible), there is a numeral eA such that T(eA, i, j) is provable in MULTPA if
and only if A(i) ¼ j, where i and j are names for i and j. T(x, y, z) may be
constructed from a simpler formula representing ‘‘after w steps of computa-
tion x on input y, the computation gives result z or is not yet defined.’’ This
formula is not assumed, but can be constructed from the MULTPA axioms
using just first-order logic, while such representation is not possible in
ADDPA. Thus surprisingly little is required in addition to Pān: ini grammar to
represent all algorithms and their computations, showing how close the
combined methods of Indian linguistics and mathematics are to modern

510 J. Kadvany

123

computation: Pān: ini grammar provides the formalism and positional notation
provides the algorithmic power. Positional notation then is more than a
‘‘convenient’’ method of numeric expression. It is defined by two arithmetic
operations, + and ·, which in some of their simplest formulations logically
imply universal computation.

Further differences between MULTPA and ADDPA support the proposal
that the increased representational power is attributable to intentional skills
through which a multiplicative pattern is recognized and expressed as a rule.
First, once · is included, as in MULTPA, functions or categories defined
recursively from + and · can be explicitly defined without further recursive
axioms. In MULTPA, but not ADDPA, the ‘‘elimination of recursion’’ makes
possible explicit definitions for formulas, derivations, proofs, computations and
related categories. Next, ADDPA is decidable, meaning an algorithm AADD(S)
computes whether any additive S is derivable in ADDPA, say AADD (S) ¼ 1 if
S is derivable in ADDPA, and AADD(S) ¼ 0 if not. Formulas S can be coded in
MULTPA as natural numbers, and so AADD can be represented in MULTPA,
but not in ADDPA. Hence a single formula in the stronger theory describes
what can be proven in the weaker additive arithmetic. With AADD, MULTPA

can also prove the consistency of its subtheory ADDPA. Finally, ADDPA is
complete, meaning that for any sentence S limited to the additive language of
ADDPA, either S or ~S is derivable in ADDPA. ADDPA is usually called
Presburger arithmetic for Mojzesz Presburger who proved its completeness
and decidability in 1928. In contrast, in 1931 Gödel showed that many theories
T which, like MULTPA, could represent provability and related notions, were
always incomplete: if T is consistent, a (self-referential) sentence G could be
constructed such that neither G nor ~G was provable in T. Finally, Gödel’s
theorem on the unprovability of consistency, applied to MULTPA, depends on
how provability is represented, making the result ‘‘intensional’’; such linguistic
phenomena are typically symptomatic of intentional roles.

The power of MULTPA comes at a price. In 1974 Michael Fischer and
Michael Rabin proved that any algorithm AADD as described has a minimum
complexity level: there will always be sentences S, with say n symbols, such that
the calculation AADD(S) takes at least 22 n̂ steps. The formulas Multn(x, y, z)
above for bounded multiplication were discovered by Fischer and Rabin
through this work. Thus ADDPA is both algorithmically simple and quite
complex, while MULTPA is strong enough to characterize ADDPA through a
single formula for AADD.

Positional notations do not create universal computation, but the weakest
multiplicative systems for which they are meaningful do. Conversely, the
additive operations often possible in natural languages do not use a notion like
variable number units, and their computational power falls correspondingly
short. In this way, positional notations require cognitive models through which
additive computations are schematized and made the reflective object of new
computations. After all, to state relations among positional symbols requires
abilities to identify and manipulate the symbolic parts in a symbolic whole.
Even if expressed by a single stereotypical example, such as ‘‘the 3 in 351 means

Positional Value and Linguistic Recursion 511

123

3 hundred, but the 3 in 3510 means three thousand,’’ such skill is still required.
Those reflective skills are ultimately also needed to construct an algorithm like
AADD which completely characterize what is provable or not in ADDPA.

Here is another perspective on the cognitive prerequisites for multiplicative
rule formation. Computation can use all manner of symbolic forms, including
written or spoken numerals, logical formulas, computer programs, chess pie-
ces, mantras, knotted ropes, body parts, or notched sticks. The fact that uni-
versal computation has such a simple basis has been discovered repeatedly
through varied approaches to computation and provability. Options may be
more or less efficient, or use different computing resources, but all lead to
mathematically equivalent formulations. Since there is no mathematical
bound to computational idioms, such equivalences represent an informal
assumption about computation generally. That is summarized by the Church-
Turing thesis: all effectively computable functions can be formalized by a
Turing machine or many other formal computational models; no effectively
computable function gets left out of the formalisms, all of which have
equivalent scope, and have related properties of complexity, undecidability
and incompleteness. In this vast computing universe, positional notation is a
cognitive and computational aid for taming exponential growth in algorithm
output and design.

Here is an extended Church-Turing thesis, intended to summarize the claim
that all computation relies on cognition5 and intentionality via symbolic rep-
resentations. The extended Church-Turing thesis is that universal computing
power always relies on cognitive skills at least as strong as those needed to
construct positional number words as a grammaticalization of non-positional
number words. That means that no media, particularly writing, completely
removes the cognitive models used in language change and formation.
Instead, the underlying intentional skills are redescribed through the mathe-
matical idioms characteristic of universal computation. Stated positively, the
capability to reflect on and transform language structure facilitates the
unfolding of computational power from addition to multiplication and uni-
versal computation. For, starting with spoken Sanskrit, Pān: ini extended the
language using its own resources into a formal descriptive metalanguage. The
positional number words, with their multiplicative principle, also can be
constructed in the spoken language via grammaticalization. Combining
Pān: ini’s method with this mathematical content and some additional rules gets
us more or less continuously from natural language to universal computation.
The artifice of Pān: ini arithmetic shows in small steps how to construct a
formal calculus using spoken Sanskrit as the starting point. The intentional
skills needed to construct the grammar, positional notation, and additional
arithmetic also play a role in orthodox formalisms relying on writing or its

5 On cognition, language and symbolic skills see Baron-Cohen (1997). Clark (1996), Gentner &
Goldin-Meadow (2003), Tomasello (1999, 2003); on representational redescription see Karmiloff-
Smith (1992). Turing’s discovery is discussed by Gandy (1995).

512 J. Kadvany

123

derivatives, and where intentional capabilities are taken for granted, dis-
guised, or otherwise occluded.

Positional notation in number word form is constructed by positing a single
rule, much like an axiom, which generates a potential infinity of higher
number units and positionally interpreted symbols. The concept is expressed
through the recursive rule

(��) an….a0 = an · 10n +. . .+ a1 · 101 + a0,

its equivalent, or stereotyped positional examples. The grammaticalization
model suggests that this symbolic pattern relies on the same intentional skills
needed for language use—variously known as species-specific capabilities of
‘‘mindreading’’ or ‘‘theory of mind’’, upon which symbolic skills of many types
depend and whose absence or impairment is even considered empirically
diagnostic of autism. The formation of positional number words relies on
these skills through grammaticalization just as in other instances of language
formation. Since these skills facilitate symbolic manipulation generally, a
natural conjecture is that they enable the increases in computing power
associated with positional notation and related multiplicative procedures.
Historically, expressions remotely like (**) do not occur until the modern era.
But even informal expressions of positional rules, whether in India, or by
Viète, Stevin, and other early moderns, are intended as multiplicative rules
applying to potentially infinite symbolic expressions. Stevin, for example,
advocated positional value to express decimal fractions, .a1a2a3…, which is just
another uniform rule for interpreting a potential infinity of decreasing number
units. What is necessary for the formulation of such concepts, no matter how
expressed historically, are ordinary capabilities of linguistic recursion plus
pattern formation relying on our powerful intentional skills. Mathematical
recursion, in the form of multiplicative and higher arithmetic functions, is
constructed from this linguistic and cognitive basis.

We now turn to the modern theory of computation with this combined
cognitive and historical perspective in mind.

Computation and the Tunnel

Positional notation is the thread connecting ancient Indian mathematics and
linguistics to contemporary computation. Not just because of the notation’s
immense usefulness, but because of another sibling role between mathematics
and linguistics. Regard for generative models in linguistics has arced high and
low since their introduction by Noam Chomsky in the 1950s. But regardless of
one’s views on language and how to model it, Chomsky’s6 generative methods
revived techniques used two millennia earlier by Pān: ini, who is even noted on

6 On Chomsky’s mathematical background see Chomsky (1963), Chomsky & Miller (1963), and
Pullum & Scholz (2006); on his cognitive theories and their influence see Chomsky (1980) and
Gardner (1987).

Positional Value and Linguistic Recursion 513

123

the opening page of Aspects of the Theory of Syntax. Chomsky wanted to
create quasi-axiomatic models for our remarkable linguistic creativity in terms
of the potentially infinite, recursive use of finite resources. Today, many want
more than a descriptive grammar like Pān: ini’s, with claims often made for a
grammar’s cognitive or biological reality. But it is still striking that basic
recursive formalisms should be rediscovered thousands of years after their first
appearance. Using Frits Staal’s apt term, a metaphorical ‘‘tunnel’’7 reaches
from ancient Indian linguistics to the modern theory of formal languages. The
algorithmic methods seem almost to disappear and then emerge a half-century
ago. This unusual recurrence in the history of ideas came about because of the
role played by positional notation in the history of modern mathematics and
mathematical logic.

How Chomsky discovered his entrance to the tunnel is clear. He was expert
in the new methods of mathematical logic, including Post production systems
which he acknowledged as a source for the rewrite rules paradigm. But
Chomsky’s ‘‘Cartesian’’ intention was always to use generative grammars as
models of cognition. Over the years he has proposed various ‘‘universal’’
grammars meant to parameterize or otherwise codify innate options for
human language syntax. The project is thoroughly anti-intentional in that the
use of language for communication is taken as mostly irrelevant to language
structure, acquisition or competence. Hence Chomsky’s mentalist goal was to
model cognition, just minus intentionality, using ‘‘Galilean’’ computational
models of language competence and structure. Grammars described mental
representations whose processing did not fundamentally rely on intentional
skills. The approach was buttressed by arguments that natural language pat-
terns could not be explained probabilistically nor in strict behaviorist terms.
The anti-behaviorist alternative was that mental representations could be
rule-driven generative processes acting on discrete symbols, certainly a radical
perspective at the time for psychology and linguistics.

A modern basis for this cognitive paradigm came not from Emil Post’s
rewrite rules but Alan Turing and the computational model now called Turing
machines and mentioned repeatedly above. In 1936 Turing published his ap-
proach to mathematically precise effective procedures, ‘‘On Computable
Numbers With An Application to the Entscheidungsproblem [decision prob-
lem].’’ For decades reaching back to the nineteenth century, logicians had
devised many kinds of formal or neoformal systems: ones for elementary
arithmetic and geometry, like those of Giuseppe Peano and David Hilbert;
axiomatizations for all of mathematics such as Zermelo-Fraenkel set theory or
Russell and Whitehead’s Principia Mathematica; Gottlob Frege’s first-order
predicate logic; simple propositional logics; and several others. These systems
often demonstrated that some body of mathematical knowledge could be
codified as a certain type of axiomatic or rule-based system, and many relied on
similar procedures involving a recursive definition of a formal language
using generative rules. Hence another motivation, aside from the search for

7 The ‘‘tunnel’’ is from Staal (2006) and ‘‘grammarians of reason’’ below from Goody (1987).

514 J. Kadvany

123

mathematical foundations or novel proof techniques, was to characterize what
a rule-governed ‘‘effective procedure’’ should be at all. In spite of intense
attention to rigor and many alternative approaches, a troubling issue by around
1930 was the absence of an accepted mathematical characterization for the
elementary procedures underlying the construction of formal systems them-
selves, regardless of their specific content or philosophical interpretations. The
consistency of outcomes using different formalisms, and a growing toolkit of
robust methods, suggested some core idea of effective procedure which
remained mathematically elusive. Post’s production systems and Alonzo
Church’s lambda-calculus were part of this quest, and both are essential today
to the theory of programming languages. Turing’s proposal, formulated to
solve a problem in mathematical logic set earlier by David Hilbert (and solved
independently by Church just before Turing), was ultimately recognized
as clarifying and grounding the inchoate concept of rule-based effective
procedure.

Turing’s approach uses a thought experiment about language use. He
imagines a computer, as human calculators were known, following a set of
precise instructions for calculating some arithmetic function using pencil and
paper: a statistical table, predicted tides, equation solutions, logarithmic or
trigonometric values, and so on. Turing wanted to describe the computer’s
actions generically using elementary operations of symbolic manipulation,
such as the erasure and replacement of a single sign. The computer could work
with any finite set of symbols written to a potentially infinite paper tape.
Hence Turing assumed no practical limitation on the computer’s memory or
resources to carry out a calculation, as long as the procedure itself was finitely
specified and fixed. Like Post’s analysis, Turing’s applies to the generic
construction of potentially infinite computations, proofs, grammatical
expressions, or other symbolic products, using finite resources. Turing’s rules
are organized as a table of quintuples ÆS, s, T, t, right/left/sameæ using, in
addition to the finite symbol set, a finite set of auxiliary ‘‘states’’ which control
the task being carried out: if you the computer is in state S and reading symbol
s on the tape, then (i) erase s and replace it with symbol t (possibly s again or a
blank); (ii) set the new state to T (possibly ¼ S); (iii) read the next symbol one
discrete tape ‘‘square’’ to the right, left, or in the same position. Then (iv) find
the quintuple applying to the new state-symbol combination for T and the
next symbol being read; and finally (v) recursively proceed with the instruc-
tions just described. Turing’s quintuples and ‘‘states’’ control the products of
his systems much like Post’s and Pān: ini’s auxiliary symbols.

Turing’s approach was considered definitive, principally as advocated by
Gödel, because his procedures were perceived as quasi-mechanical processes
for manipulating symbols of any type without regard to intended meaning.
No genuine sets, platonic ideas, abstract numbers, or other entities needed to
be assumed as real interpretants of the symbols defined by their functional
role in computations, proofs, productions, or whatever else is generated. Most
saw such actions as mechanistic, and intentional skills clearly are vastly
reduced and regimented. As far as the scribe must identify instances of

Positional Value and Linguistic Recursion 515

123

discrete symbols as identical or different, and apply rules organized as table
entries, some basic cognitive skills are still at work. Turing regarded auxiliary
states as proxies for the computer’s ‘‘state of mind,’’ and Saussure’s advice to
mind the ‘‘disguise’’ of writing and its apparent autonomy is here well-taken.
Notwithstanding such tacit knowledge, it was judged that symbolic writing
played no special role in Turing’s thought-experiment. It did not matter
mathematically whether symbols were represented as written or in other
forms, how the instruction table was laid out, or instructions executed.
Ultimately this judged independence of symbolic media and behavior became
the distinction between software and hardware. That interpretation was taken
up by cognitivists following Chomsky’s lead, for Turing’s model suggested that
rules could be realized by some unspecified biological mechanism. Prima
facie, Chomsky had a profound alternative to the behaviorist rejection of
mental phenomena involving symbolic processing.

Whether that approach to linguistic skills is ultimately right or wrong, the
variability of computing media and symbol formation is a deeper aspect of the
tunnel going beyond the formal correspondences of Pān: ini’s, Post’s and
Chomsky’s rewrite rules. Pān: ini’s expression of his grammar as oral sūtras is a
marvelous illustration that computational procedures can be of what you like
in what media you like. His grammar is the greatest example of a rigorous
computational system in non-written media before the electronic age; as
shown earlier, it can even be conceived as generating an arithmetical and
proof system via additional production rules and auxiliary symbols. As far as
content goes, Turing’s scribe does not have to know what her symbols mean,
just as Vedic ritualists8 claimed that mantra interpretation was unnecessary,
only procedural correctness.

Turing’s great insight was that his description for the operations of a generic
computer T was itself an effective procedure. The description of computation as
recursively processing quintuples ÆS, s, T, t, right/left/sameæ could itself be
codified using a Turing machine description, demonstrating that the new
computing idiom could be used as its own metalanguage. Neither Pān: ini, Gödel
nor others achieved this metalinguistic task with such transparency. Turing’s
universal machine U instructs a single scribe like other Turing machines, taking
as tape input the instruction table of any Turing machine T, plus any input I to
be calculated by T. Turing machines read linear lists, not tables, so the data is
laid out with auxiliary markers, much like Pān: ini’s �Sivasūtras. U simulates T by
following the directives of T’s table applied to I, using marked-out work areas to
track T’s ‘‘current symbol,’’ ‘‘current state,’’ and intermediate calculations.
Turing could quickly and negatively solve Hilbert’s decision problem using the
universal machine. Today, modern computing languages like Fortran, C, Basic
or Java are used in an environment of compilers, interpreters, and operating
systems which function together as a universal machine. Programming rules are
configured as data, and are interpreted and executed using a single master
procedure, just as Turing envisioned.

8 On Vedic ritual and Sanskrit grammar see Staal (1983, 1990) and Renou (1941).

516 J. Kadvany

123

Universal computation returns us to the tunnel and Chomsky’s use of
generative formalisms to represent natural language syntax. Natural language
complexity is not a reflection of computational strength, but rather a mosaic of
semantical and syntactic dependencies. So for language description, ancient or
modern generative grammars are much weaker than needed for universal
computation. Full-blown ‘‘transformational’’ grammars can represent uni-
versal computation, and so were seen as too powerful for representing natural
language structure. That observation is consistent with our perspective that
positional notations and multiplicative procedures are just beyond the
recursive forms typical of natural languages. But Chomsky’s systems followed
the formalization of algorithmic processes by Turing, Gödel, Church, Post and
others. So the generative program had to limit the computational power
inherent in the mathematics motivating various approaches to formalization,
whether in pure logic, set theory, arithmetic, or the generic systems studied by
Turing and Post. Chomsky himself constructed a hierarchy of grammars below
universal computation which is still fundamental to programming language
theory and design.

In contrast, none of the pioneers in mathematical logic would have ques-
tioned the role of multiplicative and more complex algorithmic procedures in
mathematics of any kind. By the late nineteenth century, great controversies
surrounded the infinite, methods of proof involving the real numbers, and the
scope of logic. But arithmetical algorithms were taken as an ubiquitous and
essential feature of algebra, geometry, analysis, number theory, and other
specializations. Such mathematics became possible through several innova-
tions. One was the generalization of algebraic techniques to all kinds of
mathematical objects defined at varying levels of abstraction. Also needed
were axiomatic methods and refined proof methodology. And another ubiq-
uitous technique is positional notation. A modern theorem selected at random
will have in it or some nearby lemma a role for multiplicative arithmetic
applied to integer dimensions, numerical indices, the n-fold composition of
functions, recursive approximations to infinite sums, or much else. For good
reason, Pierre-Simon de Laplace wrote in 1795 that

It is India that gave us the ingenuous method of expressing all numbers by
the means of ten symbols, each symbol receiving a value of position, as well
as an absolute value; a profound and important idea which appears so
simple to us now that we ignore its true merit, but its very simplicity, the
great ease which it has lent to all computations, puts our arithmetic in the
first rank of useful inventions, and we shall appreciate the grandeur of
this achievement when we remember that it escaped the genius of Archi-
medes and Apollonius, two of the greatest minds produced by antiquity.

Here then is the route through Turing’s tunnel. The mastery of positional
algorithms, along with other innovations, made possible the computational
mathematics which logicians took as their objects of interest. While for Indian
mathematics, the order of discovery from grammar to computation was just
reversed from modern times. The Sanskrit grammarians first discovered

Positional Value and Linguistic Recursion 517

123

methods for representing exact recursive procedures by modeling empirical
languages, building on the techniques of ritual theorists. Indian mathemati-
cians did not need the formalisms of Indian grammar, while Indian gram-
marians, as today, did not need algorithmically strong procedures to model
natural language. But they did need formalisms. In contrast to modern logi-
cians, they devised exact methods for procedural analysis without experience
with multiplicative arithmetic and its algorithms. Starting with their data of
spoken Sanskrit, and motivated by techniques of ritual description, the ancient
grammarians directly created methods to describe generative patterns in
phonology, morphology and syntax.

The formal-empirical grammars were then legitimately seen as standards of
procedural exactness, with influences ranging from the Laws of Manu to the
Kāmasūtra. Following the oldest grammatical theories came the discovery of
positional notation and its computing power, even as that power was not fully
understood. There was also no explicit conception, as there is today, of the
connections between grammatical formalisms and mathematical algorithms,
particularly proof procedures. To make this connection took centuries,
involving new roles for axiomatics, foundational ‘‘crises,’’ and much else. But
one prerequisite was mastery of a sufficient variety of symbolic and compu-
tational methods to motivate formalist methods. A turning point came with
Viète’s algebra and symbolic philosophy, reinforced by Stevin and others like
John Wallis, for whom positional notation made algebra the ‘‘universal art.’’
Among the innumerable ways to count, positional notation, because of its
efficiency and flexibility, became a primary means for representing recursive
procedures. The adoption of positional notation by Arab mathematicians and
its importation to Europe eventually made universal computation available in
modern mathematics and then modern logic. The arithmetic facilitated by
positional value was correctly seen as essential to modern mathematics, and is
implicit in many of the earliest formal systems, even those of intuitionism. The
generative behavior of human computers and symbolic logicians became the
basis for Turing’s theory of computation.

Thus Pān: ini is to spoken Sanskrit as Turing and other early logicians are to
modern mathematics and early formalisms. Turing did not use a natural
language like Sanskrit for his generative analysis. But he had many examples
of formal systems, most of which assumed positional notation or its equiva-
lent. These systems were the object of Turing’s analysis, and their algorithmic
power implied universal computation through elementary arithmetic. Once
Turing’s analysis clarified the status and generality of effective procedures, it
was possible to focus on weaker systems not intended for arithmetic at all.
Seeing much of this plus Turing’s cognitive implications, Chomsky reversed
the tunnel relative to distant Sanskrit ancestors. But the tunnel was completed
by Turing and other pioneering logicians who in this way are behavioral lin-
guists. Their techniques rely on models of symbol usage or natural language,
notably Turing’s computing scribe, but also Hilbert’s finitary symbols and
Post’s rewrite rules, to model the creations of modern mathematics. For this
they are all grammarians of reason, arithmetic and mathematics.

518 J. Kadvany

123

Acknowledgements I am grateful to the International Institute for Asian Studies for sponsoring my
participation in the 2006 workshop ‘‘The Generosity of Artificial Languages in an Asian
Perspective,’’ and especially to Frits Staal for his continued interest and advice. Jens Høyrup’s
extensive critique of an early draft provided invaluable direction and stimulation. Thanks for
comments or discussion go to Judith Aissen, Martin Davis, Guy Deutscher, Ivor Grattan-Guinness,
Mike Graves, Don Knuth, Peter Pesic; and to Alex Jaker for Sanskrit help.

References

Aitchison, Jean (2001). Language change: Progress or decay? (3rd ed.). New York: Cambridge
University Press.

Bag, A. K. (1975). al-Biruni on Indian Arithmetic, Indian Journal for the History of Science, 10,
174–184.

Barber, Charles (2000). The English language revised edition. New York: Cambridge University
Press.

Baron-Cohen, Simon (1997). Mindblindness: An essay on autism and theory of mind. New York:
Cambridge University Press.

Boolos, George (1979). The unprovability of consistency. New York: Cambridge University Press.
Brinton, Laurel, & Traugott, Elizabeth (2005). Lexicalization and language change. New York:

Cambridge University Press.
Brough, John (1951). Theories of general linguistics in the Sanskrit grammarians. In Staal 1972:

402–413.
Chomsky, Noam (1963). Formal properties of grammars. In Luce et al. 323–418.
Chomsky, Noam (1980). Rules and representations. New York: Columbia University Press.
Chomsky, Noam, & Miller, George (1963). Introduction to the formal analysis of natural

languages. In Luce et al. 269–322.
Clark, Herbert (1996). Using language. New York: Cambridge University Press.
Datta, Bibhutibhushan, & Singh, Avadesh Narayan (1935). History of Hindu mathematics I, II.

Delhi: Bharatiya Kala Prakashan. (Reprinted (2001)).
Davis, Martin Davis (Ed.) (1965). The undecidable: Basic papers on undecidable propositions,

unsolvable problems and computable functions. Hewlett, New York: Raven Press.
Davis, Martin Davis, Sigal, Ron, & Weyuker, Elaine (1994). Computability, complexity, and

langauges: Fundamentals of theoretical computer science (2nd ed.), New York: Academic Press.
Deutscher, Guy (2005). The unfolding of language. New York: Metropolitan Books.
Emch, Gerard, Sridharan, R., & Srinivas, M. D. (Eds.) (2005). Contributions to the history of

Indian mathematics. New Delhi: Hindustan Book Agency.
Enderton, Herbert (1972). A mathematical introduction to logic. New York: Academic Press.
Fischer, Michael, & Rabin, Michael (1974). Super-exponential complexity of Presburger arithmetic.

SIAM-AMS Proceedings, No. 7, American Mathematics Society, Providence, R.I., 27–41.
Gandy, Robin (1995). The confluence of ideas in 1936. In Rolf Herken (Ed.), The universal turing

machine: A half-century survey (2nd ed.). New York: Springer-Verlag.
Gardner, Howard (1987). The mind’s new science: A history of the cognitive revolution. New York:

Basic Books.
Gentner, Dedre, & Goldin-Meadow, Susan (Eds.) (2003). Language in mind: Advances in the

study of langauge and thought. Cambridge: MIT Press.
Goody, Jack (1987). The interface between the written and the oral. New York: Cambridge

University Press.
Ifrah, Georges (2000). The universal history of numbers: From prehistory to the invention of the

computer. (David Bellos et al. trans.). New York: John Wiley & Sons.
Karmiloff-Smith, Annette (1992). Beyond modularity: A developmental approach to cognitive

science. Cambridge, MIT Press.
Keller, Agathe (2006). Expounding the mathematical seed: A translation of Bhāskara I on the

mathematical chapter of the Āryabhatı̄ya I, II. Boston: Birkhäuser.
Klein, Jacob (1936). Greek mathematical thought and the origin of algebra. (Eva Brann trans.

1968). New York: Dover (Reprint (1992)).

Positional Value and Linguistic Recursion 519

123

Luce, R. Duncan, Bush, R., & Galanter, E. (Eds.) (1963). Handbook of mathematical psychology
(Vol. II). New York: John Wiley & Sons.

Minsky, Marvin (1967). Computation: Finite and infinite machines. New York: Prentice-Hall.
Nayar, B. K. (1975) al-Biruni and science communication in Sanskrit. Indian Journal for the

History of Science, 10, 249–252.
Pullum, Geoffrey, & Scholz, Barbara (2005). Contrasting applications of logic in natural language

syntactic description. In Petr Hájek, et al. (Eds.), Logic, methodology and philosophy of
science: Proceedings of the twelfth international congress (pp. 481–503). London: King’s
College Publications.

Renou, Louis (1941). Les connexions entre le rituel et la grammaire en Sanskrit. In Staal 1972 :
435–469.

de Saussure, Ferdinand (1915/1959). Course in general linguistics. (Wade Baskin trans. C. Bally
et al. (Eds.)). New York: McGraw-Hill.

Sharma, Rama Nath (1987). The As:t: ādhyāyı̄ of Pān: ini I: Introduction to the As:t: ādhyāyı̄ as a
grammatical device. New Delhi: Munshiram Manoharlal.

Staal, Frits (Ed.) (1972). Reader on the Sanskrit grammarians. Cambridge: MIT Press.
Staal, Frits (1983). Agni: The Vedic fire ritual I, II. Delhi: Motilal Banarsidass (Reprint (2001)).
Staal, Frits (1988). Universals: Studies in Indian logic and linguistics. Chicago: University of

Chicago Press.
Staal, Frits (1990). Ritual and mantras: Rules without meaning. Delhi: Motilal Banarsidass.
Staal, Frits (2006). Artificial languages across sciences and civilizations. Journal of Indian

Philosophy, 34, 87–139.
Tomasello, Michael (1999). The social origins of human cognition. Cambridge: Harvard University

Press.
Tomasello, Michael (2003). Constructing a language: A usage-based theory of language acquistion.

Cambridge: Harvard University Press.
Turing, Alan (1936). On computable numbers with an application to the Entscheidungsproblem.

In Davis 115–153.
Woepcke, Franz (1863). Mémoire sur la Propagation des Chiffres Indiens. Journal Asiatique, Sixth

Series, 1, 442–529. In Fuat Sezgin (Ed.), Franz Woepcke, Études sur les Mathématiques Arabo-
Islamiques (Vol. 2). Frankfurt: Institute for the History of Arabic-Islamic Science and the
Goethe University, 1986.

Young, Paul (1985). Gödel theorems, exponential difficulty and undecidability of arithmetic
theories: An exposition. In Anil Nerode, & Richard Shore (Eds.), Recursion theory:
Proceedings of symposia in pure mathematics (Vol. 42). Providence: American Mathematical
Society.

520 J. Kadvany

123

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

