

Kubernetes and

Containerized Security

F

August 2021

Brendan Francis O’Connor, Risk and Advisory Services

PAGE 2 OF 16

Table of Contents

1 Introduction ... 3

2 Control Plane Security .. 4

3 Container Security: Automated Testing ... 7

4 Container Security: Private Registry .. 8

5 Container Security: Hardened Base Images ... 9

6 Container Security: CI/CD .. 10

7 Container Security: Production Monitoring ... 11

 Container Compliance Monitoring .. 12

8 Container Security: Incident Response ... 13

9 Stretch Goal: Automated Vulnerability Management and Remediation 14

10 Conclusion ... 16

PAGE 3 OF 16

1 Introduction
We have had several clients approach us regarding how best to create a holistic information security

program as they spin up a new-to-them Kubernetes infrastructure for the first time. Particularly for

regulated entities, this can seem like a significant challenge; given the rapid changes in

infrastructure that Kubernetes makes possible, how can organizations ensure that appropriate

security controls are still in place?

This paper provides several specific recommendations around securing Kubernetes itself---that is,

securing the control plane which provides container orchestration services to the cluster. In our

experience, however, organizations that approach us with questions around “Kubernetes security”

have more material concerns around “containerized security”—that is, creating effective security

controls that take into account their newly-containerized applications, regardless of what

orchestration layer (Kubernetes, OpenShift, or others) is being used. Therefore, in addition to

recommendations around security of the control plane, we provide the following six major

recommendations to secure an organization’s containerized production systems:

1. Automated Testing

2. Private Registry

3. Hardened Base Images

4. Continuous Integration/Deployment

5. Centralized Production Monitoring

6. Container-Specific Incident Response Tooling

This is not a complete guide to Kubernetes or containerized security; many other organizations have

published important work in this field, and we have no wish to duplicate it. In particular, we

recommend that organizations spend time studying best practices, including the CIS Benchmarks1

and other standardized recommendation sets for Kubernetes, before committing to a containerized

infrastructure.

Throughout this document, we name both paid and open-source products as examples of particular

functionality. We have not evaluated, and do not endorse, these products; companies needing these

capabilities should make their own evaluation of relevant features, costs, and security benefits.

1 https://www.cisecurity.org/cis-benchmarks/

https://www.cisecurity.org/cis-benchmarks/

PAGE 4 OF 16

2 Control Plane Security
The Center for Internet Security provides CIS Benchmarks,2 available under a Creative Commons

license, which contain excellent baseline configuration guides for a variety of software. For

Kubernetes, the version 1.6.1 Benchmark (applicable to Kubernetes 1.18) contains well over 250

pages of information, including 58 automated and 28 manual controls applicable to the primary

control nodes, and 10 automated and 13 manual controls applicable to worker nodes to achieve

Level 1 compliance. (Automated controls are those verifiable with configuration scanning tools;

manual controls are those that are not verifiable in an automated fashion.) 12 additional controls

provide Level 2 compliance, some of which may be desirable, though Level 2 controls often come

with certain negative effects upon the utility of the cluster. Since such a well-written basic resource

exists, this section will focus on controls that are inadequately covered by CIS. We recommend that

anyone implementing Kubernetes in production implement all Level 1 controls in any final

deployment unless they have specific operational contraindications that outweigh the security

benefits. The Level 2 set should be considered best practices, but not requirements if they adversely

impact operational abilities (as many will, depending on your particular context).

Authentication: Authentication for human users to the Kubernetes cluster can be difficult to manage

at scale; to avoid security pitfalls, it is essentially required to use an external user store that can

communicate with Kubernetes via OpenID Connect.3 Most companies either have an identity store

that includes OpenID Connect (for instance, Google Workspaces) or can set up an intermediate

OpenID Connect provider to communicate with their primary identity store. Once the Kubernetes

cluster is integrated with the identity store, ensure that access control groups (e.g.,

ClusterRoleBinding, RoleBinding) are bound to groups managed in the identity store; this will

decrease the complexity of creating true role-based access control (RBAC) in the Kubernetes

clusters.

Secrets: Kubernetes Secrets4 are the built-in system for managing sensitive data such as TLS private

keys, OAuth tokens, and the like. Unfortunately, despite the name, Kubernetes Secrets are not well-

protected by default; they are simply base64-encoded to prevent avoidable escaping and newline-

type issues. Kubernetes does provide optional encryption at rest5 for secrets, and basic authorization

support for secrets as part of its larger RBAC system; however, due to the implementation of

encrypted secrets and the human-opaque appearance of base64 encoding, human error frequently

results in unencrypted secrets in practice even when the native encryption is intended. To provide

more robust and verifiable secret protections (including usable separate authentication and

authorization schemes for human versus automated access), consider using a dedicated secrets

management solution such as HashiCorp Vault6 if appropriate.

2 https://www.cisecurity.org/cis-benchmarks/
3 https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
4 https://kubernetes.io/docs/concepts/configuration/secret/
5 https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
6 https://www.vaultproject.io/

https://www.cisecurity.org/cis-benchmarks/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://www.vaultproject.io/

PAGE 5 OF 16

Scheduling: Kubernetes uses its scheduling engines to assign workloads to appropriate worker

nodes, including both compute and storage (Persistent Volume Claims). Kubernetes has the ability to

maintain a single cluster that has worker and storage nodes with different security levels (for

instance, running some workers on dedicated hosts, or using Persistent Volumes with differing

resilience configurations) and to assign workloads appropriately based on labeling. However,

ensuring that high-security workloads are assigned to high-security nodes is complex in practice, and

requires that labels be assigned correctly 100% of the time, imposing a difficult (and excessively

manual) process upon engineering teams. To provide a more robust solution, production

deployments should use separate Kubernetes clusters for workloads that need substantially

different underlying security arrangements. For instance, if a company maintains both regulated and

unregulated workloads, it should either run all workloads on clusters conforming to the regulated

level of security, or separate the workloads into separate clusters, rather than attempting to

maintain perfection when assigning work to different security levels within one cluster; to do

otherwise courts disaster with little operational benefit.

Deploy-Time Security: Kubernetes provides two major types of internal controls for security around

the container deployment event: Admission Controllers and Pod Security Policies. Admission

Controllers perform certain checks within the API Server binary before a deployment can proceed,

and are configured at the API Server startup. The default configuration specifies five Admission

Controllers:

7. NodeRestriction: Prevents workloads from modifying certain attributes that control how they

are deployed.

8. AlwaysPullImages: Ensures that containers are only started by users with the permissions to

access the underlying container image; in addition, ensures that containers are not started

based on outdated images.

9. ServiceAccount: A default configuration that provides the interfaces necessary for non-

human interaction with the API Server.

10. NamespaceLifecycle: Ensures that namespaces must exist and not be in the middle of

deletion if a new workload is started in them.

11. EventRateLimit: Allows administrators to configure rate limiting on API events (e.g., starting

workloads).

These Admission Controllers are excellent as a baseline, but as one moves toward production-ready

clusters, it is worth examining the full list of Admission Controllers7 to check for others that may be

useful depending on specific details of how the cluster is configured, such as CertificateSigning,

ImagePolicyWebhook, and SecurityContextDeny.

Pod Security Policies (PSPs) specify additional requirements specific to creating pods. It is common

to create PSPs that allow privileged mode; these should not ever be used in production. Privileged

mode allows a container to do nearly anything that its host node could do. It is the containerization

equivalent of running software as root and has the same substantial downside—that an attacker who

is able to exploit the software now has full root privileges. Where there is a need for a container to

7 https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

PAGE 6 OF 16

take a specific action that is ordinarily denied to unprivileged containers, such as manipulating the

host clock, the pod specification can assign a specific capability8 to the container. The difference is

substantial; allowing a container to run as privileged is the equivalent of giving twenty-seven

capabilities to that container, plus some additional abilities. There are few, if any, reasons that

privileged containers should ever be run in production or staging environments; the limited situations

in which more-than-default access is necessary can be resolved by capabilities, which should be

used as needed.

Configuration Source Control: Kubernetes can be configured in a variety of ways, including various

graphical user interfaces, the first-party command-line interfaces (kubectl and kubeadm), and YAML

configuration files. Regardless of how a given configuration was first created, every Kubernetes

configuration can be output back to a YAML file. We strongly recommend that companies deploying

Kubernetes configure its clusters, workloads, and settings using a YAML-first configuration

methodology wherever possible; when this is not possible, they should use other tools as needed,

then output the resulting configuration to YAML files. These YAML files should be stored in source

control. This will ensure that the cluster, or the workloads running on it, does not “drift” from its

original configuration in a way that is not visible without direct interrogation of the cluster. This, in

turn, will help to achieve compliance and security goals, as well as to ensure that should a cluster or

workload need to be recreated, it can occur quickly and without the need for people to remember

post-deployment changes.

Local Deployment Sources: For much the same reasons as storing configurations in source control,

we recommend that companies disallow Kubernetes deployments from sources not kept within their

own systems—that is, that they deploy only container images stored in their private container

repository (rather than deploying using, e.g., public Docker Hub images), and that they not use

externally-hosted Helm charts or similar shortcuts to deploy resources onto the cluster. This is not

because we believe that the public resources are inherently untrustworthy; instead, this

recommendation is to allow cluster administrators to be able to view and recreate not just what is

currently running in the cluster, but what was previously running at any given point in time. This

enables security and audit teams to ensure that they have all relevant data when investigating

software defects or security incidents. This point-in-time audit capability is very straightforward if

everything is preserved in local source control, but difficult, or impossible, when deploying straight

from the Internet, as third parties may change files without notice. For more on this, see the following

section on private registries.

8 https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

PAGE 7 OF 16

3 Container Security: Automated Testing
The security of an application deployed in Kubernetes is reliant on being able to leverage the

particular advantages Kubernetes provides (such as rapid redeployment) against the disadvantages

of Kubernetes and containerization more broadly (such as an additional layer of abstraction with its

own patching and vulnerability management needs). To make this possible, it is critical to have

robust, automated tests in place that can provide a deployable/not deployable status for a given

container, including both the application and the container OS.

To be effective in aiding deployment, these tests should be integrated into the build pipeline, and

should complete quickly enough to allow many cycles per day, when necessary, of bugfixing and

retesting; as a rule of thumb, 30 minutes is a good maximum wall-clock time. If a test suite requires

more time than this to execute, allocating additional compute resources to the test environment may

be necessary. Alternately, identifying a minimum set of tests from the suite that can be used for a

basic “smoke test”9 and running only those during the build process may be preferred; the longer

test suite can still be run periodically (e.g., daily) to ensure that all unit and regression tests continue

to pass.

If your application does not have sufficient automated, reliable testing to achieve this goal at this

time, our recommendation would be to invest in building tests before investing in containerized

deployment. The investment in testing will help to ensure that you can leverage the maximum

benefits from containerized or other rapid deployment paradigms confidently, and without testing,

most of the following recommendations will be unworkable.

Recommendation

Build a targeted suite of automated smoke tests capable of determining whether your application(s)

are working properly, and use them as a central part of an automated build process.

9 https://en.wikipedia.org/wiki/Smoke_testing_(software)

https://en.wikipedia.org/wiki/Smoke_testing_(software)

PAGE 8 OF 16

4 Container Security: Private Registry
A registry is the repository from which Kubernetes pulls specific container images. There are many

public registries; the largest is Docker Hub,10 due to its creation by the same team that built Docker,

but GitHub,11 GitLab,12 and other services provide public registries as well. They are the container

implementation of open-source package hosting, and they are extraordinarily helpful for quickly

testing containerized software.

However, in a context in which security, privacy, or data protection matter, they can be problematic.

First, like many13 package14 registries,15 public container registries provide a high-value target for

attackers---but the security of an individual package (rather than the platform itself) is up to the

security of an individual account, leading to a potential for widespread compromise due to an

account takeover (ATO) attack on a single developer. In addition, an issue for container registries

specifically is that a container contains a significant amount of software other than the principal

object of the container.

For instance, the Docker Hub node images16 may contain, depending on selected tags, Alpine Linux

or any of several different versions of Debian. While the Node project updates its containers

frequently, many developers may not rebuild containers outside their own software’s release

cadence. This means that if a software project only publishes new releases every six months, the

published container image provided by the project may not have received patches for its container

OS for six months; this can lead to making old, well-known vulnerabilities unintentionally available

and exploitable in production systems due to the “hidden” unpatched system.

Recommendation

We recommend that any Kubernetes deployment deploy from a private registry exclusively (including

network rules preventing accidental pulls from Docker Hub). Container images should, as described

in the next section, be built by a trusted build process before being pushed to the private registry.

10 https://hub.docker.com/
11 https://github.com/features/packages
12 https://docs.gitlab.com/ee/user/packages/container_registry/
13 https://www.helpnetsecurity.com/2019/08/21/backdoored-ruby-gems/
14 https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
15 https://threatpost.com/supply-chain-hack-paypal-microsoft-apple/163814/
16 https://hub.docker.com/_/node

https://hub.docker.com/
https://github.com/features/packages
https://docs.gitlab.com/ee/user/packages/container_registry/
https://www.helpnetsecurity.com/2019/08/21/backdoored-ruby-gems/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://threatpost.com/supply-chain-hack-paypal-microsoft-apple/163814/
https://hub.docker.com/_/node

PAGE 9 OF 16

5 Container Security: Hardened Base Images
Container images, like virtual machine images and bare-metal images before them, should be built

on top of a trusted base image. This practice ensures that general hardening guidelines are applied

to all systems in production, provides stability for tools in use and supporting infrastructure, and

ensures reasonable upgrade pathways are available to enable patching.

When moving applications to a containerized platform, it is common to adopt a “lift and shift”

mentality and make only the smallest possible changes to the application. This leads to the use of

full operating systems, such as Red Hat Enterprise Linux (RHEL), Ubuntu, or Debian, inside

containers. In keeping with the general hardening methodology of “do not install unnecessary

software or services,” and owing to the unique symbiosis between a running container and its host

machine’s operating system, it is preferable to build container images on top of a minimal base OS,

rather than on a full-featured OS. Alpine Linux17 is often used for this purpose, but alternatives

include Photon OS,18 which is maintained by VMWare, Fedora CoreOS,19 or others provided by

individual container distributions.

To illustrate the difference in potential for exploitation, a RHEL NodeJS 12 base image (rhscl/nodejs-

12-rhel7:1-24) is 534.3 megabytes in size; the most directly equivalent Alpine-based image

(including NodeJS version 12, as the RHEL image does), node:12-alpine3.12,20 is just 89.3MB. That

83% reduction in size translates not simply to significant bandwidth savings both intra-cluster (as

images are transmitted from the control plane to worker nodes) and extra-cluster (when container

images are pulled from the registry), but a significant reduction in how much code is available for

bugs and, in turn, exploitation by attackers.21

While there are potentially some pieces of software that require more features from a container than

Alpine can provide, there are many container-specific “lightweight” OS distributions available to

choose from, any of which might meet the needs of a particular piece of containerized software, and

all of which would, inherently, require less hardening than a full OS installation.

Recommendation

We recommend that all container images deployed in production be built on a container-specific OS

designed for minimal attack surface. They should also be hardened following best practices for the

specific OS; this hardened image should then form the base image layer for application and other

necessary containers built for and deployed to production.

17 https://alpinelinux.org/
18 https://vmware.github.io/photon/
19 https://getfedora.org/coreos?stream=stable
20 See https://hub.docker.com/_/node;
21 To be clear, we are not saying that there are known vulnerabilities in containerized RHEL; instead, we are

applying the software security adage of “the most secure code is the code that is no longer shipped.” We would

make the same recommendation for any other full-featured OS being used inside a container.

https://alpinelinux.org/
https://vmware.github.io/photon/
https://getfedora.org/coreos?stream=stable
https://hub.docker.com/_/node

PAGE 10 OF 16

6 Container Security: CI/CD
Continuous integration (CI) is the practice of continually building and testing software to ensure that

software defects are detected and eliminated in a rapid, responsive cycle, rather than queuing a

significant number of changes to await testing all at once. CI is most-often applied to first-party code

(i.e., the software that an organization writes itself), which creates an exceptionally robust and

flexible deployment paradigm; establishing this is based on a robust suite of smoke tests (as

discussed above) to ensure that when the automated tests say that the software under test has

passed, it can be deployed without further intervention. (Whether this Continuous Deployment (CD) is

adopted or not depends upon the needs of the organization, but the CI system’s output should be

immediately deployable.)

In addition to first-party application testing, the same CI idea can be applied to ensuring that base

container images are rebuilt frequently (e.g., daily, or multiple times per day), including the

installation of available software patches (via “apt update && apt upgrade” or similar) and

appropriate hardening steps (as discussed above). Given this rapidly updated base image, an

organization’s dependent container images, containing its own code, can be rebuilt on top of the

base image just as frequently as the base image is updated. Combined with automated testing, this

would allow an organization to move beyond “approved base container image versions” and simply

apply all available patches as soon as they are published by the operating system maintainer.

Potential incompatibilities will be caught by the testing system and can be addressed by humans as

needed; with continuous integration, however, this will take the form of small bug fixes more

frequently, rather than the need to fix an enormous number of bugs all at once, when a new OS

version is approved by the appropriate parties.

Whether or not Continuous Deployment (CD) is adopted, the organization should restrict production

deployments such that they can only be made by the automated system (with or without human

initiation). This requirement can be enforced with continuous monitoring for “rogue” containers (see

the following section on monitoring) to ensure that no such containers are allowed to persist. This

ensures that only containers built on images that meet organizational security requirements can

exist in the production environment. This also has the beneficial effect of providing another point of

multiparty control to SDLC-driven code deployment compliance frameworks, since no single

employee will be able to deploy code to production without the required approvals.

Recommendation

We recommend that organizations with sufficient testing capabilities adopt both CI and CD for all

systems; in the alternative, adopting CI plus human-initiated deployment (where the automated tools

handle all aspects of deployment, but the command is given by authorized personnel) is acceptable

if organizational requirements prohibit automated deployment. In either case, monitoring should be

adopted to ensure that only container images built by the CI system can be run in production.

PAGE 11 OF 16

7 Container Security: Production Monitoring
Many of the general rules of production monitoring apply in equal force to monitoring a containerized

infrastructure; it is critical that as an organization moves to Kubernetes, it does not disregard these

principles.

First, implement universal, centralized logging. Every Kubernetes node (both primary and worker)

and every container should be sending logs to a centralized analysis platform where monitoring and

alerting can occur. Two typical solutions for this are Splunk22 and Elastic Stack;23 however, given the

latter’s recent pivot to licensing that is hostile to intellectual property,24 we no longer recommend it. If

an organization has an existing centralized log management and analysis platform, there is

absolutely no need to change it; simply make sure that all logs flow to it.

Second, use production-wide monitoring to look for improperly deployed resources. As discussed in

the section above, no containers should ever be deployed other than by the automated systems, and

containers should be destroyed and redeployed frequently. In a public cloud environment, tools like

Cloud Custodian25 can implement rules like this; in private datacenters, developing custom tooling

may be preferable.

Third, use the same type of configuration monitoring tools to look for improper configurations at the

orchestration layer. If desirable, tools like the Tenable suite26 can add another layer of configuration

monitoring to prevent unintended drift. It is likely that some points of configuration will require

custom scripted or manual checks to verify, particularly with regard to checking that intra-

Kubernetes networking is set to “deny by default” at all times, with specific business reasons given

for each allow rule.27

Finally, embrace immutable infrastructure. Containers are spawned from images which are built by

an automated process; they should not need to be manipulated manually (e.g., SSHed into, or having

manual commands run via Kubernetes exec) as part of the deployment lifecycle. Debugging can take

place, in most cases, by using the logs emitted by the container and simulation on development

machines. Where it becomes necessary to run commands on a container in production, the

container should be automatically marked for destruction in a short time period so that an accidental

side effect of the commands cannot negatively affect production traffic. This also helps to prevent

development of the post-deployment-configuration antipattern, where it requires less effort on the

part of the relevant engineer simply to make changes on running containers, rather than making the

change to the image build process—which creates siloed knowledge and leads to increased

debugging complexity.

22 https://www.splunk.com/
23 https://www.elastic.co/elastic-stack
24 https://aws.amazon.com/blogs/opensource/stepping-up-for-a-truly-open-source-elasticsearch/
25 https://cloudcustodian.io/
26 https://www.tenable.com/products/tenable-io or similar products.
27 This would be a container-specific reflection of the common firewall rules control required by PCI-DSS

(1.2.1), SOC 2 (TSP CC6.6), ISO 27001 (A.13.1.3) NIST 800-53r5 (SC-7(11)(21)(25)), etc.

https://www.splunk.com/
https://www.elastic.co/elastic-stack
https://aws.amazon.com/blogs/opensource/stepping-up-for-a-truly-open-source-elasticsearch/
https://cloudcustodian.io/
https://www.tenable.com/products/tenable-io

PAGE 12 OF 16

 Container Compliance Monitoring
In addition to preserving and centralizing logs from all running containers, as discussed above, an

optional, but useful, monitoring technique is to use tools to find differences between running

containers. If ten containers, spawned from the same image, are running in production and one is

different from the others in any way, it is reasonable to assume some security-impactful failure has

occurred (whether it is a software defect causing a resilience failure or an active exploitation).

Accordingly, periodically (but frequently; for instance, every 5-10 minutes) use diffing tools to

examine similar running containers and, when an outlier is found, trigger containerized incident

response tools (detailed below) and respawn a fresh container from the base image.

One such tool is built into Docker,28 though the Docker command-line tools will soon be removed

from a default Kubernetes installation.29 (They can of course still be installed separately.) Some

incident response tools for containerized workflows also include this functionality.30 Alternately, it

may be more useful to develop customized in-house tools to achieve this.

Recommendation

Centralized, monitored logs (with appropriate alerting) are table stakes for an operational security

posture, and that requirement does not change in a containerized infrastructure. Any organization

not already doing this should address it with the highest possible priority, as lacking logs means that

no effective incident response or even performance analysis can exist.

28 https://docs.docker.com/engine/reference/commandline/diff/
29 https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
30 https://github.com/coinbase/dexter

https://docs.docker.com/engine/reference/commandline/diff/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://github.com/coinbase/dexter

PAGE 13 OF 16

8 Container Security: Incident Response
The general virtual infrastructure incident response flow is as follows:

1. Quarantine the affected infrastructure (disable its ability to send or receive information

to/from other systems or the Internet).

2. Obtain useful data from the quarantined infrastructure.

3. Terminate the affected infrastructure and respawn unaffected infrastructure, using

monitoring to watch for attempted re-exploitation until the underlying defect has been found

and fixed.

4. Once the defect has been fixed, redeploy all infrastructure that contained the vulnerability, or

which may have been exposed to harm from the exploited system.

Given the rapid spawning and reaping of containerized infrastructure, using tooling for incident

response and forensics is even more critical than in a virtual machine-based infrastructure. If a

container’s maximum lifetime is measured in minutes or hours, manual processes will not be able to

keep pace.31 What specific tooling to use will be determined by what integrates best with an

organization’s existing processes and tools. Regardless of what tools are selected, it is critical to

establish a runbook for the security operations team that covers how to use the tools to collect

relevant information in a short amount of time, and how to refer the investigation to appropriate

personnel (from security, development, or SRE) to track down the issue and remediate it in a timely

fashion.

Recommendation

Establish and frequently test containerized incident response runbooks, including specific and

customized tooling and commands, to ensure that your security operations team can rapidly handle

a containerized incident.

31 For more background on this, an excellent (if somewhat dated) conference presentation is available at

https://www.youtube.com/watch?v=I1HU67Vd7ec .

https://www.youtube.com/watch?v=I1HU67Vd7ec

PAGE 14 OF 16

9 Stretch Goal: Automated Vulnerability

Management and Remediation
Some heavily-regulated organizations are required to use vulnerability scanning tools (such as Clair32

or Sysdig Secure33) to ensure that “known vulnerabilities”—defined as vulnerabilities for which a

patch is available—are not present for longer than a defined period in their infrastructure. In a

containerized environment, this has led to organizations scanning container images on build and at

deploy, creating significant performance issues for automatic scaling, and then periodically during

runtime. However, given a private registry (whether run using the Docker registry image34 or a paid

product such as JFrog Artifactory35), an automated deployment system (such as Jenkins36 or GitHub

Actions37), and a vulnerability scanning system, an organization can create an extremely effective

control system while removing these scanning-related performance problems by ensuring that only

approved container images can be deployed, and then putting tight controls around what “approved”

means in this context.

In summary, once a continuous integration system is, as discussed above, constantly rebuilding,

checking, and tagging new versions of container images as ready for deployment, an organization

can move the performance-intensive container vulnerability scan to “scan on build” exclusively, and

eliminate “scan on deploy” and “scan during runtime.” This would remove the performance penalty

that scanning every image, every time it is deployed, imposes on starting new containers without

sacrificing security. To prevent long-running containers from exceeding vulnerability constraints, use

the production monitoring system to redeploy all long-lived containers automatically; the

redeployment will use the newer approved image with, once again, no harms to security.

An example will help illustrate how this would work in practice. For the sake of discussion, we will say

that existing security controls at a hypothetical company require that no package with a known

vulnerability be used in production for more than 7 days (168 hours) after the release of a patch.

With no automatic rebuilding of deployment container images, the hypothetical company currently

needs to use a vulnerability scanner to scan at three separate points:

1. at container build, to ensure that packages included in the build have no known

vulnerabilities for which patches have exceeded the deadline;

2. at container deploy, to ensure that packages in the deployed image have not exceeded the

deadline between build and deploy time; and

3. during runtime, to ensure that packages in the running container have not exceeded the

deadline while they have been running.

32 https://github.com/quay/clair
33 https://sysdig.com/products/secure/
34 https://hub.docker.com/_/registry
35 https://jfrog.com/artifactory/
36 https://www.jenkins.io/
37 https://github.com/features/actions

https://github.com/quay/clair
https://sysdig.com/products/secure/
https://hub.docker.com/_/registry
https://jfrog.com/artifactory/
https://www.jenkins.io/
https://github.com/features/actions

PAGE 15 OF 16

Now contrast a continuous integration system, which rebuilds the base container image, and all

container images dependent upon the baseline, every six hours.38 In general, then, a container image

stored in a private registry and marked as the latest image will not contain a known vulnerability for

which a patch has been available for more than six hours (plus the time it takes to actually build the

container images). Should a patch cause a defect, it will be caught by the test suite running as part

of the continuous integration and flagged for human intervention; as long as the fix is pushed to the

code repository and picked up by the CI system within a reasonable amount of time (roughly, within

six days), no image stored in the registry and marked as the latest image available will be able to

exceed the 7-day control. This eliminates the need to scan at container deploy time (and suffer the

significant hit to deployment performance).

Since images will be rebuilt so frequently, the organization can use Kubernetes to remove and

redeploy running containers frequently. This is made possible by the inherent ephemerality of

containers and their extremely low start-up costs, once deploy-time scanning has been eliminated. If

orchestration automatically redeploys any containers that have exceeded six hours’ runtime, no

container in production will be more than twelve hours away from its build (and patching) under

normal circumstances. If an image update was delayed due to a bug that required human

intervention to fix, the control is still preserved; even if it takes six days for the fix to be identified,

coded, and pushed to the code repository, there will still be sufficient time to allow a rebuild,

redeploy, and reaping of all old containers before the seven-day deadline.39 Since running containers

therefore cannot exceed the seven-day deadline, this removes the need to scan running containers

for vulnerabilities (with the attendant performance penalty), while maintaining the regulatory

controls. While the specific timings might change based on a company’s compliance requirements,

an appropriate CI cadence and SLA for human bugfixes when needed can be constructed to ensure

that the vulnerability scan’s performance hit only needs to be endured by the CI system, and by no

other component of the stack. This increases resilience and performance when deploying and

scaling systems, and provides effective, low-impact vulnerability management within a highly

adaptable infrastructure.

38 Once again, this is entirely reliant on automated, reliable smoke testing as discussed in an earlier section.
39 This would be while relying on the periodic automatic redeployment; a human could of course trigger an off-

cadence rebuild and redeploy to decrease the time necessary for a fix to propagate from code repository to

production while still utilizing the automated systems (and therefore not requiring a security exception).

PAGE 16 OF 16

10 Conclusion
While containerized production with advanced, large-scale orchestration engines such as

Kubernetes is relatively new, the security implications of containers are a reflection of existing best

practices, rather than a complete rewrite. Using Kubernetes adds new levels of abstraction to core

concepts like networking and storage, just as using virtual machines did when moving from bare

metal production systems; however, the same core controls of protecting data at rest, data in transit,

secrets, and access apply at each new level. In general, companies should feel comfortable with

continuing their high-level security guidance even as the underlying technology changes.

	1 Introduction
	2 Control Plane Security
	3 Container Security: Automated Testing
	4 Container Security: Private Registry
	5 Container Security: Hardened Base Images
	6 Container Security: CI/CD
	7 Container Security: Production Monitoring
	7.1 Container Compliance Monitoring

	8 Container Security: Incident Response
	9 Stretch Goal: Automated Vulnerability Management and Remediation
	10 Conclusion

