| Table 41: Comparison of design measures with estimated costs and anticipated effectiveness | | | | | | |--|---|---|---|--|---| | Design Measure | Description | Type of Analysis | Estimated Cost (2014 Dollars) | Effectiveness | Concerns | | Baseline
Condition
(see Section
4.3) | Existing condition at project site (June 2009 to May 2010). | Numerical
modeling of
scenario with
Coastal Modeling
System (CMS). | Not Applicable. | None. | Beach and bluff erosion
will continue to threaten
infrastructure. Shoaling
will impact navigation in
Pillar Point Harbor. | | 1. Maximum
Beach Fill | Remove 200,000 to
250,000 yd³ from
Pillar Point Harbor
and construct 180
foot wide beach berm
at Surfer's Beach. | GIS-based computations of dredge and fill quantities. Numerical modeling of measure with CMS. | \$6,386,000*, assumes use of pipeline dredge and 20 percent contingency. Unit cost of per yd ³ | High. Meets both
design objectives.
Might provide protec-
tive benefits to Surf-
er's Beach for up to 50
years. | Environmental concerns
regarding removal of sand
from vegetated sub-aerial
beach in Pillar Point Har-
bor. Relatively high cost. | | 2.Medium
Beach Fill | Remove 140,000 to
150,000 yd³ from
Pillar Point Harbor
and construct 125
foot wide beach berm
at Surfer's Beach. | GIS-based computations of dredge and fill quantities. Numerical modeling of measure with CMS. | \$5,009,000*, assumes use of pipeline dredge and 20 percent contingency | High. Meets both
design objectives.
Might provide protec-
tive benefits to Surf-
er's Beach for up to 40
years. | Relatively high cost and
uncertainty regarding
performance of beach fill
under persistent stormy
conditions (e.g., El Niño
event). | | 3. East Break-
water Modifica-
tion: Seal Voids | Seal voids along a 2,500 ft long section to prevent sand from surging through the breakwater. | Numerical modeling of measure with CMS. | \$400,000 to \$600,000 to seal breakwater with concrete, based on a previous estimate (1978) to seal a 1,600 ft long section. | Medium. Meets the design objective of improving navigation in the harbor, but does not mitigate beach and bluff erosion. | Constructability. Past experience demonstrates that it will be very difficult to completely seal the breakwater. | | 4. East Break-
water Modifica-
tion: Notch | Modify the East
Breakwater by re-
moving a 200 foot
long section to create
a notch that facilitates
transport of sand. | Numerical modeling of measure with CMS. | \$240,000 to \$320,000 to
remove 150 to 200 ft of
breakwater, based on a
previous estimate (2006)
to remove 170 linear ft of
breakwater. | Low to Medium.
Modest decrease in
rate of shoaling in
harbor, but does not
mitigate beach/bluff
erosion. | Changes in hydrodynamics in harbor, which could interfere with navigation. | | 5. Alternative
Dredged Mate-
rial Placement | Continuous removal of sand from the shoal along the east breakwater with placement near the harbor entrance. | Utilized outputs
from CMS simula-
tion of baseline
condition. | \$2.3 million to \$4.7 million, based on costs from Oakland MHEA and Moss Landing Harbor. Note uncertainty associated with continuously operating pipeline. | Low. Likely does not
meet both design
objectives. | Interference with navigation, high maintenance costs and project complexity. | | 6. Spur Break-
water | Construct 600 ft long
spur breakwater
extending from east
breakwater. | Review of design
developed by
USACE (1971),
which was based
on physical model-
ing. | \$2.5 million to \$3.2 million, based on 2006 and 1971 estimates, respectively | Low to Medium. Limited benefits to a small section of beach. Uncertainty regarding impact (if any) on navigation in harbor. | Impacts to surfing re-
sources and nearshore
environment. | | 7. Managed
Retreat | Remove infrastruc-
ture from areas vul-
nerable to erosion.
Realign a 4,400 ft
long section of
Highway 1 | GIS-based analysis
of projected bluff
retreat.
Review of concep-
tual plans and
infrastructure data
from Ocean Beach. | Over \$16 million to realign Highway 1, assuming a cost of \$3,700 per linear ft of highway. | Low. Does not meet
the design objective of
improving navigation
in harbor, and does not
reduce rate of
beach/bluff erosion. | High cost. Complex planning process involving multiple stakeholders. | ^{*}Costs estimated by USACE San Francisco District Cost Engineering Section based on guidance in ER 1110-2-1302 ## 7 Conclusions and Recommendations There are 2 key findings from this study, which informed development of the design objectives and formulation of design measures. First, a GIS-based analysis of coastal bluff retreat supports the well established hypothesis that the construction of the east breakwater has induced additional erosion of the unprotected coastal bluff and beach between the Caltrans and Mirada Road revetments. The analysis suggests that bluff erosion rates in the immediate vicinity of the east breakwater are more than 1 foot per year greater than the background erosion rates in nearby geologically similar sections of coastal bluff. Therefore, it is reasonable to assume that presence of the east breakwater will continue to induce additional erosion in the absence of any erosion mitigation efforts. Second, construction of the breakwaters has resulted in deposition of at least 150,000 yd³ of sand along the harbor side of the east breakwater, which has limited the available maneuvering and anchoring area in the harbor. Previous studies, observations, and numerical modeling with the CMS suite strongly suggest that most of this sand originates outside of the harbor, and is deposited on the harbor side of the east breakwater via surging of waves through and over the structure. It is anticipated that sand will continue accumulate in this shoal in the absence of a measure to prevent sand from surging through and over the structure. These 2 findings served as the basis for developing the two design objectives, which in turn informed the design measure formulation process. As a result, 7 design measures were evaluated to determine which would be the most effective at addressing the design objectives of mitigating beach and bluff erosion between the 2 revetments and improving navigation in the harbor. The evaluation process involved simulations with the CMS modeling suite for 4 of most promising the measures, and other methods (e.g., GIS-based analysis) for the other 3 measures. Of the 7 measures, the Medium Beach Fill design (150,000 yd³) will likely be the most effective from an engineering perspective as it directly addresses both of the design objectives. However, detailed cost and economic analyses are necessary to determine if this and other design measures are economically viable and should be carried forward in the Detailed Project Report.