

Version 2.0

BCarbon Methane Emissions Elimination through Well Plugging (MEEWP) Protocol

Issued: April 15th, 2025

Table of Contents

1.	lr	ntroduction	3
	1.1.	. Methane Emissions from Oil and Gas Wells – Time is of the Essence	3
	1.2.	. Definitions	4
	1.3.	Protocol Purpose and Overview	6
2.	Ρ	Project Activities	7
3.	Α	Application Overview	8
3	3.1.	. Validation, Approval and Issuance of Carbon Credits	8
3	3.2.	Project Developer Submissions	8
3	3.3.	. BCarbon Review	9
4.	Р	Protocol Summary and Project Requirements	10
4	1.1.	. Eligibility	10
4	1.2.	. Regulatory Compliance	11
4	1.3.	. Earning of Credits	11
4	1.4.	Project Boundaries	12
4	1.5.	. Validation and Verification	12
5.	Q	Quantification of GHG Emissions Reductions	12
į	5.1.	Baseline Reference Case	12
į	5.2.	Production Decline Curve Analysis and Leak Estimation	13
į	5.3.	. Pre-Plugging Emissions Calculations	15
į	5.4.	. Post-Plugging Emissions Calculations	16
į	5.5.	Project Emissions	16
į	5.6.	. Uncertainty Discount	17
ţ	5.7.	Net Emissions Reductions	18
ţ	5.8.	. Plugging Confirmation	18
ţ	5.9.	. Quality Assurance and Control	18
6.	D	Demonstrating Additionality	19
7.	Ε	Environmental and Community Co-Benefits	19
8.	R	References	20
9.	Α	Appendix A: Decline Curve Model	23
10.		Appendix B: Leak Model	24

1. INTRODUCTION

BCarbon is a nonprofit organization creating pathways to net-zero goals that strengthen rural economies and generate ecological co-benefits including soil regeneration, improved water quality and management, and increased biodiversity. With input from stakeholders including landowners, scientific experts, government officials, environmental organizations, and industry representatives, BCarbon develops **standardized protocols** to support the issuance and registration of carbon credits associated with carbon sequestration, protection, and permanent greenhouse gas ("GHG") emissions capture.

The BCarbon Methane Emissions Elimination through Well Plugging Protocol ("the Protocol") describes the technical approach required by BCarbon to certify the avoidance of GHG emissions from the plugging of leaking abandoned and orphaned oil and gas wells including site reclamation. As administrator of the Protocol, BCarbon's goal is to ensure the complete, consistent, transparent, accurate, and conservative quantification and verification of GHG emission reductions associated with a well plugging project ("Project"). The BCarbon framework is integrated with a registry that tracks the complete lifecycle of certified projects from project approvals, and issuance, serialization, transferring, and retirement of credits.

The Protocol also introduces important "co-benefits" of Methane Emission Elimination through Well Plugging (MEEWP) Projects as described in section 7.

1.1. Methane Emissions from Oil and Gas Wells – Time is of the Essence

Methane is responsible for at least 25% of the rise in global temperatures since the start of the industrial revolution.¹ While methane's atmospheric lifetime is around 12 years vs. centuries for CO₂, it absorbs heat 120 times more efficiently than CO₂, making it 82.5 times as potent a greenhouse gas on a 20-year time scale.² In addition to its climate impacts, methane also affects air quality because it contributes to the formation of ground-level (tropospheric) ozone, a dangerous air pollutant.³ Rapid and sustained reductions in methane emissions are key to limiting near-term warming and improving air quality.

According to the United Nations Environmental Program (UNEP), the oil and gas industry is one of the largest sources of anthropogenic methane emissions and the sector with the greatest potential for emissions reduction.⁴ Furthermore, UNEP states that we cannot meet the Paris

_

¹ "Methane." NASA Climate, accessed April 8th, 2025. https://climate.nasa.gov/vital-signs/methane/

² What makes methane a more potent greenhouse gas than carbon dioxide? Ask MIT Climate. December 7, 2023. https://climate.mit.edu/ask-mit/what-makes-methane-more-potent-greenhouse-gas-carbon-dioxide

³ "Methane Tracker 2023, "IEA, accessed April 8th, 2025. https://www.iea.org/reports/global-methane-tracker-2023

⁴ "IMEO Action," UNEP, accessed April 8th, 2025. https://www.unep.org/explore-topics/energy/what-wedo/methane/imeo-action

Agreement and avoid exceeding 1.5 °C without achieving deep reductions in methane emissions from the global oil and gas industry.⁵

Recent numbers released by the U.S. Environmental Protection Agency (EPA) in their Inventory of U.S. Greenhouse Gas Emissions and Sinks report estimate that there are about **3.7 million abandoned oil and gas wells** (including orphaned wells and other non-producing wells) within the United States.⁶ Plugged wells each emit on average less than 1 kg CH4 per year, while some unplugged wells have been known to emit tens of thousands of kilograms of CH4 on average per year.⁷

Academic field surveys indicate that **the majority of active wells emit methane**.⁸ These emissions are primarily due to maintenance issues.⁹ While there is little academic work specifically targeting inactive wells, these are expected to have even more severe maintenance inadequacies, driven primarily by a lack of funding and oversight. As a result, inactive wells are believed to be a significant source of methane emissions.

1.2. Definitions

Term	Definition	
Abandoned Wells	Term used throughout this Protocol to describe unplugged wells that are not currently in production and which have a known, solvent operator. BCarbon acknowledges that wells in this category may be referred to by other terms in different states or jurisdictions; it is the category, not the specific term, that is relevant for the purposes of eligibility.	
Additionality	An evaluation used in carbon markets to demonstrate that the results of a crediting initiative would not have occurred in absence of the incentive of carbon credits. A project is considered "additional" if it would not have happened in a business-as-usual scenario without the crediting project; it is "non-additional" if it would have still occurred.	

BCarbon, Inc. www.bcarbon.org

⁵ "Emissions Gap Report 2024," UNEP, accessed April 8th, 2025, https://www.unep.org/resources/emissions-gapreport-2024

⁶ "Inventory of U.S. Greenhouse Gas Emissions and Sinks," EPA, accessed April 15th, 2025, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks.

⁷ Riddick, S. N., et al. (2024). Methane emissions from abandoned oil and gas wells in Colorado. *Science of The Total Environment*, 922, 170990.

⁸ Mark Omara et al. (2022). "Methane Emissions from Low Production Oil and Natural Gas Well Sites," *Nature Communications* 13, no. 2085.

⁹ Deighton, J. A., Townsend-Small, A., Sturmer, S. J., Hoschouer, J., & Heldman, L. (2020). Measurements show that marginal wells are a disproportionate source of methane relative to production. *Journal of the Air & Waste Management Association*, 70(10), 1030-1042.

Term	Definition	
American Petroleum Institute (API)	A national trade association that represents the interests of the United States oil and natural gas industry and sets standards for the industry.	
Baseline Emissions	Emissions likely to occur if the Project is not implemented.	
Carbon Dioxide Equivalent (CO₂e)	A standard unit of measure to express the impact of each different greenhouse gas in terms of the amount of CO ₂ that would create the same amount of global warming.	
Environmental Attribute	Greenhouse gas emission reduction recognition in any form, including verified emission reductions, voluntary emission reductions, offsets, allowances, credits, avoided compliance costs, emission rights and authorizations under any law or regulation, or under any emission reduction registry, trading system, or pursuant to any reporting or reduction program for greenhouse gas emissions that is established, certified, maintained, or recognized by any international, governmental, or nongovernmental agency.	
Local Regulator	The government entity charged by the relevant state government with the oversight and regulation of oil and gas producing wells within that state. This may include multiple regulatory agencies based on the location of the well. For example, if state, Indian, or federal lands are involved, multiple regulatory agencies may be involved. Furthermore, in some areas, City or County governmental agencies may be involved.	
Operator	The entity with authority to conduct oil and gas operations for an oil and gas well. The current or past Operator of a well, or Operator's affiliates, is not eligible to act as Project Developer for such well under this Protocol, with the exception of Project Developers who have legally become Operators for the sole and express purpose of plugging a well.	
Orphaned Wells	Wells without a solvent operator that require additional plugging measures to fully decommission the well.	
Plug & Abandon (P&A) Activity	Any activity related to the plugging of an oil and gas well. P&A requirements vary by jurisdiction. For all P&A Activity related to a Project, Project Developers must demonstrate Regulatory Compliance.	

Term	Definition	
Pre-Plugging Test	The test performed at each well to confirm the presence of methane in excess of 1,925 parts per billion, which is the globally averaged mean atmospheric methane concentration for December 2022 as reported by NOAA (https://gml.noaa.gov/ccgg/trends_ch4/).	
Project Developer	The entity that (i) has a demonstrated contractual right to receive environmental attributes related to the decommissioning of the target wells, and (ii) submits an application for project approval and quantification of emissions reduction with BCarbon per the terms of this Protocol. A well's current or past Operator, or Operator's affiliates, are not eligible to be Project Developer, with the exception of Project Developers who have legally become Operators for the sole and express purpose of plugging a well.	
Contractual Right to Environmental Attributes	Legally binding agreement demonstrating (i) the exclusive right to either perform the Project or incentivize the performance of the Project and (ii) the right to receive the Environmental Attributes of the Project.	
Regulatory Compliance	The adherence to laws, regulations, and statutes enforced by the governmental or regulatory bodies pertinent to a Project based on the jurisdiction in which it operates.	
Total Project Emissions (TPE)	The carbon emissions accounted for during the production activities of a Project, measured in tons of Carbon Dioxide Equivalent (tCO ₂ e), to be offset against the prevented emissions resulting from Project execution.	

1.3. Protocol Purpose and Overview

The purpose of the Protocol is to incentivize the permanent avoidance of methane emissions originated from hydrocarbon reservoirs associated with leaking abandoned oil and gas wells and the reclamation of related surface sites. In addition to significant methane emissions, **unplugged wells pose many health**, **safety**, **and environmental risks**, including toxic water and air hazards (from hydrogen sulfide), flash fires, vapor cloud explosions, and pool fire hazards. Permanently plugging abandoned wells eliminates these hazards as well as the risk of further methane emissions.

This Protocol issues carbon credits for plugging eligible wells using **historical production decline curve analysis combined with a leak estimation model**. The key underlying observation is that leaking wells eventually completely exhaust the gas that is potentially available over long time-horizons. Field observations of long-inactive wells indicate that the methane is

exhausted somewhere within a time horizon of 50-60 years.^{10, 11} The method of estimating a well's reservoir contents, as well as the method of estimating a well's leaks over time, are described in Section 5 and in Appendices A and B of this Protocol.

Carbon credits issued by BCarbon under this Protocol will be calculated by subtracting a Project's Total Project Emissions (TPE) from its Baseline Emissions.

2. PROJECT ACTIVITIES

Figure 1 below illustrates the steps Project Developers, third-party validators and BCarbon will follow when completing Projects under this Protocol, including the issuance and registration of carbon credits.

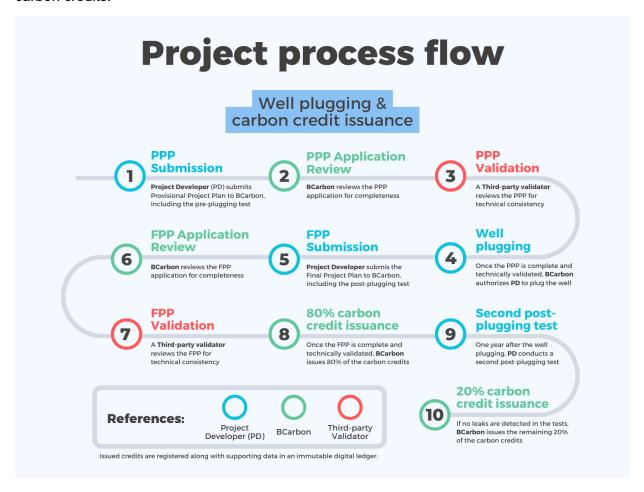


Figure 1: BCarbon's methane protocol flowchart.

BCarbon, Inc. www.bcarbon.org

¹⁰ Deighton, J. A., Townsend-Small, A., Sturmer, S. J., Hoschouer, J., & Heldman, L. (2020). Measurements show that marginal wells are a disproportionate source of methane relative to production. *Journal of the Air & Waste Management Association*, 70(10), 1030-1042.

¹¹ Townsend-Small, A., Ferrara, T. W., Lyon, D. R., Fries, A. E., & Lamb, B. K. (2016). Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States. *Geophysical Research Letters*, *43*(5), 2283-2290.

3. APPLICATION OVERVIEW

3.1. Validation, Approval and Issuance of Carbon Credits

Process of Validation, Approval, Development, and Issuance of Carbon Credits:

- 1. Developer submits Provisional Project Plan to BCarbon.
- 2. BCarbon reviews Provisional Project Plan for completeness.
- 3. BCarbon notifies Project Developer of PPP completeness.
- 4. Developer contracts with approved third-party Validator for validation. BCarbon shares project documents with Validator.
- Validator reviews PPP and returns a sealed Validation Certificate to BCarbon.
- 6. Project Developer plugs the well.
- 7. BCarbon issues carbon credits for Project, subject to final Total Project Emissions figures, such carbon credits to be held on the BCarbon Registry to be released to the appropriate Project Developer account upon BCarbon receiving the Final Project Plan with final Total Project Emissions figures.
- 8. Project Developer submits Final Project Plan to BCarbon.
- 9. BCarbon receives Final Project Plan and reviews it with a third-party verifier, following the same contracting process as outlined for the Provisional Project Plan. Once the Final Project Plan is approved by BCarbon and the verifier, BCarbon releases eighty percent (80%) of the carbon credits to the appropriate Project Developer's account.
- 10. The remaining twenty percent (20%) of the credits will be released subject to the Second Post-Plugging Test confirming that the well remains plugged and that fugitive methane emissions are not present.

3.2. Project Developer Submissions

Project Developer will submit to BCarbon:

- 1. A Provisional Project Plan (PPP) that includes the following:
 - a. The Provisional Project Plan (PPP) template and associated documents, including a well plugging plan for each well that includes all completed forms required by the Local Regulator in order to maintain regulatory compliance, as well as the results from the Pre-Plugging Test for each well to confirm the presence of CH₄.
 - b. The completed Well Details Excel file, Well Models Excel file, and Credit Calculations Excel file.
 - c. Operator Attestation confirming proof of title to Environmental Attributes.
- 2. A Final Project Plan (FPP), post-plugging, that includes:
 - a. The Final Project Plan Template and associated documents, including all completed forms required by the Local Regulator to prove the well has been properly plugged and decommissioned, as well as results from the Post-Plugging Test for each well.
 - b. Final Well Details Excel with post-plugging wellbore diagrams and Final Credit Calculations Excel file with updated project emissions numbers.

- c. Co-Benefits Summary (optional) and associated data, including but not limited to:
 - i. Number of aquifers within 5 miles of the well.
 - ii. Number of water wells within 5 miles of the well.
 - iii. Number of children, women of child-bearing age, and other vulnerable groups within 5 miles of the well.
 - iv. Number of hospitals, nursing/retirement homes, schools, churches, playgrounds, etc.
 - v. List of endangered species within 5 miles of the well.
 - vi. Agricultural land acreage within 5 miles of the well.
 - vii. Total acreage of land reclamation across all wells.

Those applicants who wish to include the co-benefits section in their FPPs are encouraged to get in contact with the BCarbon team for further guidance on the appropriate format, data source and file type for this section.

3.3. BCarbon Review

After the Developer has submitted the Provisional Project Plan, BCarbon will review it and inform the Developer if they have a **complete Provisional Project Plan**. If the Provisional Project Plan is incomplete, BCarbon will request additional materials from the Project Developer.

After acknowledging the Developer has a complete Provisional Project Plan, BCarbon will conduct a thorough review of the PPP with support from **third-party validators and verifiers**. Once this process is complete, BCarbon will notify the Developer that they either have 1) an approved project or 2) deficiencies in the Developer's Provisional Project Plan.

Submissions and notifications regarding the **Final Project Plan** will follow the same order and structure used for the Provisional Project Plan outlined above.

The internal review by BCarbon's team will assess all Project submissions, including GHG calculations, well additionality, and regulatory compliance. This review will also include working with contracted engineers to verify and validate each Provisional and Final Project Plan.

BCarbon agrees to process the Provisional and Final Project Plans as timely as reasonably practicable. Specific timing will vary as BCarbon fine-tunes the application processing procedures and depending on the number of wells in an application.

4. PROTOCOL SUMMARY AND PROJECT REQUIREMENTS

This Protocol provides the quantification and accounting frameworks for carbon credits generated from the avoidance of methane emissions by plugging leaking abandoned and orphaned oil and gas wells and reclamation of the associated surface site. The Protocol provides for the estimation of the remaining methane in the reservoir and allocates credits for preventing the potential release of that gas into the atmosphere.

In this methodology, the term "abandoned wells" will refer to unplugged wells with no recent production which have a known, solvent operator.

4.1. Eligibility

Geographic Scope

Projects must be located in the United States or Canada.

Accepted well types

- On-land or onshore wells (over freshwater) registered with the appropriate Local Regulator as oil or natural gas producing wells.
- Only **compliant** wells are accepted under this protocol see section 4.2 for more information.

Well non-producing proof

- The well has been transitioned to a non-producing status in filings with the Local Regulator or attestation from a certified engineer; or
- There has been no net production in the past 3 months.

Presence of methane

- The Pre-Plugging Test must confirm methane concentrations at the wellhead that exceed baseline levels observed at a nearby offsite location or the globally averaged atmospheric methane concentration of 1,925 parts per billion (ppb), as reported by NOAA's Global Monitoring Laboratory for December 2022.¹² The comparison should ensure that methane levels measured at the wellhead are distinctly higher than those at the reference site, verifying the presence of excess emissions attributable to the well.
- The purpose of the Pre-Plugging measurement is to confirm that detected CH₄ represents a continuous leak directly from the well or facilities, rather than "trapped" or accumulated gas. Measurements must demonstrate sustained emissions over time, verifying the integrity of the source. Various approved

¹² Lan, X., K.W. Thoning, and E.J. Dlugokencky (2022): Trends in globally-averaged CH₄, N₂O, and SF₆ determined from NOAA Global Monitoring Laboratory measurements. Version 2025-04, https://doi.org/10.15138/P8XG-AA10

methodologies, such as gas sampling, optical gas imaging, or continuous methane-specific detection systems may be used, provided they reliably attribute emissions to the specific well and align with the protocol's quantification standards

- Valid demonstrations of a leak include (but are not limited to):
 - A 5+ minute continuous leak through a device capable of methane detection and measurement.
 - o Picture or video of a bubble test showing a leak.
 - Video or series of pictures showing a 4-gas or methane monitor of a leak preferably if the leak is in an unconfined area.
- Invalid demonstrations of a leak include (but at not limited to):
 - o A single point measurement in a cellar or other confined area.
 - o Excess measurements that cannot be replicated.
 - o Taking measurements after valves have been manually opened.

4.2. Regulatory Compliance

Wells must be in compliance with the Local Regulator or, in the course of the project, be brought into compliance with the Local Regulator. At the conclusion of the project, the wells covered must receive approval from the Local Regulator that they have been appropriately plugged and decommissioned, including removal of any equipment and suitable remediation of the site surface soil and vegetation, as required to maintain Regulatory Compliance.

4.3. Earning of Credits

Eighty percent (80%) of total issuable credits will be issued upon completion of BCarbon's review of the Final Project Plan, as described in Section 3. **The remaining twenty percent (20%) of total issuable credits** will be issued after the second post-plugging test confirms that the well is plugged with no fugitive emissions, to be conducted on or around the first anniversary of the well plugging, as illustrated below. If the second post-plugging test confirms the plugging has failed, some or all of the remaining credits to be released may be held by BCarbon at their sole discretion to offset the estimated amount of methane leak.

In the event that the surface owner of the well site refuses to allow testing personnel onto the property for the second post-plugging test, Developer shall submit a statement from the surface owner denying access to the site or affidavit stating that Developer has pursued all due diligence in attempting to access the well site.

Tranche 1	Upon Completion of BCarbon's review of the Final Project Plan.	80% of credits
Tranche 2	One year from the date of well plugging, pending Second Post-Plug results.	20% of credits

4.4. Project Boundaries

4.4.1. Geographic Boundaries

The geographic boundaries will include the **surface wellhead**, **surface equipment**, **and surface pad associated with the registered well**. Any surface area considered by the Local Regulator to be within scope of their authority by virtue of the presence of the project well will be considered within the geographic boundaries of the project.

4.4.2. GHG Assessment Boundaries

Qualified Projects occur in scenarios where methane would, if not for the enactment of the Project, be released from target wells into the atmosphere. Furthermore, in cases where methane is being released from any surface equipment attached to target wells, such emissions may also be measured and reported for net emission reductions.

4.5. Validation and Verification

BCarbon is committed to certifying quality projects that will result in real climate impacts; each project and application package shall be subject to review, validation, and verification. In particular, BCarbon reserves the right to **verify project outcomes throughout and beyond the 2-year period** following the P&A of wells covered by the Project Developer's application and credits.

5. QUANTIFICATION OF GHG EMISSIONS REDUCTIONS

5.1. Baseline Reference Case

The baseline reference case is a scenario where the **methane being emitted from target wells into the atmosphere is not restricted by the Project**. The baseline compared against the post-plugging calculation is established by the predicted emissions that would have been released without the Project Developer's implementation of the MEEWP Project.

Pre-plugging reservoir estimation is required to obtain an estimate of the well's business-as-usual, Baseline Emissions. Pre-plugging reservoir estimates shall approximate current active leaks as well as future potential leaks by estimating how much methane is in the well's reservoir, and how much methane will leak out over time. The method required for estimating reservoir contents is the standard industry decline curve analysis, supplemented with additional gas composition sampling, if needed. The method required for estimating leaks over time is the leak probability model. These methods are detailed in section 5.2 and in Appendices A and B. Additionally, spreadsheet files are provided to PDs for simple model implementation.

For wells without a documented history of natural gas production, BCarbon may entertain alternative methods of estimating reservoir contents and future leak rates. Project Developers with such Projects should present alternative methods to BCarbon for eligibility consideration.

5.2. Production Decline Curve Analysis and Leak Estimation

This method follows the **industry standard** for estimating the remaining reservoir natural gas, similar to the methods originally outlined by J.J. Arps.^{13,14} Using the provided spreadsheet template, and for each individual well:

1. Estimate the decline rate:

- a. Source at least 42 months of production history for each individual well, sorted by production date.
- b. Drop records with zero producing days and zero monthly production to avoid distorting any indications of production.
- c. Calculate average production per day for each month with non-zero producing days, defining each of these averages as P_i for month i.
- d. Keep the last 36 records (if available) or all production records (if fewer than 36)
- e. For each of the three 12-record periods {P₁, ..., P₁₂}, {P₁₃, ..., P₂₄}, {P₂₅, ..., P₃₆}, calculate the mean (m) and standard deviation (s) of production.
- f. Within each of these three 12-month periods, drop outlying records with production P_i where ABS($P_i m$) > 2s, for the m and s of that 12-month period.
- g. Take the 6-month moving average of the production, denoted as $\{Q_1, ..., Q_{36}\}$. This smooths the data.
- h. Estimate a regression line described by the natural log (ln) of (Q_i) against time (T) measured in producing days (Equation 1).

Equation 1. This regression estimates parameters A and B in the model. This is fitting an exponential decline curve to the production rates.

$$ln(Q) = A \cdot T + B$$

Where: Units:

Q	Smoothed production rate data	MCF/day
A	Decline rate per day	log(MCF/day)/day
Т	Cumulative time of production from the start of the sample	days
В	Best fit parameter for the level of production in the sample	log(MCF)

The estimated annualized decline rate (EADR) is calculated using Equation 2.

Equation 2. Estimated Annualized Decline Rate.

$$EADR = (1+A)^{365.25} - 1$$

¹³ Arps, J. J. (1945). Analysis of decline curves. *Transactions of the AIME*, 160(01), 228-247.

¹⁴ Arps, J. J. (1956). Estimation of primary oil reserves. *Transactions of the AIME*, 207(01), 182-191.

Where:	Units:	
EADR	Estimated Annualized Decline Rate	percent per year
A (equation 1)	Decline rate per day	log(MCF/day)/day

To calculate the effective annualized decline rate (ADR), first compare EADR to -3% and take the smaller value. Then, compare that value to -30% and use the greater of those values as your ADR.

Equation 3. Effective Annualized Decline Rate.

$$ADR = \max(-30\%, \min(-3\%, EADR))$$

	where:		Units:
ADR	Effective Annualized Decline Rate	percent per year	
	EADR	Effective Annualized Decline Rate	percent per year

The decline rate is bounded above and below to eliminate results that are inconsistent with industry experience for end-of-life wells.

2. The fitted last production (FLP) is calculated using Equation 4.

Equation 4. Fitted Last Production.

$$FLP = e^{Z \cdot N/365.25} + B$$

Where:		Units:
FLP	Fitted Last Production	MCF/day
Z	Minimum of A *365.25 and -3%	percent per day
N	Number of producing days between the first and last production records (normally P_0 and P_{36})	days
B (equation 1)	Best fit parameter for the level of production in the sample	log(MCF)

3. The last production estimate (LPE) is determined by Equation 5.

Equation 5. Last Production Estimate.

If
$$EADR < -3\%$$
, then $LPE = FLP$

If
$$EADR > -3\%$$
, then $LPE = m$ for the latest $12 - \text{record period}$

Where:		Units:
EADR	Estimated Annualized Decline Rate	percent per year
LPE	Last Production Estimate	MCF/day
FLP	Fitted Last Production	MCF/day
m	Mean for the latest 12-record period (as calculated in 1.f. above)	MCF/day

- 4. Estimate the methane fraction of the gas. Project Developers may follow either of two approaches to determine the methane fraction of gas (MFG):
 - a. Table based on the Gas Research Institute survey "Chemical Composition of Discovered and Undiscovered Natural Gas in the Lower-48 United States; Volume 3: Associated/Dissolved Gas Data" as updated in 1993 and published by the US Department of Commerce:¹⁵ Identify the table associated with the region and the vertical depth for the well. Use the mean value of methane from the table as the MFG.
 - b. Sample 1 liter of gas from the well and determine the gas composition using a thirdparty laboratory service using a gas chromatograph. The percentage of methane in the sample can be used as the MFG.
- 5. Calculate the expected leaks over the target time horizon:
 - a. Use the BCarbon Leak Probability Model (template spreadsheet provided). This model incorporates the following:
 - i. Input characteristics of the well: completion date, shut-in date, sour/non-sour production mix.
 - ii. Input state of the well (existing leaks, current pressure in the wellbore).
 - iii. Forecast flow rates under multiple leak-states (i.e., large, small, or no leak).
 - b. Run the leak model with three standardized parameters:
 - i. Flow rate reference for large leaks of 50 years.
 - ii. Decline time horizon for small leaks of 100 years.
 - iii. Crediting time horizon of 20 years.
 - c. Finally, the model will calculate the total gas leaked, TGL.
- 6. Methane available to leak (MAvail) will be the probability-weighted sum of the amounts of gas leaked in each state over 20 years.

5.3. Pre-Plugging Emissions Calculations

Baseline Emissions will be set according to the following formula:

- 1. First, the methane available to leak (MAvail) is determined above in Section 5.2. in units of MCF CH₄ as described above in section 5.2
- 2. Second, the equivalent amount of atmospheric carbon dioxide (Est_tCO₂e) is calculated using Equation 6.

Equation 6. Equivalent Amount of Atmospheric Carbon Dioxide.

$$Est_{tCO_2e} = MAvail \cdot Density \cdot GWP20$$

_

¹⁵ Hugman, R. H., Springer, P. S., & Vidas, E. H. (1993). *Chemical composition of discovered and undiscovered natural gas in the United States, 1993 update. Volume 2. Non-associated gas data. Topical report, November 1, 1992–December 30, 1993* (No. PB-94-196417/XAB). Energy and Environmental Analysis, Inc., Arlington, VA (United States).

Where:			Units:	
	Est_tCO₂e	Equivalent Amount of Atmospheric Carbon Dioxide	tCO ₂ e	
	MAvail	Methane Available to Leak	MCF CH ₄	
	Density	Metric density of methane at STP = 0.0418	lb/cu ft	
	GWP20*	GWP20 = the 20-year global warming potential for methane as reported in the most recent Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR)	tCO ₂ e/tCH ₄	

^{*} Developers shall use the most recent IPCC guidance available at the time of their application submission to BCarbon. As of January 27th 2025, GWP20 is 82.5, as reported in the IPCC AR6 Working Group 1, Chapter 7, Table 7.15.

3. The project pre-plugging baseline emissions (BE) are calculated using Equation 7.

Equation 7. Project Pre-Plugging Baseline Emissions.

$$BE = \min(Est_tCO_2e, P_Max)$$

Where:		Units:
BE	Project Pre-Plugging Baseline Emissions	tCO ₂ e
Est_tCO₂e	Equivalent Amount of Atmospheric Carbon Dioxide	tCO ₂ e
P_Max	Protocol maximum allowance = 63k tCO₂e	tCO ₂ e

BCarbon will consider issuing credits at volumes greater than P_{Max} (63k tCO_2e) on a case-by-case, per-well basis. For volumes above 63,000 tCO_2e , Project Developers must provide a detailed explanation for why the well was shut-in; additionally, further documentation for these wells may be required for this review process.

5.4. Post-Plugging Emissions Calculations

Post-plugging emissions are expected to be negligible for a well that has been decommissioned correctly and each site must comply with all local requirements for regulatory recognition that the well has been plugged and abandoned.

5.5. Project Emissions

The following categories of **project emissions sources** must be assessed and reported:

- 1. Materials emissions from cement used for plugging.
- 2. Fuel for equipment, materials and personnel transported to project site.
- 3. Fuel for rig operation during plugging activity.
- 4. Methane vented during baseline measurement.

Project Developers shall use the current version of the U.S. Environmental Protection Agency's Emission Factors Hub¹⁶ to determine the correct factors to use for their equipment. For diesel fuel, use No. 2 Fuel Oil.

Together, these categories constitute *TPE*, the **total project emissions** in terms of tCO₂e. TPE are the emissions required to remove any surface equipment, plug and abandon (P&A) the well and reclaim surface disturbance within the project area. In practice, well plugging can be an unpredictable and resource-intensive enterprise that requires several different services, resources, and personnel. Tracking of the related services and equipment (and their emissions) can become overly tedious and complex for a Project Developer. Thus, the MEEWP protocol allows Project Developers some flexibility to account for project emissions in one of three ways:

- 1. **Itemized Accounting of the on-site emissions sources.** The MCR protocol (Section 5) and the MCR Materials Checklist include a list of the categories of emission sources (such as cement, trucking, etc.) to calculate each on-site project emitter.
- 2. A flat-rate emission total of 200 tCO₂e. This method allows the applicant to choose a pre-determined constant emission total per well for the project emissions of a typical project. The pre-determined constant emission total should be explained and justified in the FPP. The flat-rate emission total per well is 200 tCO₂e. BCarbon or the third-party reviewer may determine that this flat-rate is not appropriate for specific cases and may require project developers to calculate project emissions using alternative methods as described in Section 5.5. As more data is gathered, this emission total may change.
- 3. For some projects, well plugging leads to an additional emissions reduction in that ongoing maintenance activities (i.e. water hauling and others) that produce GHG emissions are no longer needed. If the PD would like to "offset" their project emissions with these avoided future project emissions, they may provide supporting calculations and documentation for BCarbon to review.

After a well is plugged, there may be **additional Project Emissions** associated with verification (for example, emissions from flyovers). In such cases, the additional Project Emissions will be deducted from the number of credits allocated to the Project Developer in later tranche(s). BCarbon will communicate with Developers on their options and issue specific requirements in any future verification guidelines.

5.6. Uncertainty Discount

An uncertainty discount will be deducted from granted credits as a buffer against failed plugs from any wells for which credits have been granted in this Protocol. The uncertainty discount for each Project will be 5% of the difference between the baseline emissions reductions and the project emissions: D = 5%.

-

¹⁶ US EPA's GHG Emissions Factors Hub. Accessed April 15th, 2025. https://www.epa.gov/climateleadership/ghg-emission-factors-hub

5.7. Net Emissions Reductions

The net emissions reduction is calculated using Equation 8.

Equation 8. Net Emissions Reduction.

$$N = (G - TPE) \cdot (1 - D)$$

_ \	Where:		Units:
	N	Net Emissions Reductions	tCO ₂ e
	G	Baseline Emissions Reductions	tCO ₂ e
	TPE	Total Project Emissions	tCO ₂ e
	D	Uncertainty Discount (5% of total credits)	tCO ₂ e

The number of credits issued will be equal to the net emissions reductions once total project emissions are deducted from gross emissions reductions and reduced by the uncertainty discount.

5.8. Plugging Confirmation

Prior to credits being issued, Project Developers must demonstrate that the well has been designated as "plugged", or equivalent, by the Local Regulator. Also prior to all credits being issued, a post-plugging test and a second post-plugging test are required, confirming that emissions have been reduced to at or below the 1,925 parts per billion threshold.

5.9. Quality Assurance and Control

5.9.1. Credit Ownership

The Project Developer must demonstrate a **contractual right to receive environmental attributes** related to decommissioning of the target wells via the provided Operator Attestation form.

5.9.2. Plugging and Surface Reclamation Standards

In the absence of plugging requirements set by local and state authorities, Project Developers are required to follow guidelines for design, placement, and verification of cement plugs as set by the American Petroleum Institute (API) Recommended Practice (RP) 65-3 – Wellbore Plugging and Abandonment Standard for US projects, and the Alberta Energy Regulator (AER) Directive 020: Well Abandonment for Canadian projects. Where applicable, plugging, abandonment, and restoration must meet contractual requirements within existing mineral leases should those requirements exceed regulatory minimums. Such requirements are out of the purview of BCarbon and are solely within the Project Developer's responsibility.

5.9.3. Digital Recording

The MEEWP Project is assigned a Unique ID which allows access to blockchain information and asset data that records:

- 1. The complete crediting "lifecycle" of the Project including credit issuances, transfers and retirements:
- 2. Relevant information from field monitoring, emission factors, data refinements, verifications, and other relevant inputs;
- 3. The complete profile of physical and environmental attributes of the Project including the environmental conditions determined from the site analysis.

Access to the asset data is provided through a 3rd party registry that is integrated with BCarbon to participants in the generation and market application of the BCarbon credits including owners of primary data (e.g., landowners, operators, and Project Developers) and secondary data refiners, and 3rd party auditors.

6. DEMONSTRATING ADDITIONALITY

A well is **additional** if, at the time of plugging, no person or entity has a firm, non-extendable legal obligation to plug it either (a) by law, regulation, statute, court order or other government requirement, or (b) by private contract (e.g., pursuant to a lease, service, or other agreement with a third party).

No credits will be granted for a well that is included in a project registered under another carbon crediting protocol, whether with BCarbon or another carbon registry.

7. ENVIRONMENTAL AND COMMUNITY CO-BENEFITS

There may be **co-benefits** associated with Project activities. For example, the reclamation of land surfaces could result in soil-regeneration and increased biodiversity. Reporting Project co-benefits is optional. Potential co-benefits include:

- Soil regeneration
- Increased biodiversity
- Improved water quality
- Removal of potential liabilities for state governments, local communities, and taxpayers
- Improved air quality
- Job creation
- Improved human health conditions

Some Project Developers may be interested in leveraging co-benefits, such as soil regeneration, to obtain additional carbon credits. In that case, they should communicate to BCarbon if they wish to combine the MEEWP Protocol with other BCarbon protocols.

8. REFERENCES

Arps, J. J. (1956). Estimation of primary oil reserves. *Transactions of the AIME*, 207(01), 182-191.

Arps, J. J. (1945). Analysis of decline curves. *Transactions of the AIME*, 160(01), 228-247.

Ask MIT Climate (2023). What makes methane a more potent greenhouse gas than carbon dioxide? December 7, 2023. https://climate.mit.edu/ask-mit/what-makes-methane-more-potent-greenhouse-gas-carbon-dioxide

Buto, S. G., Kenney, T. A., & Gerner, S. J. (2010). Land disturbance associated with oil and gas development and effects of development-related land disturbance on dissolved-solids loads in streams in the Upper Colorado River Basin, 1991, 2007, and 2025 (No. 2010-5064). US Geological Survey.

Deighton, J. A., Townsend-Small, A., Sturmer, S. J., Hoschouer, J., & Heldman, L. (2020). Measurements show that marginal wells are a disproportionate source of methane relative to production. *Journal of the Air & Waste Management Association*, 70(10), 1030-1042.

DiGiulio, D. C., Rossi, R. J., Lebel, E. D., Bilsback, K. R., Michanowicz, D. R., & Shonkoff, S. B. (2023). Chemical characterization of natural gas leaking from abandoned oil and gas wells in Western Pennsylvania. *ACS omega*, *8*(22), 19443-19454.

"Inventory of U.S. Greenhouse Gas Emissions and Sinks," EPA, accessed April 15th, 2025, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Grieve, P. L., Hynek, S. A., Heilweil, V., Sowers, T., Llewellyn, G., Yoxtheimer, D., ... & Brantley, S. L. (2018). Using environmental tracers and modelling to identify natural and gas well-induced emissions of methane into streams. *Applied Geochemistry*, *91*, 107-121.

Hugman, R. H., Springer, P. S., & Vidas, E. H. (1993). Chemical composition of discovered and undiscovered natural gas in the United States, 1993 update. Volume 2. Non-associated gas data. Topical report, November 1, 1992-December 30, 1993 (No. PB-94-196417/XAB). Energy and Environmental Analysis, Inc., Arlington, VA (United States).

"Methane Tracker 2023, "IEA, accessed April 8th, 2025. https://www.iea.org/reports/global-methane-tracker-2023

Johnston, J. E., Lim, E., & Roh, H. (2019). Impact of upstream oil extraction and environmental public health: A review of the evidence. *Science of the Total Environment*, *657*, 187-199.

Kang, M., Boutot, J., McVay, R. C., Roberts, K. A., Jasechko, S., Perrone, D., ... & Peltz, A. S. (2023). Environmental risks and opportunities of orphaned oil and gas wells in the United States. *Environmental Research Letters*, *18*(7), 074012.Lan, X., K.W. Thoning, and E.J. Lan, X., K.W. Thoning, and E.J. Dlugokencky (2022): Trends in globally-averaged CH₄, N₂O, and

SF₆ determined from NOAA Global Monitoring Laboratory measurements. Version 2025-04, https://doi.org/10.15138/P8XG-AA10

McMahon, P. B., Thomas, J. C., Crawford, J. T., Dornblaser, M. M., & Hunt, A. G. (2018). Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA. *Science of the Total Environment*, 634, 791-801.

Michanowicz, D. R., Lebel, E. D., Domen, J. K., Hill, L. A. L., Jaeger, J. M., Schiff, J. E., ... & Shonkoff, S. B. C. (2021). *Methane and Health-Damaging Air Pollutants from the Oil and Gas Sector: Bridging 10 Years of Scientific Understanding*. PSE Technical Report.

"Methane." NASA Climate, accessed April 8th, 2025. https://climate.nasa.gov/vital-signs/methane/

Omara, M., Zavala-Araiza, D., Lyon, D. R., Hmiel, B., Roberts, K. A., & Hamburg, S. P. (2022). Methane emissions from US low production oil and natural gas well sites. *Nature Communications*, *13*(1), 2085.

Raimi, D., Krupnick, A. J., Shah, J. S., & Thompson, A. (2021). Decommissioning orphaned and abandoned oil and gas wells: New estimates and cost drivers. *Environmental science & technology*, *55*(15), 10224-10230.

Riddick, S. N., Mbua, M., Santos, A., Emerson, E. W., Cheptonui, F., Houlihan, C., ... & Zimmerle, D. J. (2024). Methane emissions from abandoned oil and gas wells in Colorado. *Science of The Total Environment*, *922*, 170990.

Rowell, M. J., & Florence, L. Z. (1993). Characteristics associated with differences between undisturbed and industrially-disturbed soils. *Soil Biology and Biochemistry*, *25*(11), 1499-1511.

Smith, P. (2012). Soils and climate change. *Current opinion in environmental sustainability*, *4*(5), 539-544.

Taherdangkoo, R., Tatomir, A., & Sauter, M. (2020). Modeling of methane migration from gas wellbores into shallow groundwater at basin scale. *Environmental Earth Sciences*, 79(18), 432.

Townsend-Small, A., Ferrara, T. W., Lyon, D. R., Fries, A. E., & Lamb, B. K. (2016). Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States. *Geophysical Research Letters*, *43*(5), 2283-2290.

"Emissions Gap Report 2024," UNEP, accessed April 8th, 2025, https://www.unep.org/resources/emissions-gapreport-2024

"IMEO Action," UNEP, accessed April 8th, 2025. https://www.unep.org/explore-topics/energy/what-wedo/methane/imeo-action

Yuan, L., Gao, Y., Cheng, F., Du, J., Hu, Z., Yang, X., ... & Naidu, R. (2022). The influence of oil exploitation on the degradation of vegetation: A case study in the Yellow River Delta Nature Reserve, China. Environmental Technology & Innovation, 28, 102579.

9. APPENDIX A: DECLINE CURVE MODEL

An illustrative example of the decline curve analysis described in Section 5.2 is found in the Well Models Excel file included in the application example of the SharePoint Folder.

10. APPENDIX B: LEAK MODEL

The **Leak Model** is found in the "Well Models" Microsoft Excel spreadsheet. This section is a user guide to understanding and applying this model.

Model inputs

For each well, enter the following well-specific inputs, all on the primary sheet "Leak Rate:"

Table 1: Well-specific inputs required for the leak model.

Input	Cell location	Туре	Example
Sour / non-sour?	'Leak Rate'!B6	Binary drop-down	non-sour
Bradenhead valve present?	'Leak Rate'!B7		yes
Sustained casing pressure?	'Leak Rate'!B8	Binary drop-down	yes
Year drilled	'Leak Rate'!B12	Four-digit integer	2006
Year shut-in	'Leak Rate'!B13	Four-digit integer	2010
Plugging year	'Leak Rate'!B14	Four-digit integer	2023
Last rate, MCFpd	'Leak Rate'!B17	Floating point number	8.87
Exponential decline rate, %pa	'Leak Rate'!B18	Floating point number, expressed as a positive percent	3.00%
Methane concentration, %	'Leak Rate'!B21	Floating point number, expressed as a positive percent	75%
"Large" leak decline rate %pa	'Leak Rate'!B26 (see further discussion below)	Floating point number, expressed as a positive percent	0.98%
Restricted rate decline rate %pa	'Leak Rate'!B33 (see further discussion below)	Floating point number, expressed as a positive percent	0.0001%

Model outputs

The model produces both intermediate and final outputs. The key intermediate outputs are the forecast of flows under the three states over the forecasting time horizon (located in 'Leak Rate'!F:M). The final outputs are:

Table 2: Expected model outputs.

Output	Cell location	Туре	Example
CH₄ Volume leaked pre-plugging	'Leak Rate'!B44	Floating point number, expressed as MCF	3,997
CH₄ Volume leaked post plugging in the crediting window	'Leak Rate'!B45	Floating point number, expressed as MCF	6,332
CO ₂ Mass leaked pre-plugging	'Leak Rate'!D44	Floating point number, expressed as tCO ₂ e	6,368
CO ₂ Mass leaked post plugging in the crediting window	'Leak Rate'!D45	Floating point number, expressed as tCO ₂ e	10,087

Model overview

The model forecasts expected leaks based on a three-state model:

- 1) No leak
- 2) "Large" leak
- 3) "Restricted" leak

The model uses the most recent flow and the estimated production decline rate to extrapolate a counterfactual "as-if producing" gas flow vector. For this extrapolation, the flow starts at a daily rate equal to the Last Production Estimate (LPE.) For each future year, this rate declines exponentially following the decline rate estimated from the historical production data (see section 5.2). The sum of the values from the years from the shut-in date until the end of the "Volume Window" (from cell 'Leak Rate'!B19) in that vector is the reference potential volume of gas. This appears, in cumulative form, as DCA Forecast in column 'Leak Rate'!K.

For each of the two leak states, the model forecasts a potential flow rate over time that is similar to the DCA forecast, but with adjustments for the starting value, the number of years in the time window, and the decline rate. In each case, the associated decline rate is estimated to produce a total volume of gas equal to the reference potential volume from the DCA Forecast. This is described in more detail below.

For the "large" leak state, the starting daily rate is equal to the Last Production Estimate (LPE) multiplied by the "Large" leak factor. From that starting year, the forecast leak flow rate decays exponentially at the calculated implied rate in cell 'Leak Rate'!B26.

The forecast flows in the "Restricted" leak state are similar, though there is an additional adjustment to the starting flow rate and the associated decay rate. The starting rate is the "large"

leak starting rate multiplied by the "Restricted" leak factor in cell 'Leak Rate'!B31. The decay rate for the restricted state is the calculated implied rate in cell 'Leak Rate'!B33.

From the year in which the well was shut-in, the model estimates a probability that the well is in each of the three leak states. These probabilities are used to calculate a weighted sum of the expected volume of leaked gas in that year. This weighted sum is then added for the years in the crediting window to arrive at an expected volume of leaked gas. This is then adjusted to account for the methane fraction and then converted to an equivalent mass of CO₂ under standard conditions set at 60 °F and 14.5 PSIA.

Leak Decline Rates

The leaks from the well are expected to flow at a slower rate than in the counterfactual producing state used to estimate the DCA Forecast. The key underlying observation is that leaking wells eventually completely exhaust the gas that is potentially available over long time-horizons. Field observations of long inactive wells indicate that the methane is exhausted somewhere within a time horizon of 50-60 years. Based on this observation, the two leak sub-models are calibrated to emit the same volume of gas as the DCA Forecasts, but at slower initial rates, with a longer time horizon, and a slower flow decay rate.

Leak sub-model parameters

For generating potential flows in the restricted leak state, the key parameters are:

Parameter Value or Calculation Method **Notes** Initial "Large" This is a specified value in 50% of the "large" leak rate leak rate the Proposed Method Set conservatively to fully "Large" leak 50 years cover the window from field time window observations. A positive value calculated to reproduce the DCA Forecast volume over the "Large" leak time window (e.g., using Implied by the assumption "Large" leak excel solver or goalseek so that cell 'Leak Rate'!B29 is as that the total volume of leaks decline rate close to 0 as possible). In cases where no positive value will eventually match the DCA will produce a match with the DCA forecast volume, use Forecast volume. 0.0001% as a default value.

Table 3: Leak sub-model parameters.

_

¹⁷ Deighton, J. A., Townsend-Small, A., Sturmer, S. J., Hoschouer, J., & Heldman, L. (2020). Measurements show that marginal wells are a disproportionate source of methane relative to production. Journal of the Air & Waste Management Association, 70(10), 1030-1042.

¹⁸ Townsend-Small, A., Ferrara, T. W., Lyon, D. R., Fries, A. E., & Lamb, B. K. (2016). Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States. *Geophysical Research Letters*, *43*(5), 2283-2290.

Initial "Restricted" leak rate	20% of the "large" leak rate	This is a specified value in the Proposed Method
"Restricted" leak time window	100 years	Set conservatively to fully cover the window from field observations.
"Restricted" leak decline rate	A positive value calculated to reproduce the DCA Forecast volume over the "Restricted" leak time window (for example, using excel solver or goal-seek so that cell 'Leak Rate'!B36 is as close to 0 as possible.) In cases where no positive value will produce a match with the DCA forecast volume, use 0.0001% as a default value.	Implied by the assumption that the total volume of restricted leaks will eventually match the large leak volume