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1: Introduction

One sentence summary: We present an algorithm for quantitatively evaluating hypotheses of

the information present at every part of a model and how this information is combined to

give rise to a particular observed behavior.

A question that all mechanistic interpretability work must answer is, “how well does this

interpretation explain the phenomenon being studied?”. Despite significant recent progress

in mechanistic interpretability, there hasn’t been much work on this question. As a result,

existing mechanistic interpretability work tends to rely on ad-hoc methods to evaluate the

quality of interpretations. For example, in the causal tracing paper (Meng et al 2022), to

evaluate whether their hypothesis correctly identified the location of facts in GPT-2, the

authors replaced the activation of the involved neurons and observed that the model

behaved as though it believed the edited fact, and not the original fact. In the Induction

Heads paper (Olsson et al 2022), the authors provide six different lines of evidence for the

hypothesis that induction heads are the source of in-context learning in transformers, from

macroscopic co-occurrence to mechanistic plausibility.

A natural way to evaluate interpretability hypotheses is via ablations: running the model

on various inputs while replacing intermediate activations with different values (generally

either zero or the empirical mean of the activations) that should not affect the model’s

performance (according to the hypothesis). For example, you might ablate parts of the

model that your interpretation identifies as important and check that this negatively

impacts the model’s performance, or you might ablate other parts of the model identified as

unimportant and check that this has no impact on the model’s performance. Unfortunately,

the methods used to perform ablations are usually ad hoc and limited in the claims they

can verify.
1

The ad hoc nature of existing evaluation methods (including ablations) poses a serious

challenge for scaling up mechanistic interpretability. Currently, to evaluate the quality of a

particular research result, we need to deeply understand both the interpretation and the

phenomenon being explained, and then apply researcher judgment. Ideally, we’d like to find

the interpretability equivalent of property-based testing—automatically checking the

correctness of interpretations, instead of relying on grit and researcher judgment. More

systematic procedures would also help us scale-up interpretability efforts to larger models,

behaviors with subtler effects, or even just to larger teams of researchers. To help with

these efforts, we want a procedure that is both powerful enough to finely distinguish better

1
Generally, for mechanistic interpretations, ablations tend to be naturally suited to evaluate claims

about which components of the model are important for a particular behavior, but not what

information each of the components is processing.
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interpretations from worse ones and general enough to be applied to complex

interpretations.

In this work, we propose causal scrubbing, an algorithm for testing formal hypotheses

about how a particular neural network
2

implements a behavior on a dataset. Specifically,

given an informal hypothesis about which parts of a model implement the intermediate

calculations required for a behavior, we convert this to a formal correspondence between a

computational graph for the model and a human-interpretable computational graph. Then,

causal scrubbing starts from the output and recursively finds all of the invariances of parts

of the neural network that are implied by the hypothesis, and then replaces the activations

of the neural network with the maximum entropy
3

distribution subject to certain natural

constraints implied by the hypothesis and the data distribution. We then measure how well

the scrubbed model implements the specific behavior.
4

Insofar as the hypothesis explains

the behavior on the dataset, the model’s performance should be unchanged.

Unlike previous approaches that were specific to particular applications, causal scrubbing

aims to work on a large class of interpretability hypotheses, including the majority of

hypotheses we’ve encountered over the course of Redwood Research’s interpretability

efforts. By alleviating researchers of the need to manually design ablations, causal

scrubbing can be incorporated “in the inner loop” of interpretability research. For example,

starting from a hypothesis that makes very broad claims about how the model works and

thus is consistent with the model’s behavior on the data, we can iteratively make

hypotheses that make more specific claims while monitoring how well the new hypotheses

explain model behavior. We demonstrate two applications of this approach in later sections:

first on a parenthesis balancer checker, then on the induction heads in a two-layer

attention-only language model.

We see our contributions as the following:

1) We formalize a notion of interpretability hypotheses that can represent the majority

of “natural” mechanistic interpretations;

2) We propose an algorithm, causal scrubbing, that systematically ablates activations

in the network, except those along paths identified as important by the hypothesis;

and

3) We demonstrate the practical value of this approach by using it to investigate

interpretability hypotheses for small transformers trained on two different domains.

4
Most commonly, the behavior we attempt to explain is why a model achieves low loss on a

particular set of examples, and thus we measure the loss directly. However, the method can explain

any expected quality of the model’s output.

3
See the discussion in the “Causal scrubbing induces a maximum entropy distribution”.

2
Causal scrubbing is technically formulated in terms of general computational graphs, but we’re

primarily interested in using causal scrubbing on computational graphs that implement neural

networks.



There are five sections in this sequence:

● In this section, we give a high level overview of causal scrubbing and discuss how it

relates to other work.

● In Motivation, formalization, examples, we give a detailed explanation of the causal

scrubbing algorithm and the reasons for various design choices we made.

● In Causal scrubbing on a paren balance checker, we apply causal scrubbing to

evaluate an interpretation of how a small transformer checks if parentheses are

balanced.

● In Causal scrubbing on induction heads, we use causal scrubbing to study induction

heads on a two-layer attention-only language model.

● Finally, in the conclusion, we talk about what needs to be done before causal

scrubbing can be used for alignment.

While they are written in a sequence, we encourage you to jump between sections if that

would be helpful.

As an aside, if you're interested in trying our methodology in person, apply to [REMIX] by

November 8th!

Related work

Ablations for Model Interpretability: One commonly used technique in mechanistic

interpretability is the “ablate, then measure” approach. Specifically, for interpretations that

aim to explain why the model achieves low loss, it’s standard to remove parts that the

interpretation identifies as important and check that model performance suffers, or to

remove unimportant parts and check that model performance is unaffected. For example, in

Nanda and Lieberum’s Grokking work, to verify the claim that the model uses certain key

frequencies to compute the correct answer to modular addition questions, the authors

confirm that zero ablating the key frequencies greatly increases loss, while zero ablating

random other frequencies has no effect on loss. In Anthropic’s Induction Head paper, they

remove the induction heads and observe that this reduces the ability of models to perform

in-context learning. In the IOI mechanistic interpretability project, the authors define the

behavior of a transformer subcircuit by mean ablating everything except the nodes from the

circuit. This is used to formulate criteria for validating that the proposed circuit preserves

the behavior they investigate and includes all the redundant nodes performing a similar

role.

Causal scrubbing can be thought of as a generalized form of the “ablate, then measure”

methodology.
5

However, unlike the standard zero and mean ablations, we ablate modules by

resampling activations from other inputs (which we’ll justify in the next section).

5
Note that we can use causal scrubbing to ablate a particular module, by using a hypothesis where

that specific module’s outputs do not matter for the model’s performance.

https://www.alignmentforum.org/posts/nqwzrpkPvviLHWXaE/apply-to-the-redwood-research-mechanistic-interpretability
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Causal Tracing: Like causal tracing, causal scrubbing identifies computations by patching

activations. However, causal tracing aims to identify a specific path (“trace”) that

contributes causally to a particular behavior by corrupting all nodes in the neural network

with noise and then iteratively denoising nodes. Whereas causal scrubbing tries to remove

(“scrub away”) every causal relationship that should not matter according to the hypothesis

being evaluated. In addition, causal tracing patches with (homoscedastic) Gaussian noise

and not with the activations of other samples. Not only does this take your model off

distribution, it might have no effect in cases where the scale of the activation is much larger

than the scale of the noise.

Heuristic explanations: This work takes a perspective on interpretability that is strongly

influenced by ARC’s unpublished work on “heuristic explanations” of model behavior. In

particular, causal scrubbing can be thought of as a form of defeasible reasoning: it does not

aim to be a fully valid methodology for automatically explaining a neural network, but it

instead provides a way of evaluating particular considerations.
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2: Motivation, Formalization & Examples

One sentence summary: causal scrubbing quantitatively evaluates a mechanistic

interpretation of a model on a dataset by randomly swapping activations of the model with

other activations that mean the same thing according to the interpretation.

In this section, we’ll,

1) Briefly go over the setup required for causal scrubbing (a behavior function and a

hypothesis to evaluate).

2) Describe the causal scrubbing algorithm

a) An example giving intuition about what replacements of activations a

hypothesis allows

b) The main algorithm

c) A alternate mathematical formulation of causal scrubbing

3) Delve into more details about the setup:

a) Example behaviors

b) Why we use extensional equality, and common rewrites we use

c) Example Hypotheses

d) Why we use resampling ablation

4) Briefly describe the two results we obtained using causal scrubbing, covered in detail

in later sections.

Setup

We assume a dataset over a domain , and a behavior function . We will then

explain the expectation of this function on our dataset, .

Most commonly, we explain behaviors of the form “a particular model gets low loss on a

distribution .” To represent this we include the labels in and both the model and a loss

function in :



Note we can choose both the loss function and to capture a specific behavior – or attempt

to explain “the model gets low loss on the training distribution” in full generality.

We then propose a hypothesis about how this behavior is implemented. Formally, a

hypothesis for is a tuple of three things:

● A computational graph , which implements the function

○ We require to be extensionally equal to (equal on all of )

● A computational graph , intuitively an ‘interpretation’ of the model

● A correspondence function from the nodes of to the nodes of .

○ We require to be an injective graph homomorphism: that is, if there is an

edge in then the edge must exist in .

We additionally require and to each have a single input and output node, where

maps input to input and output to output. All input nodes are of type which allows us to

evaluate both and on all of .

Here is an example hypothesis:

https://www.codecogs.com/eqnedit.php?latex=f#0
https://en.wikipedia.org/wiki/Extensionality
https://www.codecogs.com/eqnedit.php?latex=X#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://en.wikipedia.org/wiki/Graph_homomorphism
https://www.codecogs.com/eqnedit.php?latex=I#0


In this figure, we hypothesize that works by having A compute whether , B

compute whether , and then ANDing those values. Then we’re asserting that the

behavior is explained by the relationship between D and the true label .

We’ll cover hypotheses in more detail in a later section (in addition to examples). A couple of

important things to notice for now:

● We will often rewrite the computational graph of the original model implementation

into a more convenient form (for instance splitting up a sum into terms, or grouping

together several computations into one).

● You can think of as a heuristic
6

that the hypothesis claims the model uses in order

to achieve our behavior. Possibly the heuristic is imperfect and sometimes disagrees

with the label . In that case our hypothesis would claim that the model should be

incorrect on these inputs.

● Note that the mapping has no content; it doesn’t tell you how to translate a value

of into an activation, only which nodes correspond.

6
In the normal sense of the word, not ARC’s Heuristic Arguments approach (forthcoming research).
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https://www.codecogs.com/eqnedit.php?latex=z_1%20%3E%203#0
https://www.codecogs.com/eqnedit.php?latex=z_2%20%3E%203#0
https://www.codecogs.com/eqnedit.php?latex=y#0
https://www.codecogs.com/eqnedit.php?latex=I#0
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https://www.codecogs.com/eqnedit.php?latex=c#0
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● We will call the “important nodes” of .
7

○ Let , be nodes in and respectively such that .

■ Intuitively this is a claim that when we evaluate both and on the

same input, then the value of (usually an activation of the model)

‘represents’ the value of (usually a simple feature of the input).

■ The causal scrubbing algorithm will test a weaker claim based on the

equivalence classes of inputs that agree on the value of . We think

this is sufficient to meaningfully test the mechanistic interpretability

hypotheses we are interested in, although it is not strong enough to

eliminate all incorrect hypotheses.

● Nodes of that are not mapped to by are claimed to be unimportant for the

behavior we are investigating.
8

Causal Scrubbing

This section contains three subsections which explain causal scrubbing in different ways:

1) An informal description of which activation-replacements a hypothesis implies are

allowed. This contains many diagrams, and is a helpful intuitive introduction to the

‘main idea’ of causal scrubbing

2) The pseudocode algorithm which implements causal scrubbing

3) A mathematical formalism which constructs a distribution over inputs to the

treeified model.

Different readers of this document have found different explanations to be helpful, so we

encourage you to skip around or skim some sections.

Our goal will be to define a metric by recursively sampling activations that

should be equivalent according to each node of the interpretation . We then compare this

value to . If a hypothesis is (reasonably) accurate, then the activation

replacements we perform should not alter the loss and so we’d have

. Overall, we think that this difference will be a reasonable proxy

to the faithfulness of the hypothesis.
9

9
We have no guarantee, however, that any hypothesis that passes the causal scrubbing test is

desirable. See more discussion of counterexamples in a later section in this sequence.

8
In the appendix we’ll discuss that it is possible to modify the correspondence to include these

unimportant nodes, and that doing so removes some ambiguity on when to sample unimportant

nodes together or separately.

7
Since c is required to be an injective graph homomorphism, it immediately follows that c(I) is a

subgraph of G which is isomorphic to I. This subgraph will be a union of paths from the input to the

output.
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What activation replacements does a hypothesis imply are

valid?

Consider a hypothesis on the graphs below, where maps to the corresponding

nodes of highlighted in green:

This hypothesis claims that the activations A and B respectively represent checking

whether the first and second component of the input is greater than 3. Then the activation

D represents checking whether either of these conditions were true. Both the third

component of the input and the activation of C are unimportant (at least for the behavior

we are explaining, the log loss with respect to the label ).

If this hypothesis is true, we should be able to perform two types of ‘resampling ablations’:

● replacing the activations of A, B, and D for the activations on other inputs which are

“equivalent” under .

● replacing the activations that are claimed to be unimportant for a particular path

(such as C or into B) with their activation on any other input.

In order to illustrate these interventions, we will depict a “treeified” version of where

every path from the input to output of is represented by a different copy of the input.

Replacing an activation with one from a different input is equivalent to replacing all inputs

in the subtree upstream of that activation.

https://www.codecogs.com/eqnedit.php?latex=h%20%3D%20(G%2C%20I%2C%20c)#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=y#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=z_1#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=G#0


Intervention 1: semantically equivalent subtrees

Consider running the model on two inputs = (5,6,7, True) and = (8, 0, 4, True). The

value of A’ is the same on both and . Thus, if the hypothesis depicted above is correct,

the output of A on both these is equivalent. This means when evaluating on we can

replace the activation of A with its value on , as depicted here:

In order to perform the replacement, we replaced all of the inputs that are upstream of A in

our treeified model. We could have done this replacement with any other that agrees

on A’.

https://www.codecogs.com/eqnedit.php?latex=x_1#0
https://www.codecogs.com/eqnedit.php?latex=x_2#0
https://www.codecogs.com/eqnedit.php?latex=x_1#0
https://www.codecogs.com/eqnedit.php?latex=x_2#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=x_1#0
https://www.codecogs.com/eqnedit.php?latex=x_2#0
https://www.codecogs.com/eqnedit.php?latex=x%5Cin%20D#0


Our hypothesis permits many other interchanges. For instance, we can interchange at the

activation of D instead:



Intervention 2: replace unimportant inputs unrestrictedly

The other class of intervention permitted by is to replace any inputs to nodes in that

says aren’t semantically important. For example, says that the only important input for A

is . So it should be totally fine to replace the activations for and (or, equivalently,

change the input that feeds into those activations). The same applies for and into B.

Additionally, says that D doesn’t care about C, so it should be fine to change all of the

inputs to C arbitrarily.

Pictorially, this looks like this:

Notice we are making 3 different replacements with 3 different inputs simultaneously. Still,

if is accurate, we have preserved the important information and the output of Treeify(G)

should be similar.

The causal scrubbing algorithm involves doing both of these types of intervention many

times. In fact, we want to maximize the number of such interventions we perform on every

run of – to the extent permitted by .

The Causal Scrubbing Algorithm

We define an algorithm for evaluating hypotheses. This algorithm uses the intuition,

illustrated in the previous section, of what swaps are permitted by a hypothesis.

The core idea is that hypotheses can be interpreted as an “intervention blacklist”. We like to

think of this as the hypothesis sticking its neck out and challenging us to swap around

activations in any way that it hasn’t specifically ruled out.

https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=z_1#0
https://www.codecogs.com/eqnedit.php?latex=z_2#0
https://www.codecogs.com/eqnedit.php?latex=z_3#0
https://www.codecogs.com/eqnedit.php?latex=z_1#0
https://www.codecogs.com/eqnedit.php?latex=z_3#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=h#0


In a single sentence, the algorithm is: Whenever we need to compute an activation, we’ll say

“What are all the other activations that according to , it’s fine for us to swap out this

activation for?” and then choose uniformly at random from that subset of the dataset, and

do this recursively.

In this algorithm we don’t explicitly treeify G; but we traverse it one path at a time in a

tree-like fashion.

We define the scrubbed expectation, , as the expectation of the behavior

over samples from this algorithm.

Intuitive Algorithm

(This is mostly redundant with the pseudocode below. Read in your preferred order.)

The algorithm is defined in pseudocode below. Intuitively we:

● Sample a random reference input from

● Traverse all paths through from output towards the input by calling `run_scrub`

on nodes of recursively. For every node we consider the subgraph of that

contains everything ‘upstream’ of (used to calculate its value from the input).

Each of these correspond to a subgraph of the image in .

● The return value of `run_scrub(n_I, c, D, x)` is an activation from . Specifically it is

an activation for the corresponding node in that the hypothesis claims

represents the value of when is run on input `x`.

○ Let .

○ If is an input node we will return .

○ Otherwise we will determine the activations of each input from the parents of

. For each parent of :

■ If there exists a parent of that corresponds to then the

hypothesis claims that the value of is important for . In

particular it is important as it represents the value defined by .

Thus we sample a datum `new_x` that agrees with on the value of

. We’ll recursively call `run_scrub` on in order to get an

activation for .

■ For any “unimportant parent” not mapped by the correspondence, we

select an input `other_x`. This is a random input from the dataset,

however we enforce that the same random input is used by all

https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=E_%5Ctext%7Bscrubbed%7D(h%2C%20D)#0
https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.codecogs.com/eqnedit.php?latex=x#0
https://www.codecogs.com/eqnedit.php?latex=D#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=n_I#0
https://www.codecogs.com/eqnedit.php?latex=c(I)#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=n_I#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=n_G%20%3D%20c(n_I)#0
https://www.codecogs.com/eqnedit.php?latex=n_G#0
https://www.codecogs.com/eqnedit.php?latex=x#0
https://www.codecogs.com/eqnedit.php?latex=n_G#0
https://www.codecogs.com/eqnedit.php?latex=p_G#0
https://www.codecogs.com/eqnedit.php?latex=n_G#0
https://www.codecogs.com/eqnedit.php?latex=p_I#0
https://www.codecogs.com/eqnedit.php?latex=n_I#0
https://www.codecogs.com/eqnedit.php?latex=p_G#0
https://www.codecogs.com/eqnedit.php?latex=p_G#0
https://www.codecogs.com/eqnedit.php?latex=n_G#0
https://www.codecogs.com/eqnedit.php?latex=p_I#0
https://www.codecogs.com/eqnedit.php?latex=x#0
https://www.codecogs.com/eqnedit.php?latex=p_I#0
https://www.codecogs.com/eqnedit.php?latex=p_I#0
https://www.codecogs.com/eqnedit.php?latex=p_G#0


unimportant parents of a particular node.
10

We record the value of

on `other_x`.

○ We now have the activations of all the parents of – these are exactly the

inputs to running the function defined for the node . We return the output

of this function.

Pseudocode

def estim(h, D):

"""Estimate E_scrubbed(h, D)"""

_G, I, c = h

outs = []

for i in NUM_SAMPLES:

x = random.sample(D)

outs.append(run_scrub(output_node_of(I), c, D, x))

return mean(outs)

def run_scrub(

n_I, # node of I

c, # correspondence I -> G

D: Set[Datum],

ref_x: Datum

):

"""Returns an activation of nG which h claims represents nI(ref_x)."""

n_G = c(n_I)

if n_G is an input node:

return ref_x

inputs_G = {}

# pick a random value to use for any "unimportant parents"

random_x = random.sample(D)

# get the scrubbed activations of the inputs to n_G

for parent_G in n_G.parents():

# "important" parents

if parent_G is in map(c, n_I.parents()):

# sample a new datum that agrees on the interpretation node

10
This is because otherwise our algorithm would crucially depend on the exact representation of the

causal graph: e.g. if the output of a particular attention layer was represented as a single input or if

there was one input per attention head instead. There are several other approaches that can be

taken to addressing this ambiguity, see the appendix.
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new_x = sample_agreeing_x(D, n_I, ref_x)

# and get its scrubbed activations recursively

inputs_G[parent_G] = run_scrub(parent_I, c, D, new_x)

# "unimportant" parents

else:

# get the activations on the random input value chosen above

inputs_G[parent_G] = parent_G.value_on(random_x)

# now run n_G given the computed input activations

return n_G.value_from_inputs(inputs_G)

def sample_agreeing_x(D, n_I, ref_x):

"""Returns rand elt of D that agrees with ref_x on the value of n_I"""

D_agree = [x' in D if n_I.value_on(ref_x) == n_I.value_on(x')]

return random.sample(D_agree)

An alternative formalism: constructing a distribution on

treeified inputs

There is another equivalent way to understand the causal scrubbing algorithm, which may

be useful to readers who prefer a more mathematical approach. This approach is not

required for understanding the rest of this sequence.

The essence of this formalism is:

● Construct your hypothesis such that the correspondence is bijective. While we did

not require surjectivity above, it is possible to convert any non-surjective hypothesis

into an equivalent surjective hypothesis by rewriting and , following the

procedure in the appendix.

○ This implies and are isomorphic. It also removes the ambiguity of what

to do with ‘unimportant’ inputs.

● Treeify both and , such that there is a copy of the input for every path through

the graphs. will induce an isomorphism between the treeified graphs as well,

giving us a treeified hypothesis where both and are

for some .

● We define a distribution over . Specifically, is the maximum entropy

distribution on subject to the constraint that the joint-input distribution
11

to

each node of matches what it would be if all inputs to were the same value

, sampled from .

11
The ‘joint-input distribution’ to a node is a distribution over the values taken by the parent-nodes,

not a distribution over the inputs to the entire treeified model.
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● We then measure . This is exactly the

scrubbed expectation.

For more details on the distribution and a proof of the above claims, see the appendix.

Details and Examples

Example Behaviors

As mentioned above, our method allows us to explain quantitatively measured model

behavior operationalized as the expectation of a function on a distribution .

Note that no part of our method distinguishes between the part of the input or

computational graph that belongs to the “model” vs the “metric.”
12

You can phrase a lot of mechanistic interpretability in this way. For example, here are some

results obtained from attempting to explain how a model has low loss:

● Nanda and Lieberum’s analysis of the structure of a model that does modular

addition explains the observation that their model gets low loss on the validation

dataset.

● The indirect object identification circuit explains the observation that the model gets

low loss on the indirect object identification task, as measured on a synthetic

distribution.

● Induction circuits (as described in Elhage et al. 2021) explain the observation that

the model gets low loss when predicting tokens that follow the heuristic: “if AB has

occurred before, then A is likely to be followed by B”.

As an example of choosing the distribution for a particular behavior, note that

induction heads explain two other kinds of observations. For example, they seem to

engage in “soft induction”, where seeing AB updates you towards thinking that

tokens similar to A are likely to be followed by tokens like B. They also update you

more strongly towards their prediction if multiple tokens in a row have matched an

earlier subsequence. In our framework the choice of your dataset determines which

of these behaviors would be included.

One may set up experiments using other metrics too:

● Identifying curve detectors in the Inception vision model by looking at the response

of various filters to synthetic datasets explains the correlation between: the

12
This is also true when you’re training models with an autodiff library–you construct a

computational graph that computes loss, and run backprop on the whole thing, which quickly

recurses into the model but doesn’t inherently treat it differently.
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activation strength of some neuron, and whether the orientation of an input curve is

close to a reference angle.

Extensional Equality, and common rewrites of and .

If you’re trying to explain the expectation of , we always consider it a valid move to

suggest an alternative function if on every input (“extensional equality”),

and then explain instead. In particular we’ll often start with our model’s computational

graph and a simple interpretation, and then perform “algebraic rewrites” on both graphs in

order to naturally specify the correspondence.

Common rewrites include:

● When the output of a single component of the model is used in different ways by

different paths we’ll duplicate that node in , such that each copy can correspond to

a different part of .

● When multiple components of the model compute a single feature we can either:

○ duplicate the node in , to sample the components separately.

○ combine the nodes of into a single node, to sample the components together.

● Sometimes, we want to test claims of the form “this subspace of the activation

contains the feature of interest”. We can express this by rewriting the output as a

sum of the activation projected into subspace and the orthogonal component. We can

then propose that only the projected subspace encodes the feature.

● An even more complicated example is when we want to test a theorized function

that maps from an input to a predicted activation of a component. We can then

rewrite the output as the sum of two terms: and the residual (the error of

the estimate), and then claim only the residual term contains important information.

If your estimate is bad, the error term will be large in important ways. This is

especially useful to test hypotheses about scalar quantities (instead of categorical

ones).
13

Allowing these rewrites seems like it should be quite innocuous; unfortunately, however,

this move is one of the biggest theoretical problems with this approach. See the conclusion

section for more on this.

13
This allows for testing out human interpretable approximations to neural network components:

‘Artificial Artificial Neural networks’. We think it’s more informative to see how the model performs

with the residual of this approximation resampling ablated as opposed to zero ablated.
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Example Hypotheses

Example hypothesis 1: paren balance checker

We apply the causal scrubbing algorithm to a small transformer which classifies sequences

of parentheses as balanced or unbalanced; see the results for more information. Here is an

early hypothesis we test:

The correspondence in this diagram maps to all of except the “other terms” node in

gray. The “is balanced” node in both graphs algorithmically computes if the input is

balanced with perfect accuracy. This is necessary to evaluate the loss for the model.

Note we have aggressively simplified the original model into a computational graph with

only 5 separate computations. In particular, we relied on the fact that residual stream just

before the classifier head can be written as a sum of terms, including a term for each

attention head.
14

We are claiming only three of these terms are important, and thus clump

the rest together into one node. Importantly, this means that the ‘Head 2.0’ node in is

responsible for all of the computations required to compute the output of head 2.0 from the

input, including those that happen in previous layers.

Example hypothesis 2: induction heads

We also apply causal scrubbing to a small language model. Here is an early hypothesis from

our analysis:

14
See the “Attention Heads are Independent and Additive” section of Anthropic’s “Mathematical

Framework for Transformer Circuits” paper.
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maps in the obvious way. The only difference between the structure of and is that the

edge from Layer 0 to the V matrix of the induction heads is not included in and thus not

in the image of .

Intuitively, this claims that this edge is unimportant and will allow it to be resampled on a

different input. This particular hypothesis doesn’t make claims about what heuristics the

model uses, only what paths are important.

Our results on this model test many additional (more complex) hypotheses of this sort.

Interpretations at multiple levels of specificity

We allow hypotheses at a wide variety of levels of specificity. For example, here are two

potential interpretations of the same f:
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These interpretations correspond to the same input-output mappings, but the hypothesis on

the right is more specific, because it's saying that there are three separate nodes in the

graph expressing this computation instead of one. So when we construct to correspond

to we would need 3 different activations that we claim are important in different ways,

instead of just one for mapping to . In interpretability, we all-else-equal prefer more

specific explanations, but defining that is out of scope here–we’re just trying to provide a

way of looking at the predictions made by hypotheses, rather than expressing any a priori

preference over them.

Why ablate by resampling?

What does it mean to say “this thing doesn’t matter”?

Suppose a hypothesis claims that some module in the model isn’t important for a given

behavior. There are a variety of different interventions that people do to test this. For

example:

● Zero ablation: setting the activations of that module to 0.

● Mean ablation: replacing the activations of that module with their empirical mean

on D.

● Resampling ablation: patching in the activation of that module on a random

different input

In order to decide between these, we should think about the precise claim we’re trying to

test by ablating the module.
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If the claim is “this module’s activations are literally unused”, then we could try replacing

them with huge numbers or NaN or something. But in actual cases, this would destroy the

model behavior, and so this isn’t what we meant.

We think a better type of claim is: “The behavior might depend on various properties of the

activations of this module, but those activations aren’t encoding any information that’s

relevant to this subtask.” Phrased differently: The distribution of activations of this module

is (maybe) important for the behavior. But we don’t depend on any properties of this

distribution that are conditional on which particular input we are currently looking at.

This is why in our opinion, the most direct way to translate this hypothesis into an

intervention experiment is to patch in the module’s activation on a randomly sampled

different input–this distribution will have all the properties that the module’s activations

usually have, but any connection between those properties and the correct prediction will

have been scrubbed away.

Problems with zero and mean ablation

Despite their prevalence in prior work, zero and mean ablations do not translate the claims

we’d like to make faithfully.

As noted above, the claim we’re trying to evaluate is that the information in the output

of this component doesn’t matter for our current model, not the claim that deleting the

component would have no effect on behavior. We care about evaluating the claim as

faithfully as possible on our current model and not replacing it with a slightly different

model, which zero or mean ablation of a component does. This core problem can

manifest in three ways:

1) Zero and mean ablations take your model off distribution in an unprincipled manner.

2) Zero and mean ablations can have unpredictable effects on measured performance.

3) Zero and mean ablations remove variation and thus present an inaccurate view of

what’s happening.

For more detail on these specific issues, we refer readers to the appendix of this section.

Results

In the following two sections, we apply our causal scrubbing algorithm to two tasks:

verifying our hypotheses found via ad-hoc interpretability on a paren balancer, and test and

incrementally improve hypotheses about how induction heads work on a 2-layer attention

only model.



On a paren balance checker

We found that the high-level claims in the informal hypothesis we came up with via prior

interpretability work held up well. Some more detailed claims about how the model

represents information did not fully hold up, indicating there are still important pieces of

the model’s behavior we have not explained.

Here are our main takeaways:

● Formalizing our hypotheses took some work, but we found it valuable to have them

clearly stated in a common language.

● We found we were in fact able to express all the varied hypotheses we wanted in this

framework.

● Using causal scrubbing to check our hypotheses was very useful for finding gaps in

our understanding and coming up with better hypotheses.

● In some cases, our intuitions about how well we understood the model did not

correspond to the loss recovered by our scrubbed model; this is in fact reasonable

and indicative that our intuitions were not correct.

● Something like adversarial validation is important to avoid endorsing false

hypotheses, in particular ones where you destroy correlations in the way your

hypothesis is wrong.

For more details, see Section 3.

On induction

We investigated ‘induction’ heads in a 2 layer attention only model. We were able to quite

easily test out and incrementally improve hypotheses about which computations in the

model were important for the induction heads.

Here are our main takeaways:

● We were able to use causal scrubbing to narrow down what model computations are

importantly involved in induction.

● In practice, ‘induction’-heads in small models take into account information from a

variety of sources to determine where to attend.

For more detail, see Section 4.

“Percentage of loss recovered” as a measure of hypothesis

quality

In both of these results sections, in order to measure the similarity between and

we use % loss recovered.



As a baseline we use , the ‘randomized loss’, defined as the loss when we shuffle

the connection between the correct labels and the model’s output. Note this randomized loss

will be higher than the loss for a calibrated guess with no information. We use randomized

loss as the baseline since we are interested in explaining why the model makes the guesses

it makes. If we had no idea, we could propose the trivial correspondence that the model’s

inputs and outputs are unrelated, for which .

Thus we define:

This percentage can exceed 100% or be negative. It is not very meaningful as a fraction, and

is rather an arithmetic aid for comparing the magnitude of expected losses under various

distributions. However, it is the case that hypotheses with a “% loss recovered” closer to

100% result in predictions that are more consistent with the model.

Appendix

Why not compare the full distribution, rather than

expectations?

Above, we rate our hypotheses using the distance between the expectation under the

dataset and the scrubbed distribution, .
15

You could instead rate hypotheses by comparing the full distribution of input-output

behavior. That is, the difference between the distribution of the random variable under

the data set , and under .

In this work, we prefer the expected loss. Suppose that one of the drivers of the model’s

behavior is noise: trying to capture the full distribution would require us to explain what

causes the noise. For instance, you’d have to explain the behavior of a randomly initialized

model despite the model doing ‘nothing interesting’. Meanwhile correctly predicting the full

input-output behavior does not mean your claims about the internals of the model are

correct. Therefore the full distribution metric doesn’t have any advantages in terms of

getting around some of the limitations to causal scrubbing we’ll discuss in the conclusion.

15
In general, you could have the output be non-scalar with any distance metric 𝛿 to evaluate the

deviation of the scrubbed expectation. But we’ll keep things simple here.



Further discussion of zero and mean ablation

Earlier, we noted our preference for “resampling ablation” of a component of a model (patch

an activation of that component from a randomly selected input in the dataset) over zero or

mean ablation of that component (set that component’s activation to 0 or its mean over the

entire dataset, respectively) in order to test the claim “this component doesn’t matter for

our explanation of the model”. We also mentioned three specific issues we have with using

zero or mean ablation to test this claim. Here, we’ll discuss these issues in greater detail.

1) Zero and mean ablations take your model off distribution in an unprincipled manner.

The first issue we have with these ablations is that they destroy various properties

of the distribution of activations in a way that seems unprincipled and could lead to

your ablated model performing either worse or better than it ought to.

As an informal argument, imagine we have a module whose activations are in a two

dimensional space; we’ve drawn a bunch of its activations as gray crosses, the mean

as a green cross, and the zero as a red cross:

It seems to us that zero ablating takes your model out of distribution in a pretty

unprincipled way. (If the model was trained with dropout, it’s slightly more

reasonable, but it’s rarely clear how a model actually handles dropout internally.)

Mean ablating also takes the model out of distribution because the mean is not

necessarily on the manifold of plausible activations.

2) Zero and mean ablations can have unpredictable effects on measured performance.



Another issue is that these ablations can have unpredictable effects on measured

performance. For example, suppose that you’re looking at a regression model which

happens to output larger answers when the activation from this module is at its

mean activation (which, let’s suppose, is off-distribution and therefore unconstrained

by SGD). Also, suppose you’re looking at it on a data distribution where this module

is in fact unimportant. If you’re analyzing model performance on a data

subdistribution where the model generally guesses too high, then mean ablation will

make it look like ablating this module was bad. If the model generally guesses too

low on the subdistribution, mean ablation will improve performance. Both of these

cases are bad, and both are avoided by using random patches, as resampling

ablation does, instead of mean ablation.

3) Zero and mean ablations remove variation that your model might depend on for

performance.

Our final issue with these ablations is that they neglect the variation in the outputs

of the module. Removing this variation doesn’t seem like a reasonable thing to do

when claiming that something doesn't matter.

For an illustrative toy example, suppose we’re trying to explain the performance of a

model with three modules M1, M2, and M3. This model has been trained with

dropout and usually only depends on components M1 and M2 to compute its output,

but if dropout is active and knocks out M2, the model uses M3 instead and can

perform almost as well as if it were able to use M1 and M2.

If we zero/mean ablate M2 (assume mean 0), it'll look like M2 wasn't doing anything

at all and our hypothesis that it wasn't relevant will be seemingly vindicated. If

instead we resample ablate M2, we'll perform significantly worse (exactly how much

worse is dependent on exactly how the output of M2 is relevant to the final output).

This example, while somewhat unrealistic, hopefully conveys our concern here:

sometimes the variation in the outputs of a component is important to your model

and performing mean or zero ablation forces this component to only act as a fixed

bias term, which is unlikely to be representative of its true contribution to the

model’s outputs.

We think these examples provide sufficient reasons to be skeptical about the validity of zero

or mean ablation and demonstrate our preference for resampling ablation instead.



Should unimportant inputs be taken from the same or

different data points?

Suppose we have the following hypothesis where I maps to the nodes of G in blue:

There are four activations in that we claim are unimportant.

Causal scrubbing requires performing a resampling ablation on these activations. When

doing so should we pick one data point to get all four activations on? Two different data

points, one for R and S (which both feed into V) and a different one for X and Y? Or four

different data points?

In our opinion, all are reasonable experiments that correspond to subtly different

hypotheses. In particular, this may not be something you thought of when proposing your

informal hypothesis; but following the causal scrubbing algorithm forces you to resolve this

ambiguity. In particular, the more we sample unimportant activations independently the

more specific the hypothesis, because it allows you to make strictly more swaps. It also

sometimes makes it easier for the experimenter to reason about what correlations exist

between different inputs. For a concrete example where this matters, see the paren balance

checker experiment.
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And so in the pseudocode above we sample the pairs (R, S) and (X, Y) separately, although

we allow hypotheses that require all unimportant inputs throughout the model to be

sampled together.
16

Why not go more extreme, and sample every single unimportant node separately? One

reason is that it is not well-defined: we can always rewrite our model to an equivalent one

consisting of a different set of nodes, and this would lead to completely different sampling!

Another is that we don’t actually intend this: we do believe it’s important that the inputs to

our treeified model be “somewhat reasonable”, i.e. have some of the correlations that they

usually do in the training distribution, though we’re not sure exactly which ones matter. So

if we started from saying that all nodes are sampled separately, we’d immediately want to

hypothesize something about them needing to be sampled together in order for our

scrubbed model to not get very high loss. Thus this default makes it simpler to specify

hypotheses.

Including unimportant inputs in the hypothesis

In general we don’t require hypotheses to be surjective, meaning not all nodes of need to

be mapped onto by . This is convenient for expressing claims that some nodes of are

unimportant for the behavior. It leaves a degree of freedom, however, in how to treat these

unimportant nodes, as discussed in the above appendix section.

The approach we use in the pseudocode above and the parentheses checker experiments is

to, in our sampling code, combine all the unimportant parents of each important node. In

fact we can remove the ambiguity of what to do with unimportant nodes by converting a

hypothesis into a surjective one which specifies what to do with these nodes.

In the example below, both R and S are unimportant inputs to the node V, and both X and Y

are unimportant inputs to the node Z. We make the following rewrites:

● If a single important node has multiple unimportant inputs, we combine them. This

forms the new node (X, Y) in G2. We also combine all upstream nodes, such that

there is a single path from the input to this new combined node, forming (T, U)

which (X, Y) depends on. This ensures we’ll only sample one input for all of them in

the treeified model.

○ We do the same for (R, S) into node V.

● Then we extend with new nodes to match the entirety of rewritten . For all of

these new nodes that correspond to unimportant nodes (or nodes upstream of

unimportant nodes) we have our interpretation output the unit type value on every

input. This ensures that we can sample any input.

16
Another way of thinking about this is: when we consider the adversarial game setting (discussed in

the conclusion section), we would like each side to be able to request that terms are sampled

together. By default therefore we would like terms (even random ones!) to be sampled separately.
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○ While we also draw the edges to match the structure of the rewritten , we

will not have other nodes in be sensitive to the values of these unit nodes.

If you want to take a different approach to sampling the unimportant inputs, you can

rewrite the graphs in a different way (for instance, keeping X and Y as separate nodes).

One general lesson from this is that rewriting the computational graphs and is

extremely expressive. In practice, we have found that with some care it allows us to run the

experiments we intuitively wanted to.
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Causal scrubbing induces a maximum entropy distribution

Suppose we have a function to which we want to apply the causal scrubbing algorithm.

Consider a treeified hypothesis for . In this appendix we will show that

causal scrubbing preserves the joint distribution of inputs to each node of (Lemma 1).

Then we show that the distribution of inputs induced by causal scrubbing is the maximum

entropy distribution satisfying this constraint (Theorem 2).

Let be the domain of and be the input distribution for (a distribution on ). Let

be the distribution given by the causal scrubbing algorithm (so the domain of is ,

where is the number of times that the input is repeated in ).

We find it useful to define two sets of random variables: one set for the values of wires (i.e.

edges) in when is run on a consistent input drawn from (i.e. on for some

); and one set for the values of wires in induced by the causal scrubbing algorithm:

Definition ( -consistent random variables): For all wires of , we call the “ -consistent

random variable” the result of evaluating the interpretation on , for a random

input . For each node , we will speak of the joint distribution of its input wires,

and call the resulting random variable the “ -consistent inputs (to )”. We also refer to the

value of the wire going out of as the “ -consistent output (to )”.

Definition (scrubbed random variables): Suppose that we run on .

In the same way, this defines a set of random variables, which we call the *scrubbed*

random variables (and use the terms "scrubbed inputs" and "scrubbed output" accordingly).

Lemma 1: For every node , the joint distribution of scrubbed inputs to is equal to

the joint distribution of -consistent inputs to .

Proof: Recall that the causal scrubbing algorithm assigns a datum in to every node of

, starting from the root and moving up. The key observation is that for every node of ,

the distribution of the datum of is exactly . We can see this by induction. Clearly this is

true for the root. Now, consider an arbitrary non-root node and assume that this claim is

true for the parent of . Consider the equivalence classes on defined as follows: and

are equivalent if has the same value at as when is run on

each input. Then the datum of is chosen by sampling from subject to being in the same

equivalence class as the datum of . Since (by assumption) the datum of is distributed

according to , so is the datum of .

Now, by the definition of the causal scrubbing algorithm, for every node , the scrubbed

inputs to are equal to the inputs to when is run on the datum of . Since the datum
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of is distributed according to , it follows that the joint distribution of scrubbed inputs to

is equal to the joint distribution of -consistent inputs to .

Theorem 2: The joint distribution of (top-level) scrubbed inputs is the maximum-entropy

distribution on , subject to the constraints imposed by Lemma 1.

Proof: We proceed by induction on a stronger statement: consider any way to "cut" through

in a way that separates all of the inputs to from the root (and does so minimally, i.e. if

any edge is un-cut then there is a path from some leaf to the root). (See below for an

example.) Then the joint scrubbed distribution of the cut wires has maximal entropy subject

to the constraints imposed by Lemma 1 on the joint distribution of scrubbed inputs to all

nodes lying on the root's side of the cut.

Our base case is the cut through the input wires to the root (in which case Theorem 2 is

vacuously true). Our inductive step will take any cut and move it up through some node ,

so that if previously the cut passed through the output of , it will now pass through the

inputs of . We will show that if the original cut satisfies our claim, then so will the new

one.

Consider any cut and let be the node through which we will move the cut up. Let

denote the vector of inputs to , be the output of (so ), and denote the values

along all cut wires besides . Note that and are independent conditional on ; this

follows by conditional independence rules on Bayesian networks ( and are -separated

by ).

Now, the following equality holds for *any* random variables such that is a

function of :
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Where is mutual information. The first step follows from the fact that is a function of

. The second step follows from the identity . The third

step follows from the identity that . The last step follows

from the fact that , again because is a function of .

Now, consider all possible distributions of subject to the constraints imposed by

Lemma 1 on the joint distribution of scrubbed inputs to all nodes lying on the root's side of

the updated cut. The lemma specifies the distribution of and (therefore) . Thus, subject

to these constraints, is equal to plus , which is a

constant. By the inductive hypothesis, is as large as possible subject to the lemma's

constraints. Mutual information is non-negative, so it follows that if , then

is as large as possible subject to the aforementioned constraints. Since and are

independent conditional on , this is indeed the case.

This concludes the induction. So far we have only proven that the joint distribution of

scrubbed inputs is *some* maximum-entropy distribution subject to the lemma's

constraints. Is this distribution unique? Assuming that the space of possible inputs is finite

(which it is if we're doing things on computers), the answer is yes: entropy is a strictly

concave function and the constraints imposed by the lemma on the distribution of scrubbed

inputs are convex (linear, in particular). A strictly concave function has a unique maximum

on a convex set. This concludes the proof.

Fun Fact 3: The entropy of the joint distribution of scrubbed inputs is equal to the entropy

of the output of , plus the sum over all nodes of the information lost by (i.e. the

entropy of the joint input to minus the entropy of the output). (By Lemma 1, this number

does not depend on whether we imagine being fed -consistent inputs or scrubbed

inputs.) By direct consequence of the proof of Theorem 2, we have

(with as in the proof of Theorem 2). Proceeding by

the same induction as in Theorem 2 yields this fact.
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3: Causal Scrubbing on the Parenthesis

Balance Checker

One sentence summary: we use causal scrubbing to quantitatively evaluate and refine our

explanation of a small transformer that classifies whether a string of parentheses is

balanced

Introduction

In earlier work (unpublished), we dissected a tiny transformer that classifies whether a

string of parentheses is balanced or unbalanced.
17

We hypothesized the functions of various

parts of the model and how they combine to solve the classification task. The result of this

work was a qualitative explanation of how this model works, but one that made falsifiable

predictions and thus qualified as an informal hypothesis. We summarize this explanation

below.

We found that the high-level claims in this informal hypothesis held up well (88-93% loss

recovered, see the Methodology). Some more detailed claims about how the model

represents information did not hold up as well (72%), indicating there are still important

pieces of the model’s behavior we have not explained. See the experiments summary section

for an explanation of each hypothesis refinement.

Causal scrubbing provides a language for expressing explanations in a formal way. A formal

hypothesis is an account of the information present at every part of the model, how this

information is combined to produce the output, and (optionally) how this information is

represented. In this work, we start by testing a simple explanation, then iterate on our

hypothesis either by improving its accuracy (which features of the input are used in the

model) or specificity (what parts of the model compute which features, and optionally how).

This iterative process is guided by the informal hypothesis that we established in prior

work.

For a given formal hypothesis, the causal scrubbing algorithm automatically determines

the set of interventions to the model that would not disturb the computation specified by

17
In most of the interpretability research we’re currently doing, we focus on tasks that a simple

algorithm can solve to make it easier to reason about the computation implemented by the model.

We wanted to isolate the task of finding the clearest and most complete explanation as possible, and

the task of validating it carefully. We believe this is a useful step towards understanding models that

perform complex tasks; that said, interpretation of large language models involves additional

challenges that will need to be surmounted.



the hypothesis. We then apply a random selection of these interventions and compare the

performance to that of the original model.

Using causal scrubbing to evaluate our hypotheses enabled us to identify gaps in our

understanding, and provided trustworthy evidence about whether we filled those gaps. The

concrete feedback from a quantitative correctness measure allowed us to focus on quickly

developing alternative hypotheses, and finely distinguish between explanations with subtle

differences.

We hope this walk-through will be useful for anyone interested in developing and

evaluating hypothesized explanations of model behaviors.

Setup

Model and dataset

The model architecture is a three layer transformer with two attention heads and pre

layernorm:

There is no causal mask in the attention (bidirectional attention). The model is trained to

classify sequences of up to 40 parentheses. Shorter sequences are padded, and the padding

tokens are masked so they cannot be attended to.

The training data set consists of 100k sequences along with labels indicating whether the

sequence is balanced. An example input sequence is ()())() which is labeled unbalanced. The

dataset is a mixture of randomly generated sequences and adversarial examples.
18

We

18
We limit to just the random dataset mostly to make our lives easier. In general, it is also easier to

explain a behavior that the model in fact has. Since the model struggles on the adversarial datasets,

it would be significantly more difficult to explain ‘low loss on the full training distribution’ than ‘low

loss on the random subset of the training distribution.’

It would be cleaner if the model was also exclusively trained on the random dataset. If redoing our

investigation of this model, we would train it only on the random dataset.



prepend a [BEGIN] token at the start of each sequence, and read off the classification above

this token (therefore, the parentheses start at sequence position 1).

For the experiments in this writeup we only use random, non-adversarial, inputs, on which

the model is almost perfect (loss of 0.0003, accuracy 99.99%). For more details of the dataset

see the appendix.

Algorithm

Our hypothesis is that the model is implementing an algorithm that is approximately as

follows:

1. Scan the sequence from right to left and track the nesting depth at each position.

That is, the nesting depth starts at 0 and then, as we move across the sequence,

increments at each ) and decrements at each ( .

You can think of this as an "elevation profile" of the nesting level across the

sequence, which rises or falls according to what parenthesis is encountered.

Important note: scanning from left to right and scanning from right to left are

obviously equally effective. The specific model we investigated scans from right to

left (likely because we read off the classification at position 0).

2. Check two conditions:

a. The Equal Count Test (aka the count test): Is the elevation back to 0 at

the left-most-parentheses? This is equivalent to checking whether there are

the same number of open and close parentheses in the entire sequence.

b. The Not Beneath Horizon Test (aka the horizon test): Is the elevation

non-negative at every position? This is equivalent to checking whether there

is at least one open parenthesis ( that has not been later closed ) (cf. see the

third example below).

3. If either test fails, the sequence is unbalanced. If both pass, the sequence is

balanced.



(As an aside, this is a natural algorithm; it's also similar to what codex or GPT-3 generate

when prompted to balance parentheses.)

Again - this is close to the algorithm we hypothesize the model uses, but not exactly the

same. The algorithm that the model implements, according to our hypothesis, has two

differences from the one just described.

1. It uses proportions instead of ‘elevation’. Instead of computing ‘elevation’ by

incrementing and decrementing a counter, we believe the model tracks the proportion of

parentheses that are open in each suffix-substring (i.e. in every substring that ends with

the rightmost parenthesis). This proportion contains the same information as ‘elevation’.

We define:

pi: the proportion of open parentheses ( in the suffix-substring starting at position i,

i.e. from i to the rightmost parenthesis

Put in terms of proportions, the Equal Count Test is whether this is exactly 0.5 for the

entire string (p1 == 0.5). The Not Beneath Horizon Test is whether this is less than or equal

to 0.5 for each suffix-substring (pi <= 0.5 for all i); if the proportion is less than 0.5 at any

point, this test is failed.

2. It uses a combined test of, “is the first parenthesis open, and does the sequence

pass Equal Count?” Call this the Start-Open-and-Equal-Count test, aka the count
(
Test.

Consider the Start-Open component. Sequences that start with a closed parenthesis instead

of an open one cannot be balanced: they inevitably fail to meet at least one of Equal Count

or Not Beneath Horizon.



The model detects Start-Open in the circuit that computes the ‘equal count’ test, so we’ve

lumped them together for cleaner notation:

count
(
: Is the elevation back to 0 at the left-most-parenthesis (i.e. the Equal Count

Test), and does the sequence start with open parenthesis? i.e. count
(

:= (first

parenthesis is open) & (passes Equal Count Test)

We can use these variables to define a computational graph that will compute if any

sequence of n parentheses is balanced or not.

Note that we define count
(
, horizoni, and horizonall to be booleans that are true if the test

passes (implying that the sequence might be balanced) and false (implying the sequence

definitely isn’t balanced).

We will reference the features of the above graph to make claims about what particular

components of the model compute.

Informal Hypothesis

Our prior interpretability work suggested that the model implements this algorithm in

roughly the following manner:



● Head 0.0 has an upper triangular attention pattern (recall that model uses

bidirectional attention): at every query position it pays roughly-equal attention to all

following sequence positions and writes in opposite directions at open and close

parentheses. These opposite directions are analogous to “up” and “down” in the

elevation profile. Thus, head 0.0 computes every pi and writes this in a specific

direction.

● The MLPs in layers 0 and 1 then transform the pi into binary features. In particular,

at position 1 they compute the count
(

test, and at every sequence position they

compute the horizon test for that position.

● Head 1.0 and 2.0 both copy the information representing the count
(

test from

position 1 (the first parentheses token) to position 0 (the [BEGIN] token where the

classifier reads from).

● Head 2.1 checks that the horizon test passed at all positions and writes this to

position 0.

A consequence of this hypothesis is that at position 0, head 2.0 classifies a sequence as

balanced if it passes the count
(
test, and classifies it as unbalanced if it fails the test. Head

2.1 does the same for the horizon test. As some evidence for this hypothesis, let’s look at an

attribution experiment.

We run the model on points sampled on the random data set, which may each pass or fail

either or both of the tests. We can measure the predicted influence on the logits from the

output of heads 2.0 and 2.1.
19

For each data point, we plot these two values in the x and y axes. If each head

independently and perfectly performs its respective test, we should expect to see four

clusters of data points:

● Those that pass both tests (i.e. are balanced) are in the top right: both heads classify

them as balanced, so their x and y positions are positive.

● Unbalanced sequences, which fail both tests, are points in the bottom left.

● Sequences that pass only one of the tests should be in the top left or bottom right of

the plot.

This is the actual result:

19
In particular, we can write the output of the model as f(x2.0+y), where f is the final layer norm and

linear layer which outputs the log-probability that the input is balanced, x2.0[0] is the output of head

2.0 at position 0, and y[0] is the sum of all other terms in the residual stream. Then we compute the

attribution for 2.0 as 𝔼y’[f(x2.0 + y’)] where y’ is sampled by computing the sum of other terms on a

random dataset sample. We do the same to get an attribution score for head 2.1. Other attribution

methods such as linearizing layer norms give similar results.



The result roughly matches what we expected, but not entirely.

The part that matches our expectations: the green (balanced) points are consistently

classified as balanced by the two heads, and the orange (count
(

failure only) points are

consistently classified as balanced by 2.1 and unbalanced by 2.0.

However, the picture for the other clusters does not match our expectations; this shows that

our hypothesis is flawed or incomplete. The pink points fail only the horizon test, and

should be incorrectly classified as balanced by 2.0, and correctly classified as unbalanced by

2.1. In reality, 2.0 often ‘knows’ that these sequences are unbalanced, as evidenced by about

half of these points being in the negative x axis. It must therefore be doing something other



than the count
(

test, which these sequences pass. The purple points, which fail both the

count
(

and horizon tests, are sometimes incorrectly thought to be balanced by 2.1, so head

2.1 cannot be perfectly performing the horizon test. In Experiment 3, we’ll show that causal

scrubbing can help us detect that this explanation is flawed, and then derive a more

nuanced explanation of head 2.1’s behavior.

Methodology

We use the causal scrubbing algorithm in our experiments. To understand this algorithm,

we advise reading the introduction section. Other sections are not necessary to understand

this section, as we’ll be talking through the particular application to our experiments in

detail.
20

Following the causal scrubbing algorithm, we rewrite our model, which is a computational

DAG, into a tree that does the same computation when provided with multiple copies of the

input. We refer to the rewritten model as the treeified model. We perform this rewrite so we

can provide separate inputs to different parts of the model–say, a reference input to the

branch of the model we say is important, and a random input to the branch we say is

unimportant. We’ll select sets of inputs randomly conditional on them representing the

same information, according to our hypothesis h=(G, I, c) (see the experiments for how we

do this), run the treeified model on these inputs, and observe the loss. We call the treeified

model with the separate inputs assigned according to the hypothesis the “scrubbed model”.

Before anything else, we record the loss of the model under two trivial hypotheses:

“everything matters” and “nothing matters”. If a hypothesis we propose is perfect, we expect

that the performance of the scrubbed model is equal to that of the baseline, unperturbed

model. If the information the hypothesis specifies is unrelated to how the model works, we

expect the model’s performance to go down to randomly guessing. Most hypotheses we

consider are somewhere in the middle, and we express this as a % loss recovered between

the two extremes. For more information on this metric, refer to the relevant section here.

Summary of experimental results

We run a series of experiments to test different formalizations of (parts of) the informal

hypothesis we have about this model.
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The same algorithm is applied to a small language model on induction here, but keep in mind that

some conventions in the notation are different. For example, in this section we more explicitly

express our interpretation as a computational graph, while in that section we mostly hypothesize

which paths in the treeified model are important; both are valid ways to express claims about what

scrubs you ought to be able to perform without hurting the performance of the model too much.

Additionally, since our hypothesis is that important inputs need not be equal, our treeified model is

run on many more distinct inputs.



We start with a basic claim about our model: that there are only three heads whose direct

contribution to the classifier head is important: 1.0 and 2.0 which compute count
(
, and 2.1

which computes the horizon test. We then improve this claim in two ways:

● Specificity: Making a more specific claim about how one of these pathways

computes the relevant test. That is, we claim a more narrow set of features of the

input are important, and therefore increase the set of allowed interventions. This is

necessary if we want to claim to understand the complete computation of the model,

from inputs to outputs. However, it generally increases the loss of the scrubbed

model if the additions to the hypothesis are imperfect.

● Accuracy: Improving our hypothesis to more accurately match what the model

computes. This often involves adjusting the features computed by our interpretation

. If done correctly this should decrease the loss of the scrubbed model.

A third way to iterate the hypothesis would be to make it more comprehensive, either by

including paths through the model that were previously claimed to be unimportant or by

being more restrictive in the swaps allowed for a particular intermediate. This should

generally decrease the loss. We don’t highlight this type of improvement in the document,

although it was a part of the research process as we discovered which pathways were

necessary to include in our explanation.

Our experiments build upon one another in the following way:

https://www.codecogs.com/eqnedit.php?latex=I#0


The results of the experiments are summarized in this table, which may be helpful to refer

back to as we discuss the experiments individually.

# Summary of claimed hypothesis Loss ± Std.

Error

% loss

recovere

d

Accuracy

0a The normal, unscrubbed, model 0.0003 100% 100%

0b Randomized baseline 4.30 ± 0.12 0% 61%

1a 1.0 and 2.0 compute the count test, 2.1

computes the horizon test, they are ANDed

0.52 ± 0.04 88% 88%

1b 1a but using the count
(
test 0.30 ± 0.03 93% 91%

https://docs.google.com/document/d/12Ae4-FXtYdp1HAUyWsEIFe3Z_vUsTh5UAo0k4PFfLkg/edit#heading=h.fosw7cvsz62z


2a More specific version of 1b, where we specify

the inputs to 1.0 and 2.0

0.55 ± 0.04 88% 87%

2b 2a but using the ɸ approximation for the

output of 0.0

0.53 ± 0.04 88% 87%

3a More specific version of 1b, where we break

up the inputs to 2.1 by sequence position

0.97 ± 0.06 77% 85%

3b 3a but using padj 0.68 ± 0.05 84% 88%

3c 3a plus specifying the inputs to 2.1 at each

sequence position

0.69 ± 0.05 84% 87%

3d 3a but sampling a1 at each sequence

position randomly

0.81 ± 0.05 81% 87%

4 Including both 2b and 3b 1.22 ± 0.07 72% 82%

(% loss recovered is defined to be 1 - (experiment loss - 0a loss) / 0b loss. This normalizes the

loss to be between 0% and 100%, where higher numbers are better.)

All experiments are run on 2000 scrubbed inputs, sampled according to the algorithm from

100,000 sequences of parentheses.

Detailed experimental results

Experiment 0: Trivial hypothesis baseline

Running the model itself results in a loss of 0.0003 (100% accuracy) on this dataset. If you

shuffle the labels randomly, this results in a loss of 4.30 (61% accuracy – recall the dataset

is mostly unbalanced).

These can both be formalized as trivial hypotheses, as depicted in the diagram below. We

hypothesize an interpretation with a single node, which corresponds (via ) to the entire

model. The computational graph of , labeled with the model component it corresponds to,

is shown below in black. The proposed feature computed by the node of I is annotated in

red.

https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=c#0
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Note that in both cases we don’t split up our model into paths (aka ‘treeify’ it), meaning we

will not perform any internal swaps.

In experiment 0a, we claim the output of the entire model encodes information about

whether a given sequence is balanced. This means that we can swap the output of the

model only if the label agrees: that is, the output on one balanced sequence for another

balanced sequence. This will of course give the same loss as running the model on the

dataset.

For 0b, we no longer claim any correspondence for this output. We thus swap the outputs

randomly among the dataset. This is equivalent to shuffling the labels before evaluating the

loss. We call such nodes (where any swap of their output is permitted) ‘unimportant’ and

generally don’t include them in correspondence diagrams.

These experiments are useful baselines, and are used to calculate the % loss recovered

metric.

Experiment 1: Contributions to residual stream at pos0

We claimed that the output of 1.0 and 2.0 each correspond to the count
(
test, and the output

of 2.1 corresponds to the horizon test. Let’s check this now. In fact, we will defend a slightly

more specific claim: that the direct connection
21

of these heads to the input of the final layer

norm corresponds to the count
(
test.

21
“Direct connection” meaning the path through the residual stream, not passing through any other

attention heads or MLPs.



1a: Testing a simple hypothesis for heads 1.0, 2.0, 2.1

To start, we’ll first test a simple hypothesis: that 1.0 and 2.0 just implement the simple

Equal Count Test (notably, not the count
(
test) and 2.1 implements the horizon test, without

checking whether the sequence starts with an open parenthesis.

We can draw this claimed hypothesis in the following diagram (for the remainder of this doc

we won’t be drawing the inputs explicitly, to reduce clutter):

How do we apply causal scrubbing to test this hypothesis? Let’s walk through applying it

for a single data point (a batch size of 1). We apply the causal scrubbing algorithm to this

hypothesis and our model. This will choose 5 different input data points from the dataset

described above, which we will use to run the tree-ified model on as shown below:



● xref, or the reference input. We compute the loss of the scrubbed model from the

true label of xref. However, we will never run the scrubbed model on it; all inputs to

the scrubbed model will be replaced with one of the other sampled inputs.

● Our hypothesis claims that, if we replace the output of 1.0 or of 2.0 with its output

on some input x’ that agrees with xref on the count test, then the output will agree

with xref on the balanced test. Therefore we sample random x1.0 and x2.0 which

each agree with xref on the count test. (Note that this means x1.0 and x2.0 agree

with each other on this test as well, despite being separate inputs.)

● Similarly, x2.1 is sampled randomly conditional on agreeing with xref on the

horizon test.



● xrand is a random dataset example. The subtree of the model which is rooted at

the output and omits the branches included in the hypothes–that is, the branches

going directly to 1.0, 2.0, and 2.1–is run on this example.

We perform the above sample-and-run process many times to calculate the overall loss. We

find that the scrubbed model recovers 88% of the original loss. The scrubbed model is very

biased towards predicting unbalanced, with loss of 0.25 on unbalanced samples and 1.31 on

balanced samples.

1b: Additional check performed by 1.0 and 2.0: initial parenthesis open

This, however, was still testing if 1.0 and 2.0 care about only the equal count test! As

described above we believe it is more accurate to say that they check the count
(
test, testing

that the first parenthesis is open as well as performing the Equal Count Test.

Consider the set of inputs that pass the equal count test but fail the count
(
test.

22
Let us call

these the fails-start-open set. If we return to the attribution results from the informal

hypothesis we can get intuition about the model’s behavior on these inputs:

The only difference from the left subfigure to the right subfigure is that the points in the

fails-start-open set fail the more specific count
(
test. We see that indeed, the output of head

2.0 is unbalanced on these inputs. Comparing the right and left diagrams we see the count
(

test more cleanly predicts the output of head 2.0. The results for head 1.0 are similar.

Here is an updated hypothesis claim:

22
These will be inputs like )(() with equal amounts of open and close parentheses, but a close

parentheses first.



Compared to experiment 1a, the intervention is different in two ways:

1. When the reference input is balanced, we may no longer sample x1.0 or x2.0 from the

fails-start-open set. To the extent that our hypothesis is right and such inputs x1.0 or

x2.0 cause 1.0 or 2.0 to output more “evidence of unbalance”, this change will improve

our loss on balanced sequences. Eyeballing the plots above, we do expect this to

happen.

2. When the reference input is unbalanced, we may now sample x1.0 and x2.0 from the

fails-start-open set. To the extent that our hypothesis is wrong and such inputs

cause 1.0 or 2.0, respectively, to output less “evidence of unbalance”, this change will

harm our loss on unbalanced sequences. Eyeballing the plots above, it is somewhat

hard to tell whether we should expect this: these points do have some evidence of

unbalance, but it is unclear how the magnitude compares to that of the fail-count

set.

The scrubbed model recovers 93% of the loss. In particular the loss on balanced goes way

down (1.31 -> 0.65) while the loss on unbalanced is slightly lower (0.25 -> 0.18). Thus this

experiment supports our previous interpretability result that 1.0 and 2.0 detect whether

the first parenthesis is open.

Comparing experiments 1a and 1b makes it clear the count
(

test is an improvement.

However, it is worth noticing that if one had only the results of experiment 1a, it would not

be clear that such an improvement needed to be made.
23

In general, causal scrubbing is not

23
One technique that can be helpful to discover these sorts of problems is to perform a pair of

experiments where the only difference is if a particular component is scrubbed or not. This is a way



legibly punishing when the feature you claimed correspondance with is highly correlated

with the ‘true feature’ that the component of the model is in fact picking up. We expect that

all our claims, while highly correlated with the truth, will miss some nuance in the exact

boundaries represented by the model.

Experiment 2: More specific explanation for 1.0’s and 2.0’s

input

To make the above hypothesis more specific, we’ll explain how 1.0 and 2.0 compute the

count
(
test: in particular, they use the output of 0.0 at position 1. To test this, we update the

hypothesis from 1a to say that 2.0 and 1.0 only depend on whether the first parenthesis is

open and whether 0.0 is run on an input that passes the count
(
test. The other inputs to the

subtrees rooted at 1.0 and 2.0 don’t matter. We aren’t stating how the output of 0.0 and the

embedding reach those later heads; we’re considering the indirect effect, i.e. via all possible

paths, rather than just the direct effect that passes through no other nodes in the model.

2a: Dependency on 0.0

Our claimed hypothesis is shown below. Recall that we do not show unimportant nodes, we

annotate the nodes of I with the nodes of G that they correspond to, and we annotate the

edges with the feature that that node of I computes:
24
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We exclude paths through attention layer 0 when creating the indirect emb node

to tell which scrubbed inputs were especially harmful – for instance, the fails-count-test inputs being

used for 2.0 or 1.0 hurting the loss in 1a.



This hypothesis will result in the following treeified model:



How do we determine the 5 input data points annotated in blue? Following the causal

scrubbing algorithm, we first fix xref at the output. We then recursively move through the

hypothesis diagram, sampling a dataset example for every node such that it agrees with the

downstream nodes on the labeled features. The non-leaf node data points can then be

discarded, as they are not used as inputs in the scrubbed model. This is depicted below:



In particular, we will first choose a dataset sample xref whose label we will use to evaluate

the loss of the scrubbed model. Then we will select the input datasets as follows:

● xout agrees with xref on the balanced test.

● x2.1 agrees with xref on the never beneath horizon test (as before)

● Both x1.0 and x2.0 agree with xref on the count
(
test.

● x0.0→1.0 agrees with x1.0 on the count
(
test, and similarly for 2.0.

● xemb→1.0 agrees with x1.0 on whether the sequence starts with (, and similarly for 2.0.

Note that we do not require any other agreement between inputs! For example, xemb → 1.0

could be an input that fails the count test.

The 5 inputs in orange are claimed to be unimportant by our hypothesis. This means we

will sample them randomly. We do, however, use the same random value for all

unimportant inputs to a particular node in our model. For instance, there are many

‘unimportant’ inputs to the final layer norm: all three mlps, attention layer 0, and head 1.1.

All of these are sampled together. Meanwhile, we sample these nodes separately from

unimportant inputs to other nodes (e.g. the non-position 1 inputs to head 2.0); see the

appendix for some discussion of this.



The scrubbed model recovers 88% of the loss. Compared to experiment 1b, the loss

recovered is significantly lower: a sign that we lost some explanatory power with this more

specific hypothesis. By asserting these more specific claims, however, we still recover a

large portion of the original loss. Overall, we think this result provides evidence that our

hypothesis is a reasonable approximation for the 2.0 circuit. (To rule out the possibility that

0.0 is not important at all in these paths, we also ran an experiment replacing its output

with that on a random input; this recovered 84% of the loss which is significantly less).

2b: 0.0’s output encodes p in a specific direction

In fact, we believe that the proportion of open parentheses is encoded linearly in a

particular direction. For more details and a precise definition of how we think this is done,

see the appendix. The takeaway, however, is that we have a function ɸ which maps a value

of p to a predicted activation of 0.0. We can thus rewrite the output of 0.0 in our model as

the sum of two terms: ɸ(p) and the residual (the error of this estimate). We then claim that

the ɸ(p) term is the important one. In essence, this allows swapping around the residuals

between any two inputs, while ɸ(p) can only be swapped between inputs that agree on the

count
(
test. As a hypothesis diagram, this is:



Which leads to the following treeified model (again, with unimportant nodes in orange):



This results in a loss of 0.56, with accuracy 87%. This is basically unchanged from

experiment 2a, giving evidence that we were correct in how p values are translated into the

output of 0.0. Importantly, however, if we were somewhat wrong about which p values head

0.0 outputs on each input, this would have already hurt us in experiment 2a. Thus this

result shouldn’t increase our confidence on that account.

Experiment 3: How does 2.1 compute the horizon condition?

For this experiment, we are not including the breakdown of 2.0 from experiment 2. We will

add these back in for experiment 4, but it is simpler to consider them separately for now.

3a: Breaking up the input by sequence position

From previous interpretability work, we think that 0.0 computes the proportion of open

parentheses in the suffix-substring starting at each query position. Then, mlp0 and mlp1



check the not-beneath-horizon test at that particular position. This means that 2.1 needs to

ensure the check passes at every position (in practice, the attention pattern will focus on

failed positions, which cause the head to output in an unbalanced direction).

We test this by sampling the input to head 2.1 at every sequence position separately (with

some constraints, discussed below). This corresponds to the following hypothesis:

where x2[i] denotes the input to attention 2 at position i, and n is the number of parentheses

in the sequence. In particular, we fix n per example when we choose the dataset x2.1. We

additionally decide that x2[i] must be at least i-parentheses long for all i <= n to avoid OOD

edge cases that we didn’t wish to make claims about e.g. samples including multiple [END]

tokens (possibly a weaker constraint would be sufficient, but we have not experimented

with that).

One other subtlety is what to do with the last sequence position, where the input is a

special [END] token. We discovered that this position of the input to 2.1 carries some

information about the last parenthesis.
25

We allow interchanges between different [END]

25
We originally theorized this by performing an “minimal-patching experiment” where we only

patched a single sequence position at a time and looked for patterns in the set of input data points



positions as long as they agree on the last parenthesis. This is equivalent to requiring

agreement on both the horizonn test and that the sequence is exactly lenn.

The causal scrubbing algorithm is especially strict when testing this hypothesis. Since 2.1

checks for any failure, a failure at a single input sequence position should be enough to

cause it to output unbalance. In fact our horizoni condition is not quite true to what the

model is doing, i.e. 2.1 is able to detect unbalanced sequences based on input at position i

even if the horizoni test passes. Even if the horizoni condition is most of what is going on, we

are likely to sample at least one of these alternative failure detections because we sample

up to 40 independent inputs, leading head 2.1 to output unbalance most of the time!

The overall loss recovered from doing this scrubbing is 77%. The model is again highly

skewed towards predicting unbalanced, with a loss of 3.61 on balanced labels.

3b: Refining our notion of the open-proportion

We can improve this performance somewhat by shifting our notion of horizoni to one closer

to what the model computes. In particular our current notion assumes the attention pattern

of 0.0 is perfectly upper triangular (each query position pays attention evenly across all

later key positions). Instead, it is somewhat more accurate to describe it as ‘quasi upper

triangular’: it pays more attention to the upper triangular positions, but not exclusively.

This relaxed assumption gives rise to a new “adjusted p” value that we can substitute for p

in our interpretation; see the appendix. It turns out the new still correctly computes if an

input is balanced or not.

Using this new hypothesis improves our loss recovery to 84%, a notable increase from

experiment 3a. Breaking up the loss by balanced and unbalanced reference sequences, we

see that the loss decreased specifically on the balanced ones.

3c and 3d: Making the hypothesis more specific

We additionally ran experiments where we split up the input x2[i] into terms and specified

how it was computed by the MLPs reading from a0 (similar to experiment 2).

Counterintuitively, this decreases the loss.

In general, causal scrubbing samples inputs separately when permitted by the hypothesis.

This, however, is a case where sampling together is worse for the scrubbed performance.

More detail on these experiments, and their implications, can be found in the appendix.

that caused the scrubbed model to get high loss. In general this can be a useful technique to

understand the flaws of a proposed hypothesis. Adding this fact to our hypothesis decreased our loss

by about 2 SE.

https://www.codecogs.com/eqnedit.php?latex=I#0


Experiment 4: putting it all together

We can combine our hypotheses about what 2.0 is doing (experiment 2b) and what 2.1 is

doing (experiment 3b) into a single hypothesis.



This results in 72% loss recovered. We note that the loss is roughly additive: the loss of the

scrubbed model in this experiment is roughly the sum of the losses of the two previous

experiments.

Future Work

There are still many ways our hypothesis could be improved. One way would be to make it

more comprehensive, by understanding and incorporating additional paths through the

model. For example, we have some initial evidence that head 1.1 can recognize some

horizon failures and copy this information to the residual stream at position 1, causing head

2.0 to output the sequence is unbalanced. This path is claimed to be unimportant in

Experiment 2, which likely causes some of the loss increase (and corresponding decrease in

% loss recovered).



Additionally, the hypothesis could be made more specific. For instance in the appendix we

make more specific claims about exactly how head 0.0 computes p; these claims would be

possible to test with causal scrubbing, although we have not done so. Similarly, it would be

possible to test very specific claims about how the count or horizoni test is computed from

head 0.0, even at the level of which neurons are involved. In particular, the current

hypothesized explanation for 2.1’s input is especially vague; replicating the techniques from

experiment 2 on these inputs would be a clear improvement.

Another direction we could expand on this work would be to more greatly prioritize

accuracy of our hypothesis, even if it comes at the cost of interpretability. In this project we

have kept to a more abstract and interpretable understanding of the model’s computation.

In particular for head 0.0 we have approximated its attention pattern, assuming it is

(mostly) upper triangular. We could also imagine moving further in the direction we did

with padj and estimating the attention probabilities 0.0 will have position by position. This

would more accurately match the (imperfect) heuristics the model depends on, which could

be useful for predicting adversarial examples for the model. For an example of

incorporating heuristics into a causal scrubbing hypothesis, see our results on induction in

a language model.

Conclusion

Overall, we were able to use causal scrubbing to get some evidence validating our original

interpretability hypothesis, and recover the majority of the loss. We were also able to

demonstrate that some very specific scrubs are feasible in practice, for instance rewriting

the output of 0.0 at position 1 as the sum of ɸ(p) and a residual.

Using causal scrubbing led us to a better understanding of the model. Improving our score

required refinements like using the adjusted open proportion or including that the

end-token sequence position can carry evidence of unbalance to 2.1 in our hypothesis.

This work also highlighted some of the challenges of applying causal scrubbing. One

recurring challenge was that scores are not obviously good or bad, only better or worse

relative to others. For example, in our dataset there are many features that could be used to

distinguish balanced and unbalanced sequences; this correlation made it hard to notice

when we specified a subtly wrong feature of our dataset, as discussed when comparing

experiments 1a and 1b, since the score was not obviously bad. This is not fundamentally a

problem–we did in fact capture a lot of what our model was doing, and our score was

reflective of that–but we found these small imprecisions in our understanding added up as

we made our hypothesis more specific.



We also saw how, in some cases, our intuitions about how well we understood the model did

not correspond to the loss recovered by our scrubbed model. Sometimes the scrubbed

model’s loss was especially sensitive to certain parts (for instance, unbalanced evidence in

the input to head 2.1 at a single sequence position) which can be punishing if the

hypothesis isn’t perfectly accurate. Other times we would incorporate what we expected to

be a noticeable improvement and find it made little difference to the overall loss.

Conversely, for experiments 3c and 3d (discussed in the appendix) we saw the scrubbed

model’s loss decrease for what we ultimately believe are unjustified reasons, highlighting

the need for something like adversarial validation in order to have confidence that a

hypothesis is actually good.

In general, however, we think that these results provide some evidence that the causal

scrubbing framework can be used to validate interpretability results produced by more

ad-hoc methods. While formalizing the informal claims into testable hypotheses takes some

work, the causal framework is remarkably expressive.

Additionally, even if the causal scrubbing method only validates claims, instead of

producing them, we are excited about the role it will play in future efforts to explain model

behaviors. Having a flexible but consistent language to express claims about what a model

is doing has many advantages for easily communicating and checking many different

variations of a hypothesis. We expect these advantages to only increase as we build better

tools for easily expressing and iterating on hypotheses.

Appendix

Data set details

This model was trained with binary cross-entropy loss on a class-balanced dataset of 100k

sequences of open and close parens, with labels indicating whether the sequence was

balanced. The tokenizer has 5 tokens: ( ) [BEGIN] [END] [PAD]. The token at position 0 is

always [BEGIN], followed by up to 40 open or close paren tokens, then [END], then padding

until length 42.

The original dataset was a mixture of several different datasets with binary cross entropy

loss:

1. Most of the training data (~92%) was randomly-generated sequences with an even

number of parentheses. Balanced sequences were upsampled to be about 26% of the

dataset.

2. Special case datasets (the empty input, odd length inputs)

3. Tricky sequences, which were adversarial examples for other models.



For the experiments in this writeup we will only use the first dataset of randomly

generated inputs. We are attempting to explain the behavior of “how does this model get

low cross-entropy loss on this randomly-generated dataset.” This may require a subtly

different explanation than how it predicts more difficult examples.

Code

We plan to release our code and will link it here when available. Note that the computation

depends on our in-house tensor-computation library, expect it to be time consuming to

understand the details of what is being computed. Feel free to get in contact if it is

important for you to understand such things.

Sampling unimportant inputs

In our previous section, we discussed reasons for sampling unimportant inputs to a node in

our model (specifically, in ) separately from unimportant inputs to other nodes in our

correspondence.

In this work, this was very important for reasoning about what correlations exist between

different inputs and interpreting the results of our experiments. Consider the hypotheses 3c

and 3d. If we claim that the inputs to 2.1 at each position carry information about the

horizoni test, then each a1i will be sampled separately. If we claimed instead that only the

mlps and a0 had that job, and a1 was unimportant, we would still like each a1i to be

sampled separately! That way the two claims differ only in whether a1 is sampled

conditional on the horizoni test, and not in whether the a1i are drawn from the same input.

In those experiments we discuss how the correlation between inputs hurt the loss of our

scrubbed model. In fact, experimentally we found that if we ran 3d but sampled a1 across

positions together, it hurt our scrubbed model’s loss. If we had run this experiment alone,

without running 3d, the effects of “sampling a1i separately from the other terms at position

i” and “sampling the a1i all together” would be confounded.

So, sampling unimportant inputs separately is especially important for comparing the

swaps induced by hypotheses 3c and 3d cleanly. The choice makes minimal difference

elsewhere.

Analysis of Head 0.0

The attention pattern of layer zero heads is a relatively simple function of the input. Recall

that for every (query, key) pair of positions we compute an attention score. We then divide

by a constant and take the query-axis softmax so that the attention paid by every query

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=c(I)%20%5Csub%20G#0


position sums to one. For layer 0 heads, each attention score is simply a function of four

inputs: the query token, the query position, the key token, and the key position:

One pattern that is noticeable is that if the query is an open parentheses, the attention

score does not change based on if the key token is an open or close parentheses. That is,

for all possible query and key positions.

This means that the attention pattern at an open parentheses query will only depend on

the query position and the length of the entire sequence. The expected attention pattern

(after softmax) for sequences of length 40 is displayed below:

And focusing on three representative query positions (each one a row in the above plot):

https://www.codecogs.com/eqnedit.php?latex=%20s(%5Ctext%7Bopen%7D%2Cq_%5Ctext%7Bpos%7D%2C%5Ctext%7Bopen%7D%2Ck_%5Ctext%7Bpos%7D)%5Capprox%20s(%5Ctext%7Bopen%7D%2Cq_%5Ctext%7Bpos%7D%2C%5Ctext%7Bclose%7D%2Ck_%5Ctext%7Bpos%7D)%20#1


Some things to notice:

● To a first approximation, the attention is roughly upper triangular.

● The attention before the query position is non-zero, but mostly flat. This will

motivate our definition of padj for experiment 3b.

● There are various imperfections. We expect these are some of the reasons our model

has non-perfect performance.

As a simplifying assumption, let us assume that the attention pattern is perfectly upper

triangular. That is every query position pays attention to itself and all later positions in the

sequence. What then would the head output?

One way to compute the output of an attention head is to first multiply each input position

by the V and O matrices, and then take a weighted average of these with weights given by

the attention probabilities. It is thus useful to consider the values

before this weighted average.

It turns out that depends strongly on if ktok is an open or close parentheses, but doesn’t

depend on the position i. That is we can define and to be the mean across

positions. All point in the direction of (minimum cosine similarity is 0.994),

and all point in the direction of (minimum cosine similarity is 0.995).

and , however, point in opposite directions (cosine similarity -0.995).

https://www.codecogs.com/eqnedit.php?latex=%20h_%7B%5Cmathrm%7Bktok%7D%2C%20i%7D%20%3D%20W%5EO_%7B0.0%7D(W%5EV_%7B0.0%7D%5Cmathrm%7BLN%7D_0(%5Cmathrm%7Bemb%7D_%7B%5Cmathrm%7Bktok%7D%2C%20i%7D)%20%2B%20%5Cbeta%5EV)#1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=h_%7B%5Cktok%2C%20i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%20h_%7B%5Cmathrm%7Bopen%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%20h_%7B%5Cmathrm%7Bclose%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=h_%7B%5Cmathrm%7Bopen%7D%2C%20i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%20h_%7B%5Cmathrm%7Bopen%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=h_%7B%5Cmathrm%7Bclose%7D%2C%20i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%20h_%7B%5Cmathrm%7Bclose%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%20h_%7B%5Cmathrm%7Bopen%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%20h_%7B%5Cmathrm%7Bclose%7D%7D#0


We can combine what we have learned about the attention and the effect of the O and V

matrices to give a reasonable understanding of the behavior of this head. Let us assume the

attention pattern is perfectly upper triangular. Then at query position i, pi of the attention

will be on open parentheses positions, and (1-pi) of the attention will be on close

parentheses positions.
26

Then the output of the head will be well approximated by

Since these terms are in nearly-opposing directions, we can well approximate the activation

in a rank-one subspace:

This shows how 0.0 computes pi at open parenthesis positions. We also directly test this ɸ
function in experiment 2b.

padj: A more accurate replacement for p

In the previous appendix section we assumed the attention pattern of 0.0 is perfectly upper

triangular. We did note that 0.0 pays non-zero attention to positions before the query.

Defining padj

Fix some query position q in an input of length n. We can split the string into a prefix and a

suffix, where the prefix is positions [1, q-1] and the suffix is positions [q, n]. If 0.0 had a

perfectly upper triangular attention pattern, it would pay 1/len(suffix) attention to every

key position in the suffix.

Instead, however, let us assume that it pays bq,n attention to the prefix, leaving only (1-bq,n)

attention for the suffix. Then it pays 1/len(prefix) attention to every position in the prefix,

and (1-bq,n)/len(suffix) attention to every position in the suffix.

We calculate every bq,n based on analysis of the attention pattern. Note these are

independent of the sequence. Two important facts are true about these values:

1. b1,n = 0. That is, at position 1 no attention is paid to the prefix, since no prefix exists.

2. bq,n < (q-1)/n = len(prefix)/n. This implies that at every position, for every sequence

length, more attention is paid to a given position in the suffix than in the prefix.

We then define padj, q based on this hypothesized attention. If pprefix and psuffix are the

proportion of open parentheses in the respective substrings, then padj, q = bq,n*pprefix +

(1-bq,n)*psuffix.

26
This does ignore attention on the [BEGIN] and [END] positions, but in practice this doesn’t change

the output noticeably.

https://www.codecogs.com/eqnedit.php?latex=p_i%20%5Cbar%20h_%7B%5Cmathrm%7Bopen%7D%7D%20%2B%20(1-p_i)%5Cbar%20h_%7B%5Cmathrm%7Bclose%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cphi(p_i)%20%3D%20(2p_i%20-%201)(%5Cbar%20h_%7B%5Cmathrm%7Bopen%7D%7D%20%20-%20%5Cbar%20h_%7B%5Cmathrm%7Bclose%7D%7D)%2F2%20#1


The adjusted

The count test is unchanged, since fact 1 above implies padj,1 = p1. The

never-beneath-horizon test is altered: we now test horizonadj,i which is defined to be true if

padj,i ≤ 0.5. While this doesn’t agree on all sequences, we will show it does agree for

sequences that pass the count test. This is sufficient to show that our new always

computes if a given input is balanced (since the value of the horizon test is unimportant if

the count test fails).

Thus, to complete the proof, we will fix some input passes the count test and a query

position q. We will show that the adjusted horizon test at q passes exactly if the normal

horizon test at q passes.

We can express both p1 and padj,q as weighted averages of pprefix and psuffix. In particular,

However, bq n < (q-1)/n. Thus, padj,q > p1 exactly when psuffix > pprefix. Since the input passes

the count test, p
1
=0.5 which implies only one of psuffix and pprefix can be greater than 0.5.

Thus, a horizon failure at q ⇔ psuffix > 0.5 ⇔ psuffix > pprefix ⇔ padj, q ⇔ an adjusted horizon

failure at q.

This shows the horizon tests agree at every position of any input that passes the count test.

This ensures they agree on if any input is balanced, and our new causal graph is still

perfectly accurate.

Attribution Results

For some evidence that the adjusted proportion more closely matches what 2.1 uses, we can

return to our measure of the logit difference to 2.1. We might hope that the maximum value

of pi across the sequence has a clear correspondence with the output of 2.1. However, it

turns out there are many sequences that end in an open parentheses (and thus pn=1) but

2.1 does not clearly output an unbalanced signal, as can be seen in the left subplot below:

https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=%20p_1%20%3D%20%5Cfrac%7Bq-1%7D%7Bn%7D%20p_%5Ctext%7Bprefix%7D%20%2B%20(1-%5Cfrac%7Bq-1%7D%7Bn%7D)%20p_%5Ctext%7Bsuffix%7D%20#1
https://www.codecogs.com/eqnedit.php?latex=%20p_%7B%5Ctext%7Badj%7D%2C%20q%7D%20%3D%20b_%7Bq%2Cn%7D%20p_%5Ctext%7Bprefix%7D%20%2B%20(1-b_%7Bq%2Cn%7D)%20p_%5Ctext%7Bsuffix%7D%20#1


In practice, these are often sequences with many more close parentheses than open

parentheses. Thus, even at the last position 0.0 attention will mostly be spread among

positions with close parentheses. While this means 2.1 may not pick up on the failure, 2.0

will be able to detect these sequences as unbalanced.

This type of dynamic is captured in our definition for padj. We can see that the maximum

adjusted proportion has a much clearer relationship with the attribution to head 2.1.

Effect of padj on scrubbed model loss

The plot above does not explain why our scrubbed model performs better when using padj;

the lower loss comes from samples that are not on the maximum p or padj for the sequence.

In particular the attribution plot has clearer separation of classes because we remove

false-negatives of the original horizon test at the sequence level (horizonall fails but 2.1 does

not say the input is unbalanced; these are removed because horizonadj passes). The main

reason the scrubbed loss improves, however, is because we remove false-positives at the

position level (horizoni passes but 2.1 treats the input a failure; these are removed because

horizonadj,i fails).

Examples where horizoni passes but horizonadj,i fails are ones where there is a horizon

failure somewhere in the prefix. Thus, there aren’t sequence level false positives of the

horizon test (when compared to the adjusted horizon test). In practice the shortcomings of

the normal horizon test seem to not be a problem for experiments 1 and 2.
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It is notably
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Using the adjusted horizon test in Experiment 1b slightly increases the loss to 0.33, not a

significant difference. It is perhaps somewhat surprising the loss doesn’t decrease. In particular we

should see some improvement when we wanted to sample an output from 2.0 and 1.0 that passes the

count
(
test, but an output from 2.1 that fails the horizon test, as we no longer sample false-negatives



worse for experiment 3, however, where sampling a single x2[i] that has

unbalanced-evidence is enough to cause the model to flip from a confidently balanced to

confidently unbalanced prediction.

Breaking up Experiment 3 by term

In order to make our hypothesis 3a more specific we can claim that the only relevant parts

of x2[i] are the terms from attention 0, mlp0, and mlp1. We sample each of these to be from a

separate sequence, where all three agree on horizon i. The rest of the sum (attention 1 and

the embeddings) will thus be sampled on a random input.

for 2.1 (where the output has no unbalanced evidence). This is a rare scenario, however: there aren’t

many inputs in our dataset that are horizon failures but pass the count
(
test. We hypothesize that

this is why the improvement doesn’t appear in our overall loss.



Surprisingly, this causes the loss recovered by the scrubbed model to improve significantly

when compared to experiment 3a, to 84%. Why is this? Shouldn’t claiming a more specific

hypothesis result in lower loss recovered?

We saw in experiment 3a that certain inputs which pass the horizon test at i still carry

unbalanced-signal within x2[i]. However, instead of sampling a single input for x2[i] we now

are sampling four different inputs: one each for a0, mlp0, and mlp1 which all agree on the

horizon i test, and a final random input for both the embedding and a1. Sampling the terms

of x2[i] is enough to ‘wash out’ this unbalanced signal in some cases.

In fact, it is sufficient to just sample x2[i] as the sum of two terms. Consider the

intermediate hypothesis that all that matters is the sum of the outputs of a0, mlp0, and

mlp1:

By not including the emb + a1 term, this hypothesis implicitly causes them to be sampled

from a separate random input.

The % loss recovered is 81%, between that of 3a and 3c. As a summary, the following table

shows which terms are sampled together:



3a (1 term) x2[i] = emb + a0 + mlp0 + a1 +

mlp1

%LR = 77%

3d (2 terms) x2[i] = emb + a0 + mlp0 + a1 +

mlp1

%LR = 81%

3c (4 terms) x2[i] = emb + a0 + mlp0 + a1 +

mlp1

%LR = 84%

In red are the claimed-unimportant terms, sampled from a random input. All other inputs

agree with horizon i. Note also that in each case, all inputs are independently drawn

between positions.

Are the results of experiment 3c and 3d legitimate then? We think not. One way to think

about this is that a hypothesis makes claims about what scrubbing should be legal. For

instance, the hypothesis in 3d claims that it would be okay to sample x2[i] separately, term

by term. However, the hypothesis also implies that it would be okay to sample them

together!

One way to address this sort of problem is to introduce an adversary, who can request that

terms are sampled together (if this is allowable by the proposed hypothesis). The adversary

would then request that the hypotheses from 3c and 3d are run with every term of x2[i]

sampled together. This would result in the same experiment as we ran in 3a.



4: Induction causal scrubbing results

One sentence summary: we investigate how induction heads work using causal scrubbing, to

illustrate how to use it to iteratively refine interpretability hypotheses about a small

language model.

Introduction

In this section, we’ll apply the causal scrubbing methodology to investigate how induction

heads work in a particular two layer attention-only language model.
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While this section

won’t end up reaching hypotheses which are fully specific or fully human understandable,

causal scrubbing will still allow us to validate claims about which components and

computations of the model are important.

We'll first identify the induction heads in our model and the distribution over which we

want to explain these heads' behavior. We'll then show that an initial naive hypothesis

about how these induction heads mechanistically work, similar to the one described in the

Induction Heads paper (Olsson et al 2022), only explains 35% of the loss. We’ll then go to

verify that a slightly more general, but still reasonably specific hypothesis can explain 89%

of the loss. It turns out to be the case that induction heads in this small model use

information that is flowing through a variety of paths through the model – not just previous

token heads and the embeddings. However, the important paths can be constrained

considerably – for instance, only a small number of sequence positions are relevant and the

way that attention varies in layer 0 is not that important.

As with the paren balance checker section, this section is mostly intended to be pedagogical.

You can treat it as an initial foray into developing and testing a hypothesis about how

induction heads work in small models. We won't describe in detail the exploratory work we

did to produce various hypotheses in this document; we mostly used standard techniques

(such as looking at attention patterns) and causal scrubbing itself (including looking at

internal activations from the scrubbed model such as log-probabilities and attention

patterns).

28
These heads are probably doing some things in addition to induction; we’ll nevertheless refer to

them as induction heads for simplicity and consistency with earlier work.

https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895


Methodology

Overall approach

The experiments prescribed by causal scrubbing in this section are roughly equivalent to

performing resampling ablations on the parts of the rewritten model that we claim are

unimportant. For each ‘actual’ datum we evaluate the loss on, we’ll always use a single

‘other’ datum for this resampling ablation.

Throughout this document we measure hypothesis quality using the percentage of the loss

that is recovered under a particular hypothesis. This percentage may exceed 100% or be

negative, it’s not actually a fraction. See the relevant section in section 2 for a formal

definition.

Note that we’re not writing out formal hypotheses, as defined in our earlier section, in these

examples, because the hypotheses are fairly trivial while also being cumbersome to work

with. In brief, our is identical to with all the edges we say don’t matter removed, and

every node computing the identity. See this example of writing out the embeddings -> value

hypothesis in this form.

Model architecture

We studied a two layer attention-only model with 8 heads per layer. We use L.H as a

notation for attention heads where L is the zero-indexed layer number and H is the

zero-indexed head number.

Further details about the model architecture (which aren’t relevant for the experiments we

do) can be found in the appendix.

Identification

Identifying induction heads

Induction heads are attention heads originally found in A Mathematical Framework for

Transformer Circuits (Elhage et al 2021) which empirically attend from some token [A]

back to earlier tokens [B] which follow a previous occurrence of [A]. Overall, this looks like

[A][B]...[A] where the head attends back to [B] from the second [A].

Our first step was to identify induction heads. We did this by looking at the attention

patterns of layer 1 heads on some text where there are opportunities for induction. These

heads often either attend to the first token in a sequence, if the current token doesn’t

https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html


appear earlier in the context, or look at the token following the previous occurrence of the

current token.

Here are all the attention patterns of the layer 1 heads on an example sequence targeted at

demonstrating induction: “Mrs. Dursley, Mr. Dursley, Dudley Dursley”

Two heads seem like possible induction heads: 1.5 and 1.6. We can make this more clear by

looking more closely at their attention patterns: for instance, zooming in on the attention

pattern of 1.6 we find that it attends to the sequence position corresponding to the last

occurrence of “[ley]”:

Within this, let’s specifically look at the attention from the last ‘urs’ token (highlighted in

the figure above).



A closer look at the attention pattern of head 1.5 showed similar behavior.

Identifying the previous token head

Previous token heads are heads which consistently attend to the previous token. We picked

out the head that we thought was a previous token head by eyeballing the attention

patterns for the layer zero heads. Here are the attention patterns for the layer zero heads

on a short sequence from OpenWebText:

Here’s a plot of 0.0’s attention pattern where you can see the sequence, generated with our

interpretability user interface here.

http://interp-tools.redwoodresearch.org/#/?interpsite=%7B%22whichModel%22%3A%22attention_only_two_layers_untied%22%2C%22prompt%22%3A%22+Luis+Suarez%3A+Feared+for+his+move+to+Barcelona%5Cn%5CnLuis+Suarez+has+revealed+he+thought+he+had+blown+his+chance+of+joining+Barcelona+after+his+infamous+bite+on+Giorgio+Chiellini+at+the+World+Cup.%22%2C%22nonce%22%3A6%2C%22allNonce%22%3A109%2C%22whichAttributionUI%22%3A%22tree%22%2C%22diagramsUI%22%3A%7B%22attributionSource%22%3A%7B%22kind%22%3A%22logprob%22%2C%22data%22%3A%7B%22seqIdx%22%3A5%2C%22tokString%22%3A%22+red%22%2C%22comparisonTokString%22%3Anull%7D%7D%7D%2C%22indirectUI%22%3A%7B%22maskSchema%22%3A%22true%22%2C%22lossToken%22%3A%22+the%22%2C%22lossComparisonToken%22%3Anull%2C%22seqPos%22%3A%22-2%22%2C%22lossFnKind%22%3A%22logit%22%7D%2C%22showComposable%22%3Atrue%2C%22showAttribution%22%3Atrue%2C%22showDiagrams%22%3Afalse%2C%22showIndirect%22%3Afalse%2C%22composableUI%22%3A%7B%22lvntDims%22%3A%5B%5B57%2C57%5D%2C%5B57%2C490%5D%2C%5B2%2C8%2C57%2C57%5D%2C%5B512%2C256%5D%2C%5B57%2C57%5D%2C%5B2%2C50258%2C256%5D%2C%5B2%2C8%2C57%2C256%5D%2C%5B2%2C1%2C57%2C256%5D%2C%5B2%2C2%2C57%2C57%5D%2C%5B2%2C8%2C57%2C57%5D%2C%5B2%2C8%2C2%2C57%2C32%5D%2C%5B57%5D%2C%5B2%2C8%2C57%2C57%5D%2C%5B2%2C8%2C57%2C57%5D%2C%5B4%2C2%2C8%2C32%2C256%5D%5D%2C%22nonce%22%3A51%2C%22panels%22%3A%5B%7B%22vizName%22%3A%22Sided+matrix%22%2C%22spec%22%3A%5B0%2C0%2C%22axis%22%2C%22axis%22%5D%2C%22focus%22%3A%5Bnull%2Cnull%2Cnull%2Cnull%5D%2C%22options%22%3A%7B%7D%2C%22lvntIdx%22%3A9%2C%22hover%22%3A%5Bnull%2Cnull%2Cnull%2Cnull%5D%2C%22hideConfig%22%3Afalse%2C%22axisPermutationToShow%22%3A%5B0%2C1%2C2%2C3%5D%7D%5D%7D%2C%22attributionUI%22%3A%7B%22tree%22%3A%5B%5D%2C%22root%22%3A%7B%22kind%22%3A%22logprob%22%2C%22threshold%22%3A0.1%2C%22data%22%3A%7B%22seqIdx%22%3A44%2C%22tokString%22%3A%22.%22%2C%22comparisonTokString%22%3Anull%7D%7D%2C%22lineWidthScale%22%3A1%2C%22useIGAttn%22%3Afalse%2C%22useIGOutput%22%3Atrue%2C%22showNegative%22%3Atrue%2C%22useActivationVsMean%22%3Afalse%2C%22fuseNeurons%22%3Atrue%2C%22fakeMlp%22%3A%22none%22%2C%22threshold%22%3A0.1%2C%22specificLogits%22%3A%5B%5D%2C%22modelName%22%3A%22attention_only_two_layers_untied%22%2C%22nonce%22%3A0%2C%22toks%22%3A%5B%22%5BBEGIN%5D%22%2C%22+%22%2C%22+Luis%22%2C%22+Suarez%22%2C%22%3A%22%2C%22+F%22%2C%22eared%22%2C%22+for%22%2C%22+his%22%2C%22+move%22%2C%22+to%22%2C%22+Barcelona%22%2C%22%5Cn%22%2C%22%5Cn%22%2C%22Lu%22%2C%22is%22%2C%22+Suarez%22%2C%22+has%22%2C%22+revealed%22%2C%22+he%22%2C%22+thought%22%2C%22+he%22%2C%22+had%22%2C%22+blown%22%2C%22+his%22%2C%22+chance%22%2C%22+of%22%2C%22+joining%22%2C%22+Barcelona%22%2C%22+after%22%2C%22+his%22%2C%22+infamous%22%2C%22+bite%22%2C%22+on%22%2C%22+G%22%2C%22ior%22%2C%22gio%22%2C%22+Ch%22%2C%22ie%22%2C%22ll%22%2C%22ini%22%2C%22+at%22%2C%22+the%22%2C%22+World%22%2C%22+Cup%22%2C%22.%22%5D%2C%22onlyOV%22%3Afalse%7D%7D


So you can see that 0.0 mostly attends to the previous token, though sometimes attends to

the current token (e.g. on “ to”) and sometimes attends substantially to the [BEGIN] token

(e.g. from “ Barcelona”).

Picking out tokens at which the model is particularly likely to

do induction

Let's define a "next-token prediction example" to be a context (a list of tokens) and a next

token; the task is to predict the next token given the context. (Normally, we train

autoregressive language models on all the prefixes of a text simultaneously, for performance



reasons, but equivalently we can just think of the model as being trained on many different

next-token prediction examples.)

We made a bunch of next-token prediction examples in the usual way (by taking prefixes of

tokenized OWT documents), then filtered to the subset of these examples where the last

token in the context was in a particular whitelist of tokens.

We chose this whitelist by following an approach which is roughly 'select tokens such that

hard induction is very helpful over and above bigrams'--see the appendix for further details.

Code for this token filtering can be found in the appendix and the exact token list is linked.

Our guess is that these results are pretty robust to different ways of selecting the token

whitelist.

So we didn't filter based on whether induction was a useful heuristic on this particular

example, or on anything about the next-token; we just filtered based on whether the last

token in the context was in the whitelist.

For all the hypotheses we describe in this doc, we’ll measure the performance of our

scrubbed models on just this subset of next-token prediction examples. The resulting data

set is a set of sequences whose last token is somewhat selected for induction being useful.

Note that evaluating hypotheses on only a subset of a dataset, as we do here, is equivalent

to constructing hypotheses which make no claims on tokens other than our “inductiony”

tokens, and then evaluating these weaker hypotheses on the whole dataset.

Establishing a baseline

We want to explain the performance of our two layer attention-only model. Its performance

is measured by the following computational graph:



We’re taking the token embeddings (emb) and running them through the model, then

calculating the log-loss of the model on the actual next token. The model is composed of two

attention layers (with layernorm), which we’re writing as a0 and a1.

To start out our investigation, let’s see how much performance is damaged if we replace the

induction head’s outputs with their outputs on random other sequences. To measure this,

we rewrite our model to separate out the induction heads from the other layer 1 heads:



Now we consider passing in different inputs into the induction heads and the other heads.



We run the model without the induction heads on the (emb, next token) pairs that

correspond to sequences in our filtered next-token-prediction dataset, while running the

induction heads on a different sequence (encoded as emb2).

Note that if we ran this computational graph with emb2 = emb, we’d exactly recover the

performance of the original model–we’ve rewritten the model to be exactly mathematically

equal, except that we’re now able to pass in inputs that are different for different paths

through the model.

If the induction heads were totally useless, this experiment would return the same loss as

the original model.

When you run the scrubbed computation, the loss is 0.213. The original loss on this dataset

was 0.160, and the difference between these losses is 0.053. This confirms that the

induction heads contribute significantly to the performance of the original model for this

subset of tokens.



Going forward, we'll report the fraction of this 0.053 loss difference that is restored under

various scrubs.

For every experiment in this doc, we use the same choice of emb2 for each (emb, next token)

pair. That is, every dataset example is paired with a single other sequence
29

that we’ll patch

in as required; in different experiments, the way we patch in the other sequence will be

different, but it will be the same other sequence every time. We do this because it reduces

the variance of comparisons between experiments.

Initial naive hypothesis

This is the standard picture of induction:

● We have a sequence like “Mr. Dursley was the director of a firm called Grunnings,

which made drills. He was a big, beefy man with hardly any neck, although he did

have a very large mustache. Mrs. Durs”. “Dursley” is tokenized as | D|urs|ley|.

And so a good prediction from the end of this sequence is “ley”. (We’ll refer to the

first “urs” token as A, the first “ley” token as B, and the second “urs” token as A’.)

● There’s a previous-token head in layer 0 which copies the value at A onto B.

● The induction head at A’ attends to B because of an interaction between the token

embedding at A’ and the previous-token head output at B.

● The induction head then copies the token embedding of B to its output, and therefore

the model proposes B as the next token.

To test this, we need to break our induction heads into multiple pieces that can be given

inputs separately. We first expand the node (highlighted in pink here):

29
Note that we opt to use a single input rather than many.



So we’ve now drawn the computation for the keys, queries, and values separately. (We’re

representing the multiplications by the output matrix and the value matrix as a single “OV”

node, for the same reasons as described in the “Attention Heads are Independent and

Additive” section of A Mathematical Framework for Transformer Circuits.)

Our hypothesis here involves claims about how the queries, keys, and values are formed:

● values for the induction head are produced just from the token embeddings via the

residual stream with no dependence on a0

● queries also are purely from the token embeds

● keys are produced just by the previous-token head

https://transformer-circuits.pub/2021/framework/index.html#architecture-attn-independent
https://transformer-circuits.pub/2021/framework/index.html#architecture-attn-independent


Before we test them together, let’s test them separately.

The embeddings → value hypothesis

The hypothesis claims that the values for the induction head are produced just from the

token embeddings via the residual stream with no dependence on a0. So it should be fine

for us to rewrite the computation such that the a1 induction OV path is given the a0 output

from emb2, and so it only gets the information in emb via the residual connection around

a0:

When we do this scrub, the measured loss is 90% of the way from the baseline ablated

model (where we ran the induction heads on emb2) to the original unablated model. So the

part of the hypothesis where we said only the token embeddings matter for the value path

of the induction heads is somewhat wrong.



The embeddings → query hypothesis

We can similarly try testing the “the queries for induction heads come purely from the

token embeds” hypothesis, with the following experiment:

The fraction of the loss restored in this experiment is 51%, which suggests that this part of

the hypothesis was much more wrong than the part about how the induction head values

are produced.

The previous-token head → key hypothesis

Finally, we want to test the claim that the key used by the induction head is produced just

by the previous-token head that we hypothesized at the beginning of the section.

To do this, we first rewrite our computational graph so that the induction key path takes

the previous-token head separately from the other layer zero heads.



This experiment here corresponds to the claim that the only input to the induction heads

that matters for the keys is the input from the previous-token head.

However, this experiment wouldn’t test that the previous-token head is actually a previous

token head–it just tests that this head is the head that the induction heads rely on.

We can make a strong version of this previous token head claim via 2 sub claims:

● The attention pattern is unimportant (by this, we mean that the relationship

between the attention pattern and the OV is unimportant as discussed in this

section of our earlier section.

● All that matters for the OV is the previous sequence position

We’ll implement these claims by rewriting the model to separate out the parts which we

claim are unimportant and then scrubbing these parts. Specifically, we’re claiming that this



head always operates on the previous token through its OV (so we connect that to “emb”);

and its attention pattern doesn’t depend on the current sentence (so we connect that to

“emb2”). We also connect the OV for tokens that are not the previous one to “emb2”.

The resulting computation for the previous-token head is as follows:

So we’ve run the OV circuit on both emb and emb2, and then we multiply each of these by a

mask so that we only use the OV result from emb for the previous token. Prev mask is a

matrix that is all zeros except for the row below the diagonal (corresponding to attention to

the previous token), non prev mask is the difference between prev mask and the lower

triangular mask that we normally use to enforce that attention only looks at previous

sequence positions.



And so, our overall experiment is as follows, where the nodes of the model corresponding to

the previous token head are in pink.



This fraction of the loss restored by this experiment is 79%.

Scrubbing these all together

Next we want to scrub all these paths (i.e. do all these interventions) simultaneously.

The fraction of the loss that this restores is 35%.

Takeaways

So, this simplistic picture is quite wrong for these induction heads.

To recap the results, the fractions of loss restored are:

● Scrubbing all of the input to Q except the embeds: 51%.

● Scrubbing all of the input to K, except the previous token part of the previous-token

head: 79%

● Scrubbing all of the input to V except the embeds: 90%

● Doing all of these at once: 35%



These numbers weren’t very surprising to us. When we described this experiment to some

of the authors of the induction heads paper, we asked them to guess the proportion of loss

that this would recover, and they were also roughly in the right ballpark.

Refined Hypotheses

Refined hypothesis 1

So how might our previous hypothesis be missing important considerations? That is, what

important information are we scrubbing away?

Here’s one possibility. It’s common for attention heads to attend substantially to the current

sequence position (you’ll see this if you look at the attention patterns included in the

“Identification” section). This attention results in the token’s representation being

transformed in a predictable way. And so, when the induction heads are learning to e.g.

copy a token value, they’ll probably set up their V matrix to take into account the average

attention-to-current-token of the layer zero heads.

We would like to express the hypothesis that the induction head interacts with all the layer

zero heads, but through their average attention-to-current-token. That is, we hypothesize

that the induction head’s behavior isn’t importantly relying on the ways that a0 heads vary

their attention depending on context; it’s just relying on the effect that the a0 head OV

pathway has, ignoring correlation with the a0 attention pattern.

Similarly, there might be attention heads other than the previous token head which on

average attend substantially to the previous token; the previous hypothesis also neglects

this, but we’d like to represent it.

Here’s the complete experiment we run. Things to note:

● We’ve drawn the “emb” and “emb2” nodes multiple times. This is just for ease of

drawing–we’ll always use the same value the two places we drew an emb node.

● The main point of this experiment is that the layer zero attention patterns used by

the induction heads always come from emb2, so the induction heads can’t be relying

on any statistical relationship between the layer zero attention pattern and the

correct next token.



Running parts of this individually (that is, just scrubbing one of q, k, or v in the induction

heads, while giving the others their value on emb) and all together (pictured) yields the

following amounts of loss recovered:

Q: 76%

K: 86%

V: 97%

All: 62%

So, we've captured v quite well with this addition, but k and q are still missing some of

what's going on.

Refined hypothesis 2

One theory for what could be going wrong with q and k is that we need to take into account

other sequence positions. Specifically, maybe there's some gating where k only inducts on

certain 'B' tokens in AB...A, and maybe the induction heads fire harder on patterns of the

form XAB...XA, where there are 2 matching tokens (for example, in the earlier Dursley



example, note that the two previous tokens | D| and |urs| both matched.). This is

certainly not a novel idea - prior work has mentioned fuzzy matching on multiple tokens.

So, we'll considerably expand our hypothesis by including 'just the last 3 tokens' for k and q

(instead of just previous and just current). (By last three, we mean current, previous, and

previous to previous.)

It’s getting unwieldy to put all this in the same diagram, so we’ll separately draw how to

scrub k, q, and v. The OV activations are produced using the current token mask, and the Q

and K are produced using the “last 3 mask”. Both use the direct path from emb rather than

emb2.



Given these, we can do the experiments for this hypothesis by substituting in those

scrubbed activations as desired:



And the numbers are:

Q: 87%

K: 91%

V: 97% (same as previous)

All: 76%

This improved things considerably, but we're still missing quite a bit. (We tested using

different subsets of the relative sequence positions for q and k; using the last three for both

was the minimal subset which captures nearly all of the effect.)



Refined hypothesis 3

If you investigate what heads in layer 0 do, it turns out that there are some heads which

often almost entirely attend to occurrences of the current token, even when it occurred at

earlier sequence positions.

The below figure shows the attention pattern of 0.2 on the last ' Democratic' token:

So you can see that 0.2 attended to all the copies of “ Democratic”.

Because this is a layer zero head, the input to the attention head is just the token

embedding, and so attending to other copies of the same token leads to the same output as

the head would have had if it had just attended to the current token. But it means that on

any particular sequence, this head’s attention pattern is quite different from its attention

pattern averaged over sequences. Here’s that head’s attention pattern at that sequence

position, averaged over a large number of sequences:

You can see that on average, this head attends mostly to the current token, a bit to the

[BEGIN] token, and then diffusely across the whole sequence. This is the average attention

pattern because tokens that match the current token are similarly likely to be anywhere in

the context.

These heads have this kind of attend-to-tokens-that-are-the-same-as-the-current-token

behavior for most of the tokens in the subset of tokens that we picked (as described in

“Picking out inductiony tokens”). This is problematic for our strategy where we scrub the

attention probabilities: the expected attention probability on tokens matching the current

token might be 0.3 even though the model always only attends to tokens matching the

current token.

There are two layer 0 heads which most clearly have this behavior, 0.2 and 0.5, as well as

0.1, which somewhat has this behavior.

(These heads don't just do this. For instance, in the attention pattern displayed above, 0.2

also attends to ' Democratic' and ' Party' from the ' GOP' token. We hypothesize this is



related to 'soft induction'
30

, though it probably also has other purposes – for instance

directly making predictions from bigrams and usages in other layer 1 heads.)

In addition to this issue with the self-attending heads, the previous token head also

sometimes deviates from attending to the previous token, and this causes additional noise

when we try to approximate it by its expectation. So, let’s try the experiment where we run

the previous token head and these self-attending heads with no scrubbing or masking.

So we’re computing the queries and keys for the induction heads as follows:

And then we use these for the queries and keys for the induction heads. We use the same

values for the induction heads as in the last experiment. Our experiment graph is the same

as the last experiment, except that we’ve produced q and k for the induction heads in this

new way.

Now we get:

Q: 98%

K: 97%

V: 97% (same as previous)

All: 91%

We’re happy with recovering this much of the loss, but we aren’t happy with the specificity

of our hypothesis (in the sense that a more specific hypothesis makes more mechanistic

30
This is where seeing AB updates you towards thinking that tokens similar to A are likely to be

followed by tokens like B.



claims and permits more extreme intervention experiments). Next, we’ll try to find a

hypothesis that is more specific while recovering a similar amount of the loss.

Refined hypothesis 4

So we’ve observed that the self-attending heads in layer zero are mostly just attending to

copies of the same token. This means that even though these heads don’t have an attention

pattern that looks like the identity matrix, they should behave very similarly to how they’d

behave if their attention pattern was the identity matrix. If we can take that into account,

we should be able to capture more of how the queries are formed.

To test that, we rewrite the self-attending heads (0.1, 0.2, 0.5) using the a = b + (a - b)

identity, where “identity attention” means the identity matrix attention pattern:

This is equal to calculating 0.1, 0.2, and 0.5 the normal way, but it permits us to check the

claim “The outputs of 0.1, 0.2, and 0.5 don’t importantly differ from what they’d be if they

always attended to the current token”, by using just the left hand side from the real input

and calculating the “error term” using the other input.



Let’s call this “0.1, 0.2, 0.5 with residual rewrite”.

So now we have a new way of calculating the queries for the induction heads:



Aside from the queries for the induction heads, we run the same experiment as refined

hypothesis 2.

And this yields:

Q: 97%

K: 91% (same as refined hypothesis 2)

V: 97% (same as refined hypothesis 2)

All: 86%

We've now retained a decent fraction of the loss while simultaneously testing a reasonably

specific hypothesis for what is going on in layer 0.



Conclusion

Hopefully, this will serve as a useful example of how causal scrubbing works in simple

settings: here, it allowed us to vet hypotheses explaining the behavior of induction heads

and improve them iteratively and easily.

Key takeaways:

● We were able to use causal scrubbing to narrow down what model computations are

importantly involved in induction.

● In practice, induction heads in small models take into account information from a

variety of sources to determine where to attend.

Appendices

Model architecture and experiment details

● The model uses the shortformer positional encodings (which means that the

positional embeddings are added into the Q and K values before every attention

pattern is computed, but are not provided to the V).

● The model has layer norms before the attention layers.

● The model was trained on the openwebtext dataset.

● Its hidden dimension is 256.

● We ran causal scrubbing on validation data from openwebtext with sequence length

300

How we picked the subset of tokens

● Choose beta and threshold

● Then for all sequential pairs of tokens, AB, in the corpus we compute:

○ The log loss of bigrams (via the full bigram matrix)

○ The log loss of 'the induction heuristic for beta' which we compute as:

■ Find all prior occurrences of A

■ Count the number of these prior occurrences which are followed by B.

Call this matching_count . Let the remaining occurrences be

non_matching_count

■ then we compute the B logit as bigram_log_prob + matching_count *

beta and the non-B logit as other_log_prob + non_matching_count *

beta (where other_log_prob = log(1-exp(bigram_log_probs)) aka, the

log prob of everything else given the bigrams)

■ Then we take log softmax of this and get a log loss

https://arxiv.org/abs/2012.15832
https://github.com/jcpeterson/openwebtext


● Finally, we compute the average log loss from the A for each of these heuristics. If

the bigram loss - induction heuristic loss is > threshold for a given A token, we

include that token.

Bonus refined hypothesis 5

Our previous hypothesis improved the q pathway considerably, but we’re missing quite a bit

of loss due to scrubbing the attention pattern of the previous token head for k. This is due to

cases where the previous token head deviates from attending to the previous token. If we

sample an alternative sequence which fails to attend to the previous token at some

important location, this degrades the induction loss. We’ll propose a simple hypothesis

which partially addresses this issue.

Consider the following passage of text:

> [BEGIN] I discovered Chemis artwork a few weeks ago in Antwerp (Belgium) I’ve been

fascinated by the poetry of his murals and also by his fantastic technique. He kindly

accepted to answer a few questions for StreetArt360. Here’s his interview.\n\nHello

Dmitrij, great to meet you.

We’ll look at the attention pattern for the previous token head as weighted lines from q

tokens to k tokens.

For instance, here’s the start of the sequence:



Some utf-8 characters consist of multiple bytes and the bytes are tokenized into different

tokens. In this case, those black diamonds are from an apostrophe being tokenized into 2

tokens.

Note that the previous token head exhibits quite different behavior on “ I’ve” (where the

apostrophe is tokenized into those 2 black diamonds). Specifically, “ve” skips over the

apostrophe to attend to “ I”. The token “ been” also does this to some extent.



Another common case where the previous token head deviates is on punctuation.

Specifically, on periods it will often attend to the current token more than typical.

While there are a variety of different contexts in which the previous token head importantly

varies its attention, we’ll just try to explain a bit of this behavior. We’ll do this by

identifying a bunch of cases where the head has atypical behavior.

It turns out that the model special cases a variety of different quote characters. We’ll

specifically reference

`’`,  `“`,  ` “`, and `”`



It’s a bit hard to read this, so here’s a zoomed in version with a font that makes the

different characters more obvious.

These quote characters each consist of 2 tokens and the head has atypical behavior if any of

those tokens is the previous one.

It turns out the model also sometimes has atypical behavior if the previous token is the ` a`

or ` an` token:

And, it has atypical behavior if the current token is `.` or ` to`.

Overall, here is simple classifier for whether or not a given token is atypical:

● Is the previous token one of the bytes from any of: `’`,  `“`,  ` “`, and `”`? If so, atypical.

● Is the previous token one of ` a` or ` an`? If so, atypical.

● Is the current token one of `.` or ` to`? If so, atypical.

● Otherwise, typical.

And we’ll propose that it only matters whether or not the attention from the current

location should be ‘typical’ or ‘atypical’. Then, we can test this hypothesis with causal

scrubbing by sampling the attention pattern from the current location from a different

sequence which has the same ‘typicality’ at that location.

This hypothesis is clearly somewhat wrong – it doesn’t only matter whether or not the

current token is ‘typical’! For instance, the current token being “.” or “ to” results in

attending to the previous token while the previous token being “ a” results in attending 2

back. Beyond this issue, we’ve failed to handle a bunch of cases where the model has

different behavior. This hypothesis would be easy to improve, but we’ll keep it as is for

simplicity.

We’ll apply this augmented hypothesis for the previous token head to just the k pathway.

This yields:



Q: 97% (same as refined hypothesis 4)

K: 94%

V: 97% (same as refined hypothesis 2)

All: 89%

So compared to refined hypothesis 4, this improved the loss recovered by 3% for both k

individually (94 -> 97%) and everything together (86->89%). This brings us considerably

closer to the overall loss from hypothesis 3 which was 91%.



5: Conclusion

What do we need to get causal scrubbing

to help with alignment?

One sentence summary: We explain why Redwood Research is excited about causal

scrubbing, what we see as the main limitation of the methodology, and one direction for

addressing the limitation.

In the previous four sections, we outlined the causal scrubbing technique and gave two

examples of applying it in practice. In this section, we first discuss why we’re excited by

causal scrubbing and how it might help with alignment. Then, we discuss some of the

serious limitations of this approach as well as the future work that could address the

limitations.

Overall, we’re pretty excited about causal scrubbing: we think it’s a simple and powerful

method that can help us evaluate fine-grained hypotheses about a model’s behavior in a

strict and quantitative way. We’d go as far as saying that in the absence of other

alternatives, causal scrubbing should serve as the default way to evaluate mechanistic

interpretability hypotheses.
31

We’ve been able to directly apply it to understanding the

behaviors of simple models and are optimistic about it being scalable to larger models and

more complex behaviors.
32

In addition, causal scrubbing generalizes many existing ablation

techniques, and thinking about this formalism has also helped us gain intuition into the

validity of other interpretability techniques. Even though there are some open theoretical

problems (which we outline below), we still believe that approaches like causal scrubbing

might scale to realistic problems we face when aligning powerful AIs.

Applications of causal scrubbing to alignment

The most obvious application of causal scrubbing to alignment is using it to evaluate

mechanistic interpretations. In particular, we can imagine several specific use cases:

● Checking interpretations of model behaviors produced by human researchers. Having

a standardized, reliable, and convenient set of tests would make it much easier to

scale up mechanistic interpretability efforts; this might be particularly important if

there are big interpretability projects right before the deployment of transformative

AI.

32
As an aside, if you’re interested in trying out this methodology, apply to the REMIX!

31
That being said, we’re not claiming that causal scrubbing should be the only way of evaluating

interpretations. In particular, we believe that you should evaluate your interpretation by performing

downstream tasks like predicting out-of-distribution behavior or producing adversarial examples.

https://forum.effectivealtruism.org/posts/MGbdhjgd2v6cg3vjv/apply-to-the-redwood-research-mechanistic-interpretability


● Automated algorithmic searches for explanations. In some cases, researchers might

be able to specify a space of hypotheses and then use optimization algorithms to find

the most predictive ones. We’ve done some work like this and we hope to do much

more in the future.

● AI-assisted explanations. We might be able to train models to produce highly rated

and human-understandable explanations.

In all three applications, we required that researchers understand the explanations that

were verified by causal scrubbing. Unfortunately, it might be the case that the behaviors we

want to interpret in large neural networks won’t have any understandable interpretations

at all. That is, it might be the case that most of the cognition performed inside powerful AI

systems is in some sense irreducibly complex. It also seems plausible that even if these

human-understandable interpretations exist, it might be intractable or impractical to find

them.

That being said, there are plausibly still reasons why causal scrubbing-like methods for

evaluating interpretations could help with AI Alignment, even if we can’t use them to verify

human-understandable interpretations in large models:

● ARC is optimistic about some strategies for solving ELK that involve searching for

objects similar to causal scrubbing explanations and then using properties of these

explanations as part of the training procedure of the model, in ways that don’t

require humans to understand the explanations.

● Suppose you have a weak trusted model and a strong untrusted model. You might be

able to search for explanations of why these models take similar actions which allow

you to distinguish whether the untrusted model is deceptively aligned just based on

the structure of the explanation, rather than via having to understand its content.

● It might be possible to use mechanistic interpretations as a primitive in algorithms

like relaxed adversarial training. The hope here would be that even if we can’t

understand the interpretations, we can still use them to supervise the processes our

models use.

Limitations and Future Work

We think that the causal scrubbing algorithm does turn hypotheses into (relatively)

falsifiable predictions. Unfortunately, there are ways that hypotheses can do well according

to the causal scrubbing algorithm, without telling you everything that you need to know for

alignment applications.

In this section we’ll provide cases where hypotheses can be importantly false or incomplete

in ways that causal scrubbing does not detect. Then, we’ll describe some future work on

https://alignment.org/
https://www.lesswrong.com/posts/9Dy5YRaoCxH9zuJqa/relaxed-adversarial-training-for-inner-alignment
https://ought.org/updates/2022-04-06-process


building an interpretability process that elicits true explanations by using an algorithm like

causal scrubbing to score a two-player adversarial game.
33

This section is more theoretical than other sections and features hand-crafted

counterexamples, in a way that might put off more pragmatic readers. Readers should feel

welcome to ignore this section if it feels insufficiently pragmatic to them.

That being said, we’re interested in studying causal scrubbing-like procedures theoretically

(including on worst-case counterexamples) because of the following two types of possible

applications:

1: Immediate guidance. Most of the counterexamples we’ll mention in this section are

pretty pathological, and an interpretability researcher working in good faith would never

propose them, and a reviewer would easily be able to spot that they’re sketchy. But in

practice, situations have arisen where we were legitimately confused about which of two

reasonable-seeming hypotheses was the right choice.
34

In these cases we’ve found it helpful

to consider what our choices would imply we’d do in more exaggerated cases where the

wrong answer is more obviously wrong.

Also, we suspect that as interpretability research advances, we’ll want to be able to

investigate situations where the effects we’re investigating are smaller, and so where it’s a

harder judgment call to know whether we should be persuaded by the evidence we’ve seen;

in this situation, formalization and well-grounded quantitative assessments of explanations

will become more important. There’s an analogy to other scientific fields, where when

they’re investigating phenomena with larger effect sizes, they can use very simple

statistical methodologies, but when they want to start investigating relatively subtle

effects, they start needing to use more complicated and sensitive statistical tools to assess

their claims.

2: Long-term prospects for scaling interpretability research to untrusted

researchers or automation. If we can come up with a procedure that we think leads to

correct conclusions without having to rely on the good will of the process searching for our

hypotheses, we’d be in a drastically better position for scaling up interpretability research,

either by making it easier to trust the outputs of a large body of researchers while relying

less on everyone (in the same way that static type systems can reduce bugs in large

34
As an example, how to interpret the outcome of this experiment on the paren balance checker,

which updates a hypothesis to be more specific but then explains more of the loss.

33
Note that the problems here are not related to the particular properties of the causal scrubbing

algorithm; they’re just a special case of the general fact that many contradictory hypotheses can

match a given set of observations. We don’t think that these problems can be fixed by incremental

improvements on the algorithms described so far, such as replacing the difference between expected

metrics with the KL divergence between the distributions of performances. Instead, the proposed

solutions to these problems rely on additional facts about the interpretability setting.



codebases), or by allowing automated searches for explanations (perhaps including using AI

assistance). We think that it would be extremely good to be able to do this.

The adversarial game setup we’ll describe for eliciting explanations also has applications

beyond traditional interpretability, including relaxed adversarial training and cases where

you do something like interpretability with AIs as consumers of the explanations rather

than humans.

False hypotheses which make correct predictions

Here are three cases where a hypothesis matches the observed behavior but does not

capture how the model “actually works”. In all of these, the problem is that we ignored

some correlation in that was causing the model to perform worse, and this gave us wiggle

room to also ignore a correlation that causes to perform better.

Neglecting inhibition

When a model uses some heuristic that isn’t always applicable, it might use other circuits to

inhibit the heuristic (for example, the negative name mover heads in the Indirect Object

Identification paper). However, these inhibitory circuits are purely harmful for inputs

where the heuristic is applicable. In these cases, if you ignore the inhibitory circuits, you

might overestimate the contribution of the heuristic to performance, leading you to falsely

believe that your incomplete interpretation fully explains the behavior (and therefore fail to

notice other components of the network that contribute to performance).

For example, if an induction head accounts adds 10 to the logit of the output, while an

inhibitory induction head subtracts 3 from the logit, and other components of the network

add another 3 to the logit, causal scrubbing may lead you to falsely believe that induction

heads account for the entirety of the model’s behavior.

We don’t expect this specific issue to occur often in practice: you have to get unlucky for

these two sources of error (neglecting both helpful and anti-helpful mechanisms) to exactly

cancel out (though it might happen if you keep adding helpful things to your hypothesis

until the heuristic explains the metric you were trying to explain). Also, we don’t expect to

observe this in cases where the metric is the loss on the same distribution that the model

was trained on, because in that context the model generally won’t have components that do

nothing but detract from its performance.

Underestimating interference by neglecting correlations in model errors

In the polysemanticity toy model (analyzed using causal scrubbing in the appendix and first

introduced in some of our earlier work), the model had a noise term in its predictions which

detracted from its performance. As in the previous case, the loss for this model is fully

https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.codecogs.com/eqnedit.php?latex=f#0
https://www.alignmentforum.org/posts/3ecs6duLmTfyra3Gp/some-lessons-learned-from-studying-indirect-object
https://www.alignmentforum.org/posts/3ecs6duLmTfyra3Gp/some-lessons-learned-from-studying-indirect-object
https://twitter.com/anthropicai/status/1570087876053942272?lang=en
https://www.alignmentforum.org/posts/kWp4R9SYgKJFHAufB/polysemanticity-and-capacity-in-neural-networkse


explained by a hypothesis that ignores the noise term and therefore causes the causal

scrubbing method to sample randomly from it.

Now, suppose we rewrite the model from the form we used above:

To the following form:

Where we’ve split the noise term into two pieces. If we sample these two parts of the noise

term independently, we will have effectively reduced the magnitude of the noise, for the

usual reason that averages of two samples from a random variable have lower variance

than single samples. And so if we ignore this correlation, we’ll estimate the cost of the noise

to be lower than it is for the real model. This is another mechanism by which ignoring a

correlation can cause the model to seem to perform better than the real model does; as

before, this error gives us the opportunity to neglect some positive contribution to

performance elsewhere in the model.

Sneaking in knowledge

More egregiously still, we can construct cases where the explanation can make the model

look better by sneaking in information. For example, consider the following setting:

The model’s input is a tuple of a natural number and the current game setting, which is

either EASY or HARD (with equal frequency). The model outputs the answer either “0”, “1”,

or “I don’t know”. The task is to guess the last bit of the hash of the number.

Here’s the reward function for this task:

Game mode Score if model

is correct

Score if model

is incorrect

Score if model says

“I don’t know”

EASY 2 -1 0

HARD 10 -20 0

If the model has no idea how to hash numbers, its optimal strategy is to guess when in

EASY mode and say “I don’t know” in HARD mode.

Now, suppose we propose the hypothesis that claims that the model outputs:

● on an EASY mode input, what the model would guess; and
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● on a HARD mode input, the correct answer.

To apply causal scrubbing, we consider the computational graph of both the model and the

hypothesis to consist of the input nodes and a single output node. In this limited setting,

the projected model runs the following algorithm:

● Replace the input with a random input that would give the same answer according

to the hypothesis; and

● Output what the model outputs on that random input.

Now consider running the projected model on a HARD case. According to the hypothesis, we

output the correct answer, so we replace the input

● half the time with another HARD mode input (with the same answer), on which the

model outputs “I don’t know”; and

● half the time with an EASY mode input chosen such the model will guess the correct

answer.

So, when you do causal scrubbing on HARD cases, the projected model will now guess

correctly half the time, because half its “I don’t know” answers will be transformed into the

correct answer. The projected model’s performance will be worse on the EASY cases, but the

HARD cases mattered much more, so the projected model’s performance will be much better

than the original model’s performance, even though the explanation is wrong!

In examples like this one, hypotheses can cheat and get great scores while being very false.

Future Work: Adversarial validation might be able to elicit

true hypotheses

(Credit for the ideas in this section is largely due to ARC.)

We might have hoped that we’d be able to use causal scrubbing as a check on our

hypotheses analogous to using a proof checker like Lean or Coq to check our mathematical

proofs, but this doesn’t work. Our guess is that it’s probably impossible to have an efficient

algorithm for checking interpretability explanations which always rejects false

explanations. This is mostly because we suspect that interpretability explanations should

be regarded as an example of defeasible reasoning. Checking interpretations in a way that

rejects all false explanations is probably NP-hard, and so we want to choose a notion of

checking which is weaker.

We aren’t going to be able to check hypotheses by treating as uncorrelated everything that

the hypotheses claimed wasn’t relevantly correlated. This would have worked if ignoring

correlations could only harm the model. But as shown above, we have several cases where

ignoring correlations helps the model.
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So we can’t produce true explanations by finding hypotheses subject to the constraint that

they predict the observed metrics. As an alternative proposal, we can check if hypotheses

are comprehensive by seeing if any adversarial additions to the hypothesis would cause the

predicted metric to change considerably. In all of the counterexamples above, the problem is

that the metric was being overestimated because there were important correlations that

were being neglected and which would reduce the estimated metric if they were included. If

we explicitly check for additional details to add to our hypotheses which cause the

estimated metric to change, all the counterexamples listed above are solved.

To set up this adversarial validation scheme, we need some mechanism for hypotheses to be

constructed adversarially. One way of thinking about this is that we want a function `join`

which is a binary operation on hypotheses, taking the two hypotheses to the hypothesis

which preserves all structure in the model that either of the two hypotheses preserved.

Here are two ways of defining this operation:

● Swap-centric. You can think of a hypothesis as a predicate on activation swaps (of

the same activation on two different inputs). From this perspective, you can define

join(h1, h2) to be the hypothesis which permits a swap iff h1 and h2 both permit it.

● Computation graph centric. You can equivalently construct the joined hypothesis

by the following process. First, ensure that each of the correspondences are

bijections, and that both and have the same shape, adding extra no-op nodes

as necessary. Now we can define of the joined hypothesis to be the graph where

every node contains the tuple of the values from the two earlier interpretations.

The main failure of the algorithm listed above is that we don’t know how to handle cases

where the adversary wants to rewrite f to an extensionally-equal function in a way which is

mutually incompatible with the original hypothesis (for example, because their

computational graphs have different shapes and there’s no way to splice the two

computational graphs together). This is a pretty bad problem because the function

extensionality move seems very important in practice. ARC has worked on basically this

problem for a while and hasn’t yet solved it, regrettably.

Some other questions that we haven’t answered:

● How do we incentivize specific explanations? We don’t know (but haven’t thought

about it that much). Our current proposals look something like having a budget for

how much hypotheses can reduce entropy.

● The explanations produced by this process will probably by default be impossible for

humans to understand; is there some way to fix this? We also don’t have good ideas

here. Whether a concept is “human-understandable” requires reference to particular
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humans, so probably this (if it is solvable at all) will have to be solved in some way

that directly refers to what particular humans know or understand. A lot of our

optimism about interpretability comes from applications where the interpretability

tools are used by AIs or by human-coded algorithms, rather than by humans, so

plausibly we’re fine even if humans can’t understand the interpretability results.

Overall, it seems plausible that these problems can be overcome, but they are definitely not

currently solved. We hold out hope for an interpretability process which has validity

properties which allow us to use powerful optimization inside it and still trust the

conclusions, and hope to see future work in this direction.

Other potential future work

Besides the adversarial validation work described above, here’s some of the other work in

this thread that we might do in the near future:

● How to use causal scrubbing in practice: what we think you should do instead of

particular existing interpretability methods.

● Open theoretical problems in causal scrubbing: approaches to ELK related problems,

key bottlenecks in automation, and efficient estimation strategies

● Code release: releasing our model writing and efficient tensor recomputation

framework, as well as exercises and documentation.

Appendix

How causal scrubbing handles polysemanticity

In our polysemanticity toy model paper, we introduced an analytically tractable setting

where the optimal model represents features in superposition. In this section, we’ll analyze

this model using causal scrubbing, as an example of what it looks like to handle

polysemantic activations.

The simplest form of this model is the two-variable, one-neuron case, where we have

independent variables x1 and x2 which both have zero expectation and unit variance, and

we are choosing the parameters c and d to minimize loss in the following setting:
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Where is our model, and are the parameters we’re optimizing, and and are part

of the task definition. As discussed in our toy model paper, in some cases (when you have

some combination of a and b having similar values and and having high kurtosis (e.g.

because they are usually equal to zero)), c and d will both be set to nonzero values, and so

can be thought of as a superposed representation of both and .

To explain the performance of this model with causal scrubbing, we take advantage of

function extensionality and expand y_tilde:

And then we explain it with the following hypothesis:

When we sample outputs using our algorithm here, we’re going to sample the interference

term from random other examples. And so the scrubbed model will have roughly the same

estimated loss as the original model–the errors due to interference will no longer appear on

the examples that actually suffer from interference, but the average effect of interference

will be approximately reproduced.

In general, this is our strategy for explaining polysemantic models: we do an algebraic

rewrite on the model so that the model now has monosemantic components and an error

term, and then we say that the monosemantic components explain why the model is able to

do the computation that it does, and we say that we don’t have any explanation for the

error term.
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This works as long as the error is actually unstructured–if the model was actively

compensating for the interference errors (as in, doing something in a way that correlates

with the interference errors to reduce their cost), we’d need to describe that in the

explanation in order to capture the true loss.

This strategy also works if you have more neurons and more variables–we’ll again write our

model as a sum of many monosemantic components and a residual. And it’s also what we’d

do with real models–we take our MLP or other nonlinear components and make many

copies of the set of neurons that are required for computing a particular feature.

This strategy means that we generally have to consider an explanation that’s as large as

the model would be if we expanded it to be monosemantic. But it’s hard to see how we could

have possibly avoided this.

Note that this isn’t a solution to finding a monosemantic basis - we’re just claiming that if

you had a hypothesized monosemantic reformulation of the model you could test it with

causal scrubbing.

This might feel vacuous–what did we achieve by rewriting our model as if it was

monosemantic and then adding an error term? We claim that this is actually what we

wanted. The hypothesis explained the loss because the model actually was representing the

two input variables in a superposed fashion and resigning itself to the random error due to

interference. The success of this hypothesis reassures us that the model isn’t doing

anything more complicated than that. For example, if the model was taking advantage of

some relationship between these features that we don’t understand, then this hypothesis

would not replicate the loss of the model.


