
D2007: Object Oriented Programming in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 1

Object Oriented Programming
in True BASIC

by Thomas E. Kurtz
Co-inventor of BASIC

What is OOP?
Object-Oriented Programming, or OOP for short, is the latest and hottest
technique that is supposed to revolutionalize programming. Immense
improvements in productivity are claimed, through reusability of software.

One recalls the introduction of Structured Programming in the 1970’s. Getting rid
of “spaghetti code” was a major contribution, but, unfortunately, programming
productivity in the main did not markedly improve.

The productivity gains for OOP depend on the size and nature of the project -- the
larger the project the more important are any gains -- a sensible discussion is
beyond the scope of this note. But with respect to True BASIC, I do want to make
two assertions: first, you can achieve most of the benefits of OOP through proper
use of True BASIC MODULEs; second, using modules (i.e. True BASIC’s OOP
tool) makes it possible to manage much larger programming projects comprising
10,000 or more lines of code.

So, what is OOP, really. We might facetiously define it as anything that you can
do in C++. Seriously, we have heard numerous definitions, but they boil down to
something like this: Data and procedures are encapsulated, and instructions to
and results from operations on the data are communicated to and from the outside
through messages.

The most important aspect of OOP is encapsulation. This means that the ugly
coding details are hidden from the using programmer. The term most often used is
object class. The object class provides a simplified user interface which is often
described as passing messages back and forth, messages that tell the object class
what you want to do with it, and return responses from the object class.

Other concepts often associated with OOP are: inheritance, operator overloading,
and morphology. Inheritance means something like this: Suppose you create a
window using one of the windowing systems, such as X-Windows on Unix. Now
suppose you want to create a second window that is just like the first but a bit
smaller. Inheritance means that you can specify the properties of the second
window without repeating the properties of the first window, but merely by
referring to the first window.

The concept of inheritance is similar to the concept of subtypes in most languages
that allow generalized typing, such as Pascal and Ada. But OOP requires that the
subtyping apply to the procedures that operate on the objects as well.

Some languages, such as Ada and C++, offer the possibility of operator

D2007: Object Oriented Programming in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 2

overloading. We all know what “x * y” means, or do we? If x and y are simple
numeric variables, then I guess we do know what that means. But what if x and y
are vectors? It might then mean the inner product, or it could mean element-by-
element multiplication. The point is, the same symbol could mean different things
depending on the type of the variables. One common instance is found in some
versions of Basic – the operator “+” stands for addition, if its arguments are
numeric, and concatenation, if its arguments are strings.

Still another idea is morphology, which is the concept of overloading applied to
procedures. That is, you can have two procedures with the same name but which
are different, depending on the type of the arguments. For example, in True
BASIC terms, you might want to have two subroutines for sorting lists, one to sort
a numeric list and one to sort a string list, as follows:

CALL Sort (x())

and CALL Sort (x$())

That is, the name of the subroutine is the same but the arguments differ. (Of
course, this is not allowed in True BASIC.)

What you can do in TB
Encapsulation is provided by modules in True BASIC. The subroutines contained
within the module can share variables, provided these variables are named in
SHARE statements. These variables can be numeric or string, simple or arrayed.
SHAREd entities can also include file or channel numbers, such as #3.

Isolation is provided by the fact that SHAREd variables cannot be accessed from
subroutines outside the module.

If you wish to have variables accessible throughout the program, as in Fortran
COMMON, you can do so by including their names in PUBLIC statements.
PUBLIC variables can also be shared, obviously.

Variables that are SHAREd or PUBLIC retain their values between calls to the
subroutines that are using them.

Message Passing in True BASIC is made possible by allowing strings as
arguments to subroutines. Handling strings in True BASIC is easier than in any
other language, since strings are a primitive data type and the language contains
several functions for searching, inserting, etc.

What you cannot do in TB
True BASIC does not provide inheritance. This is because inheritance applies to
data types and subtypes. For example, in Pascal one can define a data type called
day.

type day = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

D2007: Object Oriented Programming in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 3

and then define a subtype called weekday

subtype weekend of day = (Sun, Sat);

A more realistic example is to define a generic kind of window, which might be
quite complicated, and then to define several special kinds of windows whose
properties are those of the generic window plus other properties.

Because True BASIC does not include type declarations, it cannot provide
inheritance. However, the number of uses of inheritance is not so great to put
True BASIC at a distinct disadvantage for typical application programs. (True
BASIC does, however, provide a limited form of inheritance through its COPY
method; see the subroutine Object.)

True BASIC does not allow overloading of operators except in MAT statements
where the keyword MAT reduces the possibility of confusion. That is, if A, B, and
C are two-dimensional matrices, and v and w are vectors,

MAT C = A*B
MAT C = A*v
MAT C = w*A
MAT C = 7*A

* standards for matrix multiplication in the first three cases, and scalar
multiplication in the fourth case. In the second case, the vector v is taken as a
column vector, while in the third case, w is taken as a row vector.

While True BASIC does not allow morphology, not much is lost. Instead of

CALL Sort (x())
CALL Sort (x$())

you have to do something like this:

CALL SortN (x())
CALL SortS (x$())

You can write SortS simply by makeing a copy of SortN, and then making global
editing changes of x to x$. It would take a matter of seconds!

Even with morphology, the programmer must write all versions of the procedure.
For example, inside the sort procedure are statements of the type:

IF x < y then
! Do this if x occurs before y in the collating sequence

ELSE
! Do this otherwise.

END IF

The problem is the symbol “<”. It is obvious what this means with numbers. It is
less obvious what this means when applied to strings. (For instance, it does not,

D2007: Object Oriented Programming in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 4

in True BASIC, mean dictionary order: A, a, B, b. Rather, it means ASCII
character order: A, B, ..., Z, ..., a, b, ..., z, ...) If x and y are more complicated data
structures, such as file records, the programmer must provide the code that
determines the collating order of the file records.

Problems with Number Typing
While number typing (double precision, single precision, long integer, short inte-
ger) is not directly related to OOP, we choose to make a comment about it here.

Coercion is a term applied to the automatic conversion of numbers from one type
to another. For example, in Fortran there are two number types – fixed (integer)
and floating. Unless otherwise specified, numeric variables whose initial letter is
I, J, K, L, M, or N are assumed to be fixed, while other initial letters imply
floating. Only fixed numbers are allowed in DO statements.

Suppose you are computing the average of N numbers. You might do it this way
in Fortran:

DO 10, I = 1, N
10 SUM = SUM + X(I)

EN = N
AVE = SUM/EN

The automatic coercion occurs in the third statement, where a fixed numeric
quantity is converted to a floating numeric value.

Some languages require conversion functions. A typical use in Pascal might be:

en := float(n);

Some languages provide automatic coercion within expressions, as in this
Fortran-like example.

DO 10, I = 1, N
10 SUM = SM + X(I)

AVE = SUM/N

None of this is required in True BASIC because there is only one number type.

Some will counter by saying “Yes, but ...” and following with a discussion of
greater runtime speed with two-byte and four-byte integers, in contrast with
eight-byte IEEE floating point. We concede this, but we challenge you to find real
examples where True BASIC provides unacceptable performance because of its
lack of short and long integer data types.

In fact, True BASIC uses special techniques internally to speed up the FOR loop,
for example. In most cases, the insides of the FOR loop take much more time than
the loop management, even when floating point numerics are used for the loop
management.

D2007: Object Oriented Programming in True BASIC – ©2000, True BASIC Inc. 03784-5428 USA 5

An Example
This example will be of a module that will allow you create, use, and close an
arbitrary number of push-down stacks. The example is simple enough to
understand so that we can concentrate on the technical details.

PROGRAM StackDriver

LIBRARY "StackClass.trc"

OPTION TYPO

DECLARE DEF StackClass$

LOCAL message$

PRINT "Type ? for list of commands."
DO

INPUT prompt "Enter your message: ": message$

IF message$ = "stop" or message$ = "quit" then EXIT DO

PRINT StackClass$(message$)
PRINT

LOOP

END

This driver assumes that the file “StackClass.trc” contains an object class whose
access function is named StackClass$. The input or command message is provided
in the argument message$, and the result, even if an error, is sent back as the
value of the access function. The only limitation due to True BASIC is that the
contents of the stacks must be simple strings.

As far as the user programmer is concerned, she is working with an object class
whose internal details she cannot see, but which provides any number of push
down stacks. This example may seem trivial, but it does illustrate the main point
of object oriented programming – encapsulation.

To emphasize the distinction between using an object, and creating it, we leave
the creation details to a separate note: Creating Object Classes. However, you
should download that note and extract the code contained in it, save it on your
computer, compile it, and run the above access program.

Thomas E. Kurtz, April 17, 2000

Comments or questions to: tom@truebasic.com

