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Kinds of Intelligence 
Marta Halina – Department of History and Philosophy of Science, University of Cambridge 

 
Abstract: A common view of intelligent behavior is that it is underpinned by sophisticated 
mechanisms like imagination, foresight, and casual reasoning, and that such behavior is not a 
product of innate behavioral programs or associative learning. In this Element, I present this 
view and argue that it is a mistake. Such a view oversimplifies what we know about innate 
priors and associative learning—namely, that they scaffold flexible behaviors in complex 
ways. Rather than attempt to categorize the natural world into organisms that are intelligent 
on the one hand and rely on rigid, mechanical processes on the other, we should focus on 
specific mechanisms and behaviors that take an organism’s evolutionary, developmental, and 
ecological context into account. The term “intelligence” should be recognized as an umbrella 
term that orients researchers towards a broad class of phenomena but is too general for 
detailed scientific work.    

 

Introduction 
 
In 1770, Wolfgang von Kempelen unveiled to the Viennese court what would become one of the most 
famous machines in history. The device was “filled with wheels, cylinders, levers, and other pieces of 
clock-work” (Windisch 1784, p. 22). Kempelen was a person of many skills—he spoke eight 
languages, studied philosophy and law in Vienna, designed waterworks in Hungary, directed salt 
mines in Transylvania, and had many other scientific and engineering achievements (Standage 2002). 
Although it had taken von Kempelen only six months to construct this machine, it would ultimately 
be displayed around the world, fascinating general audiences, as well as famous figures like Napoleon 
Bonaparte, Charles Babbage, Benjamin Franklin and Catherine the Great (Standage 2002, p. xii). 
 
The machine that Kempelen built was a mechanical chess player, known as “the Turk”. It was famous 
for having chess-playing abilities that surpassed even the strongest human players, and for the 
remarkable ability to flexibly adapt to new situations. For example, during the Turk’s chess-playing 
performances, the audience was invited to place the knight on any square on the board. The 
automaton would then solve the Knight’s Tour—visiting every square on the board just once—
starting from that position. The Knight’s Tour (also known as “Euler’s problem” after the 
mathematician Leonhard Euler) is a difficult problem to solve and was of great interest to 
mathematicians at the time. To be able to defeat a diverse range of players in chess, as well as solve 
problems like the Knight’s Tour without knowing the starting position in advance, demonstrated a 
profound ability to flexibly adapt to new situations (Schaffer 1999).  
 
The mechanical Turk fascinated the world by achieving the unachievable: how could a purely 
mechanical system, one made of cogs and levers, engage in sophisticated and flexible behavior? For 
many spectators and commentators, this was impossible. For example, the author and traveler, Philip 
Thicknesse wrote: “That an AUTOMATON may be made to move its hand, its head, and its eyes, in 
certain and regular motions, is past all doubt; but that an AUTOMATON can be made to move the 
Chessmen properly, as a sagacious Player, in consequence of the preceding move of a stranger, who 
undertakes to play against it, is also UTTERLY IMPOSSIBLE” (1784, p. 5, emphasis original). Given this 
impossibility, and the fact that the Turk did indeed exhibit such flexible behavior, Thicknesse 
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concluded that this chess-playing automaton must be the result of a trick.  
 
The academic and mechanical engineer, Robert Willis, was similarly skeptical. After viewing the 
Turk on several occasions, he wrote: 
 

The phenomena of the Chess Player are inconsistent with the effects of mere mechanism; for, 
however great and surprising the powers of mechanism may be, the movements which spring 
from it, are necessarily limited and uniform: it cannot usurp and exercise the faculties of 
mind; it cannot be made to vary its operations, so as to meet the ever-varying circumstances 
of a game of chess. This is the province of intellect alone” (1821, p. 11) 

 
Again, a mere mechanism or genuinely autonomous machine can only engage in a limited range of 
fixed behaviors. Given the Turk’s flexibility and adaptability then, its behavior must be controlled or 
guided by a human (see Standage 2002). 
 
Compare the mechanical Turk with another source of broad public fascination. In the 1970s, it 
became popular for arcades (like the Chinatown Fair arcade on Mott Street, New York) to include 
games in which a chicken competed against customers in a game of tic-tac-toe. One of the remarkable 
things about these chickens was that they seldom lost. Indeed, one Las Vegas casino operator 
suggested offering a hundred thousand dollars to anyone who succeeded in defeating a chicken in one 
of these games (an amount later reduced to ten thousand dollars) (Trillin 1999). These human-versus-
chicken games were first produced by a company called Animal Behavior Enterprises, founded in Hot 
Springs, Arkansas, by the psychologists Keller and Marian Breland. The Brelands had trained under 
the behaviorist B. F. Skinner and were amongst the first psychologists to commercially apply the 
methods of operant conditioning to animals (Breland & Breland 1951, Bailey & Gillaspy 2005). They 
had also worked with Skinner to develop the first “smart bombs” guided by trained pigeons (Drumm 
2009). Skinner had himself played several games against a tic-tac-toe playing chicken at an annual 
meeting of the Association for Behavior Analysis and lost (Bihm et al. 2010). 
 
In both the case of the mechanical Turk and the tic-tac-toe playing chicken, it turns out that the 
seemingly intelligent behaviors exhibited by the automaton and bird were the result of a trick. In the 
case of the mechanical Turk, Kempelen had created an ingenious set of compartments, functional 
mechanisms, and decoy mechanisms inside the cabinet on which the Turk played chess. This allowed 
a human to remain concealed inside the cabinet despite the cabinet doors being opened during the 
performance for all to see what was inside. The person inside the cabinet could operate the Turk’s arm 
and hand using a sophisticated system of levers. The concealed operator had an internal chessboard 
that corresponded to the chessboard on top of the cabinet: moving a pointer to a square on the internal 
chessboard resulted in the Turk’s hand being guided to the corresponding square on the external 
chessboard (Standage 2002). 
 
In the case of the tic-tac-toe playing chicken, the bird was also not the one selecting which move to 
make against her human competitor. Instead, the chicken had been trained to peck at a switch in 
response to a flashing cue light (Animal Behavior Enterprises n.d.). When the light flashed, the 
chicken pecked a single switch which trigged a computer program to select the next move. As the 
Bird Brain manual states, “Because the chicken plays first, and because her selections are actually 
made by electronic circuitry, the customer can do no more than tie the game” (Animal Behavior 
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Enterprises n.d., p. 2). After triggering the last move in the game, the chicken was rewarded with a 
few grains of food. 
 
The mechanical Turk and tic-tac-toe playing chicken created the illusion of human-like intelligent 
behavior produced by nonhuman agents—in one case a machine and in the other case a bird. 
However, probing these two systems reveals that either the intelligent behavior is a direct result of 
human action (produced by a human secretly operating the device) or an indirect result of human 
action (a simple computer program designed by a human). More crucially, when stripped of these 
human guides, we are left with simple mechanical systems, unable to flexibly respond to new 
situations. Although such systems can be directed to behave intelligently, they are incapable of 
producing intelligent behavior on their own. 
 
The idea that organisms can be divided into those that are “intelligent” on the one hand, and those that 
follow simple, mechanical procedures on the other is what I will refer to as the “Standard View” of 
intelligence. Humans provide one example of biological intelligence: they adapt flexibly to new 
situations, solve a wide range of problems, engage in complex social situations, and more. Under the 
Standard View, some organisms, like humans, can flexibility adapt to a highly variable environment 
by drawing on cognitive capacities such as imagination and causal reasoning. Such organisms are 
suitably characterized as “intelligent”. Other organisms are rigid in their behavior and rely on 
mechanisms such as innate behavioral programs and associative learning. Such organisms are not 
intelligent—they work well in some situations but break down when required to function outside of a 
narrow range of environments. Intelligent agents, in contrast, do not rely on such preprogrammed 
rules or brute-force training to achieve their goals. 
 
We can see the Standard View operating in comparative psychology. For example, in a review on 
intelligence in corvids (e.g., rooks, ravens, and crows) and apes (e.g., chimpanzees, bonobos, and 
orangutans), the comparative psychologists Amanda Seed, Nathan Emery and Nicola Clayton address 
the question, “what is intelligence”? In answering this question, they write:  
 

Ever since scholars began discussing animal intelligence it has been a highly divisive issue, 
and remains so today. At the poles of the debate are two opposite views concerning ‘thinking’ 
in animals. The first, the origin of which is attributed to Descartes, is that animals are 
essentially mindless machines, with their behaviour trigged wholly by external or internal 
stimuli. The other, most famously articulated by Darwin, is that ‘the difference in mind 
between man and the higher animals… is one of degree and not of kind’ (Seed et al. 2009, p. 
402) 

 
The comparative psychologist Daniel Hanus also traces current debates on animal intelligence to 
Descartes’ claim that “all nonhuman beings must be best described as complex ‘automata’” (Hanus 
2016, p. 241; see also Riskin 2016) and the idea that “different cognitive mechanisms are at work in 
humans and other animals” (2016, p. 242). For our purposes, the crucial question is what role this 
dichotomy between “mindless machines” on the one hand, and “intelligent, minded creatures” on the 
other, plays in current scientific and philosophical debates on intelligence. 
 
I argue in section 1 that a key premise of the Standard View of intelligence is that some organisms are 
best understood as mindless machines. These machines might be ingeniously designed by evolution or 
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shaped by training such that they appear intelligent in some circumstances. However, like the 
mechanical Turk and tic-tac-toe playing chicken, this apparent intelligent behavior is the result of 
various “tricks”. Such tricks can be revealed by modifying the environment and watching the machine 
break down. 
 
In section 2, I argue that the Standard View of intelligence is mistaken. It is a caricature of the living 
world that radically distorts what we know about nonhuman animal cognition and behavior. It 
misleads us into oversimplifying the capacities and behaviors of many biological systems—systems 
portrayed as simple and rigid when in fact they are complex and exhibit varying degrees of flexibility. 
Recognizing the true complexity and flexibility of biological systems means rejecting the Standard 
View that nature can be divided into those animals that are intelligent on the one hand, and those that 
follow rigid, mechanical procedures on the other. 
 
Once we reject the Standard View, what are the consequences for our use of the term “intelligence”? 
In section 3, I argue that insofar as the term is meant to broadly apply across species, it cannot be 
precisely defined. Instead, it serves as an umbrella term that helps vaguely orient researchers towards 
a class of phenomena that we know little about. Research on this class of phenomena is best 
undertaken at the level of more specific capacities, like learning and problem solving. Drawing on 
recent work in philosophy and cognitive science, I advance three strategies that can help us map the 
space of intelligent systems while moving beyond the Standard View: validating causal relationships 
within species, thinking of intelligent behavior as multidimensional, and focusing on signatures rather 
than success. 
 
Why is it important to evaluate nonhuman animal (hereafter “animal”) intelligence? Whether or not 
an animal is intelligent often informs how we think that animal should be practically and ethically 
treated. For example, some argue that the ability to act intentionally and flexibly is connected to 
autonomy, and autonomy is sufficient for personhood (Andrews et al. 2018). Under many current 
laws, such as those in the United States, nonhuman animals such as chimpanzees are legally “things”, 
rather than “persons”. As “things”, they can be owned and sold like property (Wise 2010). To identify 
an entity as a “person” however, gives them moral standing and protection under law. As the legal 
scholar Steven M. Wise writes, “A court confronted with a plaintiff’s claim to possess any legal right 
need only determine the plaintiff’s species. If the plaintiff is human, the answer is, ‘It is possible that 
the plaintiff has the legal right she claims.’ If the plaintiff is a nonhuman animal, the answer is, 
‘Impossible’” (Wise 2010, p. 5). Recently, scientists and philosophers have argued that chimpanzees 
and other animals should be granted the status of “persons” because they have many sophisticated 
cognitive capacities (Andrews et al. 2018). Thus, our views on animal intelligence can dramatically 
change how we behave towards other organisms. 
 

1. Intelligence: The Standard View 
 
Consider the following scenario. A raven (Corvus corax) encounters a piece of food hanging from a 
long string tied to a tree branch. The raven would like to eat the food, but it’s out of reach. After 
observing the situation for a minute, she perches above the dangling food, reaches down with her 
beak, and pulls up the string. This successfully brings the food closer, but it’s still out of reach. The 
raven then takes the string she has pulled up and steps on it with her foot. This frees her beak, which 
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she can now use to reach down and pull up another section of string. This brings the food even closer, 
but still not close enough. The raven repeats this procedure—pulling up a section of string, stepping 
on it with her foot while letting go of it with her beak, pulling up the next section of string, etc. until 
the food is finally within reach. She takes her reward and flies away. 
 
The above situation was described by the biologist Bernd Heinrich (1995) and has since been studied 
in many different bird and mammal species (Jacob & Osvath 2015). Observing this situation, one 
might think, “that’s clever!” and indeed string-pulling tasks have long been used to determine an 
animal’s capacity for intelligent and insightful problem solving (Shettleworth 2012). In this case, it 
seems that the raven encounters a puzzle—an out-of-reach piece of food—and rather than knowing 
how to solve the problem immediately through innate programming or taking a long time to learn the 
solution through trial and error, she inspects the situation and devises a solution that involves a 
complex sequence of actions. She then executes this planned solution. The raven’s behavior seems 
intelligent. In order to determine how to evaluate situations such as these, it is useful to define more 
clearly what one means by “intelligent behavior”. 
 
1.1 Intelligent Behavior 
 
What does it mean for a sequence of behaviors to be intelligent? Is there a good account of what 
distinguishes intelligent from unintelligent behavior? When one surveys the cognitive-science 
literature on intelligence, a common theme emerges. Researchers regularly characterize intelligence as 
the ability to flexibly respond to a changing environment. The artificial intelligence researchers, 
Shane Legg and Marcus Hutter, for example, conclude in their review of the psychology literature on 
intelligence that, “Intelligence measures an agent’s ability to achieve goals in a wide range of 
environments” (Legg & Hutter 2007, p. 12, emphasis original). The neurobiologists Gerhard Roth and 
Ursula Dicke note that researchers have “converged on the view that mental or behavioral flexibility 
is a good measure of intelligence, resulting in the appearance of novel solutions that are not part of the 
animal’s normal repertoire” (2005, p. 250). Seed and colleagues concur, noting that “many agree that 
the function of intelligence is to produce flexible adaptive behaviour in the face of environmental 
complexity and variability” (Seed et al. 2009, p. 403). 
 
The above definitions capture what many would characterize as a form of “general” or “domain-
general” intelligence. General intelligence is often distinguished from “narrow” or “domain-specific” 
skills. One might be highly skilled in a specific domain—for example, play a particular form of chess 
very well. But such domain-specific skills are compatible with that same agent lacking general 
intelligence. Computer programs like AlphaGo, for example, vastly outperform humans in games like 
Go (Silver et al. 2017). They can even be understood as behaving creatively within the domain of a 
standard game of Go (Halina 2021). However, AlphaGo is unable to achieve goals outside of the 
context of a standard game of Go (Lake et al. 2017). It’s “world model” applies only to this domain, 
thus we can understand it as lacking general intelligence insofar as we understand general intelligence 
as the ability to achieve goals in a wide range of domains. As the philosopher Ellen Fridland writes, 
“paradigmatically intelligent states are not tied to one role or context but can be transferred or applied 
in multiple roles and contexts” (2015, p. 149).1 In what follows, I use the term “intelligence” to refer 

 
1 It is worth flagging that this distinction between domain-general and domain-specific intelligence 
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to domain-general intelligence of this kind. 
 
Broadly then, we can characterize intelligent behavior as demonstrating the ability to flexibly achieve 
one’s goal. It’s worth highlighting two features of this account, which Fridland calls the “success 
condition” and the “flexibility condition”. Fridland (2015) argues that these two conditions are 
necessary and sufficient for intelligence.2 The success condition holds that intelligence enables one to 
successfully achieve one’s goal. Thus, simply being able to flexibly respond to the environment is not 
sufficient for intelligence; instead, this flexibility must be wielded in the service of achieving one’s 
goals, such as the goal of obtaining food or winning a game.  
 
The flexibility condition requires that one achieve one’s goals through some change in behavior, 
representation, or processing (Fridland 2015, p. 145). Achieving one’s goal through the same process 
or action again and again does not capture what many understand to be intelligent behavior. The 
flexibility condition captures the idea that an intelligent agent must be capable of employing a variety 
of strategies across a variety of situations to achieve their goals. As Fridland writes, “intelligence 
requires responding differently, if the situation were different” (2015, p. 154). Flexibility in this sense 
does not mean changing one’s behavior in a random or haphazard fashion, but rather employing 
strategies and actions in a way that helps one achieve one’s goals. Such flexibility requires an agent to 
“bear the proper systematic and flexible connections to the world” (Fridland 2015, p. 155).  
 
As noted above, intelligence is often described as a domain-general capacity; namely, a capacity that 
applies to a wide range of situations. This idea is reflected in the expectation that intelligent 
organisms are capable of “transferability” or the ability to transfer knowledge and skills from one 
situation to another. Transferability enables agents to achieve their goals in novel situations, despite 
having never encountered those situations in the past (Fridland 2015, Shanahan et al. 2020). 
Transferability requires flexibility or the ability to alter one’s representations or processing to 
accommodate new situations. As noted above, although AlphaGo is highly skilled in the domain of a 
standard game of Go, it cannot transfer the skills it has acquired to a new domain, such as a game of 
chess or even a non-standard game of Go (Halina 2021). Thus, although AlphaGo is an impressive 
instance of artificial narrow intelligence, it does not provide an example of artificial general 
intelligence (Shevlin et al. 2019). 
 
Given the environmental circumstances found on earth, it makes sense that organisms would evolve 
domain-general intelligence. Many organisms live in a world of unpredictable change. How can an 
organism achieve its goals—whether locating food or maintaining a social relationship—in such a 
mercurial world? Intelligence provides an answer. An agent that can flexibly accommodate and 
overcome new and unexpected challenges will be able to achieve its goals, despite an unpredictable 
environment. If the raven in our example above had never encountered the situation of food 
suspended by a piece of string in the past, but it was able to flexibly adapt to this situation and achieve 
its goal of obtaining the food despite this, then this looks like a hallmark of intelligent behavior, and 

 
depends on providing some account of what is meant by “domain”. Providing such an account is 
tricky (Shetteworth 2013, p. 119) but it is often assumed in the literature that an account of domain 
can be provided if needed. 
2 More precisely, Fridland (2015) argues that these conditions are required for “learning” which is in 
turn a criterion of intelligence, but it is consistent with her account to view these as conditions for 
intelligence (Fridland, personal communication). 
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provides clear benefits to the organism. 
 
The above provides a broad account of intelligence, which I will adopt for the purposes of this 
Element. Under this account, intelligent behavior represents the capacity to achieve one’s goals in a 
wide range of environments. When an agent demonstrates the ability to transfer knowledge or skills 
from one context to new situations, it demonstrates a capacity for intelligence. 
 
1.2 Mechanisms of Intelligent Behavior 
 
How are some animals able to adapt flexibly to new situations in the way described above? A 
standard answer is that certain cognitive capacities enable intelligent behavior, capacities such as 
imagination, causal reasoning and future planning. As Emery and Clayton suggest, “complex 
cognition depends on a ‘tool kit’ consisting of causal reasoning, flexibility, imagination and 
prospection” (2004, p. 1903; see also Mikhalevich et al. 2017, Schnell et al. 2021). Under this view, 
the crow’s string-pulling behavior is intelligent insofar as it relies on such a tool kit. The crow uses 
her causal knowledge to flexibly imagine possible solutions to obtaining the food. She then uses 
prospection to plan what actions to take to execute the chosen solution.  
 
Broadly, under this view, intelligence involves adapting flexibly to new situations by evaluating 
possible scenarios in advance of choosing a course of action. Rather than trying out actions in the 
world to see if they work, such an agent relies on an internal model of the environment and its 
regularities and can use this model to determine in advance whether a particular action is likely to be 
successful in the real world. The philosopher Daniel Dennett refers to such organisms as “Popperian 
creatures” (Dennett 1996). The term “Popperian” comes from the philosopher of science Karl Popper 
who is well known for his proposal that fruitful science engages in a process of generating and testing 
hypotheses. Similarly, according to Dennett, Popperian creatures successfully navigate the world by 
generating and testing possible actions in an “inner environment” before committing to performing a 
particular action in the world (Dennett 1996, p. 88; see also Godfrey-Smith 2018). Insofar as the inner 
environment accurately reflects the relevant properties of the world, Popperian creatures can 
determine the value of an action relative to a particular situation, even if that situation is being 
encountered for the first time. 
 
The psychologist Alexander Taylor has further suggested that when organisms make use of causal 
information about the world, they should be recognized as “Pearlian creatures” (after the computer 
scientist Judea Pearl who advanced a theory of causal and counterfactual inference) (Taylor 2009, 
Godfrey-Smith 2018). Being a Pearlian creatures requires being a Popperian creature. One must have 
the capacity to generate and test hypotheses about the world in order to generate and test causal 
hypotheses about the world. Pearlian creatures then are that subset of Popperian creatures who can 
utilize causal information about the world.  
 
We characterized intelligent behavior above as the capacity to achieve one’s goal in a wide range of 
situations. An organism with an “inner environment” or world model and the capacity to “try out” 
candidate actions in this inner environment is well placed to behave intelligently. Such an organism is 
not dependent on the immediate environment for feedback regarding the value of a potential course of 
action. Instead, such an agent can rely on their existing knowledge of the world and evaluate actions 
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against this world model. A Pearlian creature can additionally rely on causal regularities in the world. 
Causal knowledge supports claims about what would happen under intervention across a wide range 
of causal domains. According to Dennett, Popperian-creature world models must also include some 
knowledge of oneself. He writes: “A Popperian creature’s portable knowledge about the world has to 
include some modicum of knowledge—know-how—about the omnipresent part of its world that is 
itself. It has to know which limbs are its own, of course, and which mouth to feed, but it also has to 
know its way around in its own brain, to some extent” (Dennett 1996, p. 142). Thus, Popperian 
creatures are meant to have not only broad knowledge of the world, but knowledge of themselves, and 
their place in the world. 
 
According to Dennett and others, humans are Popperian and Pearlian creatures (Dennett 1996; 
Godfrey-Smith 2018; Dennett 2018). Indeed, humans are a combination of many creatures, drawing 
on a broad range of learning abilities, as well as cultural and linguistic capacities. This is in contrast to 
other organisms. As we will see in the following section, some researchers view nonhuman animals 
are much more limited in their abilities. As Hanus writes, “According to some authors, humans are 
the only species that can mentally go beyond surface features and are able to cognize the world 
around them in terms of complex, unobserved predicates and relations (like causality, support, force)” 
(2016, p. 243). For some of these authors, many nonhuman animals are best understood not as 
Popperian or Pearlian creatures, but as merely Darwinian or Skinnerian ones. 
 
Indeed, it is often flagged that some animals appear as if they are engaging in intelligent behavior 
when in fact they are not. As the psychologist Sara Shettleworth writes, “surprisingly often animal 
behaviours that appear intelligent at first glance turn out to be the product of remarkably ‘stupid’ 
mechanisms” (Shettleworth 2013, p. 10). Dennett also writes, “As researchers regularly discover, the 
more ingeniously you investigate the competence of nonhuman animals, the more likely you are to 
discover abrupt gaps in competence” (Dennett 1996, p. 116). Such “gaps in competence” suggest that 
the mechanisms underlying the observed behaviors do not involve processes like imagination, 
planning, or causal reasoning. Instead, such creatures might be better understood as “unthinking 
machines” (Dennett 1996, p. 119). It is to these creatures that we turn to next. 
 
1.3 Unintelligent Behavior 
 
Intelligent behavior is often contrasted with what researchers refer to as “rigid”, “simple” or “stupid” 
behavior. Such behavior might appear intelligent, but upon further probing, one discovers that the 
behavior is in fact highly inflexible and that it is thus best understood as either a product of innate 
behavioral programs or associative learning. Behavior such as this is also referred to as “sphexish” 
after digger wasps (or wasps of the genus Sphex) as such wasps have been described as exhibiting 
such rigid behavior. One study that is often cited as demonstrating this was first reported by the 
French naturalist Jean Henri Fabre in 1879 (Fabre 1879, Kiejzer 2013). Frabre’s study gained broader 
attention through a popular recounting of it in The Science of Life by H. G. Wells, Julian Huxley and 
G. P. Wells (Keijzer 2013). Wells and colleagues write of the digger wasp: 
 

The instinctive and machine-like quality of most of their [i.e., wasps] behaviour was clearly 
shown by some experiments of Fabre on the wasp Sphex, which hunts crickets. When the 
Sphex has brought a paralyzed cricket to her burrow, she leaves it on the threshold, goes 



 10 

inside for a moment, apparently to see that all is well, emerges, and drags the cricket in. 
While the wasp was inside, Fabre moved the cricket a few inches away. The wasp came out, 
fetched the cricket back to the threshold, and went inside again—on which Fabre moved 
again the cricket away. He repeated the procedure forty times, always with the same result; 
the wasp never thought of pulling the cricket straight in. Drag cricket to the threshold—pop 
in—pop out—pull cricket in: the sequence of actions seems to be like a set of cog-wheels, 
each arranged to set the next one going, but permitting of no variation. (Wells et al. 1931, p. 
696-697; also quoted in Keijzer 2013, p. 506). 

 
These authors describe the digger wasp’s behavior as “instinctive and machine-like”. The idea that 
such rigid behavior must be a product of mechanical processes is later emphasized by the cognitive 
scientist Douglas Hofstadter. Hofstadter (1982) writes that the Sphex account is a “shocking 
revelation of the mechanical underpinning in a living creature of what looks like quite reflective 
behavior” (p. 22). The idea here is that although the digger wasp’s behavior looks intelligent, this is 
effectively a trick. Once one probes the system, as Fabre did, one finds that the behavior is brittle, it 
easily “breaks” and no longer functions properly. The wasp fails to bring food into its burrow because 
it cannot adjust to a reality in which the cricket is displaced from the threshold. On a continuum of 
sphexishness, Hofstadter categorizes the behavior of the digger wasp and other insects as one level 
above “a stuck record” (1982, p. 22). 
 
Dennett (1984/2015) similarly describes digger wasps as “automata” (p. 11). Commenting on Fabre’s 
study, he writes, “The poor wasp is unmasked; she is not a free agent, but rather at the mercy of brute 
physical causation, driven inexorably into her states and activities by features of the environment 
outside her control” (p. 12). He also notes that in this case the “Godlike biologist reaches down and 
creates a slight dislocation in the wasp’s world, revealing her essentially mindless mechanicity” 
(1984/2015, p. 12). Dennett goes on to consider what it is about the digger wasp’s behavior that gives 
one the strong impression that its actions are determined in a mechanistic way. He suggests that it is 
not that the wasp’s actions are a product of prior causes necessarily that leads to this impression, as 
human actions are also a product of prior causes. Rather, the key may be that the actions are “so 
simply caused” (1984/2015, p. 13). The digger wasp is regularly cited as an example of rigid, 
mechanical, unintelligent behavior (Dennett 1998, Carruthers 2004, Raby & Clayton 2009, Fridland 
2015; see also citations in Keijzer 2013). 
 
Another example of behavior that seems intelligent but appears sphexish upon closer inspection is 
dead reckoning or path integration in the desert ant. A desert ant will search for food hundreds of 
meters from its nest. Once it finds food, it runs straight back to its nest, even from great distances, as 
if it knows exactly where the nest is. However, if one moves the ant and its food to another location 
before it starts heading home, then it will travel the same direction and distance as would have been 
appropriate given its prior location and begin searching for its nest there (Shettleworth 2013, p. 10). 
The ant’s ability to locate its nest works well given a particular set of circumstances. But if the 
situation changes unexpectedly, it seems unable to recognize this and adjust its behavior 
appropriately. Instead, its behavior is brittle. It is inflexible and domain-specific: that is, it seems to 
only works in particularly situations and cannot be flexibly adapted to new situations.  
 
1.4 Mechanisms of Unintelligent Behavior 
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According to the Standard View, unintelligent behavior like that described above is best understood 
as resulting from simple or “stupid” mechanisms. The two classes of simple mechanisms most often 
referred to are innate behavioral programs and associative learning. The idea is that these two kinds of 
mechanisms produce behaviors that are appropriate in some circumstances, but which fail to adapt 
outside of the contexts in which they were designed or trained to operate. We will review these two 
kinds of mechanisms before turning to a critique of the Standard View in section 2. 
 
1.4.1 Innate Behavioral Programs 
 
The general idea behind the claim that some behaviors are a result of innate programming is that they 
are a product of mechanisms put in place by evolution and are not susceptible to change through 
learning. The idea is that the organism is like the hardware of a computer and the computer has some 
pre-installed programs that automatically run when triggered by the right internal or external input. 
The programs however are not flexible in the sense that it can adapt to new situations (Raby & 
Clayton 2009). Such programs fail when an agent faces a situation that is different from the situation 
in which the behavior normally operates. 
 
The philosopher Matteo Mameli argues that a minimal condition for an account of innateness is that it 
is incompatible with learning: “if a trait is innate then it is not learned and if it is learned then it is not 
innate” (2008, p. 721). This minimal condition emerges from the literature on innateness. As Mameli 
observes, “arguments for the view that a specific trait is innate are very often arguments aimed at 
showing that the trait in question could not possibly be the result of learning” (p. 721). Dennett refers 
to organisms that behave according to innate programming, “Darwinian creatures” (Dennett 1996, pp. 
83-85). These creatures are a product of Darwinian evolution by natural selection. They are well 
designed insofar as they are shaped by millions of years of selective forces, but their innate behavioral 
programs cannot be changed or updated by learning or other cognitive mechanisms like imagination 
and foresight. 
 
Behaviors that are characterized as innate behavioral programs include reflexes and fixed action 
patterns. Reflexes are simple, automatic responses to a stimulus. For example, when a particle causes 
one to sneeze or a puff of air causes one to blink. These behaviors are involuntarily elicited by a 
stimulus (Powell et al. 2017, p. 94-95). Fixed action patterns are also elicited in this way but consist 
of a more complex sequence of behaviors. In this case, a stimulus will cause the sequence of 
behaviors to be involuntarily set into motion. A reflex is often understood as “hardwired” in the sense 
that there is a fixed neural structure linking sensory receptors to a motor response. Thus, there is little 
to no flexibility or control in how one responds once a stimulus has triggered the reflex. Fixed action 
patterns are also often conceived as hardwired in this way. In their review of cephalopod intelligence, 
for example, the behavioral ecologist Alexandra Schnell and colleagues define a “hardwired 
predisposition” as ‘[f]ixed action patterns triggered by a cue” (Schnell et al. 2021, p. 164). In a review 
of the term “hardwired” in the popular and scientific literature, the neuroscientist Giordana Grossi 
shows that the term has seen a dramatically increase in usage over the past 50 years (Grossi 2017). 
Grossi argues that the term “hardwired” and “innate” are used synonymously, and within the 
psychology and neuroscience literature, the term “hardwired” has several core meanings, including 
evolved, genetically determined, not learned, automatic, inflexible, and indicating a fixed or invariant 
relationship between a stimulus and motor response (Grossi 2017). 
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Raby and Clayton (2009) provide the digger wasp’s behavior in Fabre’s experiment as an example of 
a fixed action pattern (p. 315). Other examples commonly cited as fixed action patterns include nest 
building by birds, web construction by spiders, and mound building by termites. These activities are 
also described as resulting from simple “genetically determined rules” (Bluff et al. 2007; Hansell and 
Ruxton 2007). Carruthers (2004) proposes a general architecture for innate behavioral programs, 
which he calls an “unminded” behavioral architecture. He writes that the “innate behaviors of many 
mammals, birds, reptiles, and insects can be explained in such terms” (p. 207). Under this model, an 
organism’s innately coded action patterns are typically triggered when that organism receives the 
appropriate percept as input, given a particular bodily state. In other words, the releasing factors 
include the organism’s bodily state (e.g., a state of hunger) and perceptual information (e.g., nearby 
prey) and these trigger an action schemata or innate behavioral program that determines the motor 
response (Carruthers 2004, p. 207). According to Carruthers, examples of rigid behavior, like that of 
the digger wasp, are best understood as operating with this kind of underlying architecture (2004, p. 
211-212). Not only are such organisms unintelligent, but “[i]f this were the full extent of the 
flexibility of insect behaviors, then there would be no warrant for believing that insects have minds at 
all” (Carruthers 2004, p. 212). 
 
1.4.2 Associative Learning 
 
Innate behavioral programs are one kind of simple mechanism generally believed to give rise to 
unintelligent behavior. A second major type of mechanism believed to give rise to unintelligent 
behavior is associative learning. Associative learning is the capacity to associate responses or 
outcomes with a particular stimulus, such as a rat learning to associate the pressing of a lever with 
food delivery. In contrast to intelligent behaviors, behaviors learned through associative learning are 
typically thought to be inflexible and acquired through trial and error. 
 
The mechanisms responsible for associative learning are generally characterized as simple (Dacey 
2016, Hanus 2016). As the philosopher Mike Dacey writes, associations are often described as “links 
between representations that are sequentially activated in the process” (Dacey 2016, p. 3765, 
emphasis original). Associative learning provides an account of how such simple links between 
representations are formed. Under this account, such links between mental representations are 
“formed passively and automatically as a direct consequence of contiguous (with some restrictions) 
pairings of those physical stimuli” (Mitchell et al. 2009, p. 184). Once such links are formed, then the 
perception of one stimulus activates the other linked representations. Clayton and colleagues highlight 
the mechanistic nature of associative processes (Clayton et al. 2006). Like the above accounts, they 
characterize associative learning as the process of nodes being activated by events (like stimuli), 
which cause excitatory or inhibitory connections between nodes to be formed. This chain of 
connections then ultimately controls associatively learned behavior. Clayton and colleagues hold that 
associative processes are “mechanistic” in the sense that they “gain their explanatory power by 
analogy to physical processes” (Clayton et al. 2006, p. 198). As they write, “[t]he processes by which 
associative structures control behaviour are constrained only by their mechanistic-like properties 
(Clayton et al. 2006, pp. 198-199). 
 
Associative learning is also characterized as simple on the level of neural implementation. For 
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example, Hanus (2016) writes that many “highlight the apparent similarity between the proposed 
automatic link-formation mechanism and the neurophysiological hardware in which it is 
implemented” (p. 242; see also Buckner 2011). Similarly, Dennett notes that the competences 
resulting from associative learning, “tend to be anchored in the specific tissues that are modified by 
training” (Dennett 1996, p. 132). He describes the training process involved in associative learning as 
taking place in “a network of nerve cells” (Dennett 1996 p. 87). Dacey (2016) writes that, “[t]hrough 
much of the history of the concept [of association], it has been considered a strength that associations 
operate mechanically, such that they are better candidates for neural realization than more nebulous 
concepts like the will” (p. 3769). Such a mechanical understanding of associations is illustrated by 
behaviorist accounts of the early twentieth century, which described neurons as linking stimuli and 
responses in the manner of a switchboard relay. Such a mechanical understanding of association 
continues today but is instead grounded in accounts of neural networks. Under this view, associative 
learning is taken to involve the adjusting of connections between neurons, according to various rules 
(Dacey 2016, p. 3769; Dennett, 1996, p. 87). 
 
Dennett refers to organisms that rely on associative learning as “Skinnerian creatures” (Dennett 1996; 
see also Godfrey-Smith 2018). Skinnerian creatures are more flexible than Darwinian creatures 
because they can adapt to new situations during their lifetime, rather than over generations. However, 
this flexibility falls short of the kind of flexibility needed for intelligence. This is because, unlike 
Popperian creatures, Skinnerian creatures must use trial-and-error learning to identify appropriate 
actions in new situations. Thus, they cannot behave successfully in new situations without first failing 
for some time. If such agents have the systematic connections to the world needed to make good 
choices, then this has come at the end of a long process of training. As Dennett writes, “Skinnerian 
creatures ask themselves, “What do I do next?” and haven’t a clue how to answer until they have 
taken some hard knocks” (Dennett 1996, p. 100). Skinnerian creatures survive insofar as they make 
“lucky first moves” while Popperian creatures survive because “the truly stupid moves are weeded out 
before they’re hazarded in ‘real life’” (Dennett 1996, p. 88). Skinnerian creatures are incapable of 
“one-shot learning” or learning about the world from one or a few examples but must instead “endure 
the arduous process of trial-and-error in the harsh world” (Dennett 1996, p. 88). 
 
Although Skinnerian creatures are more flexible than Darwinian creatures, they are still often 
characterized as simple and mechanical. Like Darwinian creatures, their behavior is believed to be 
rigid and easy to break. One example of such purportedly brittle behavior is imprinting or what 
Dennett calls “Mamataxis”. Here a young organism learns the behavioral response of moving towards 
it’s mother by being exposed to the mother as a stimulus (see Bolhuis et al. 1990 for a review of 
imprinting as a form of associative learning). Dennett argues that Mamataxis is brittle: that if chicks, 
for example, do not imprint on the mother soon after birth, they will imprint on any large moving 
object and follow that object instead, as if it were their mother (Dennett 1996, p. 104). The idea that 
animals can imprint on objects other than their mothers was famously illustrated by the Austrian 
ethologist, Konrad Lorenz, who had greylag goslings imprinted on him and argued that such 
imprinted behavior was very rigid (Lorenz 1937). As Dennett writes, “reliable Mamataxis can be 
achieved with a bag of simple tricks. The talent is normally robust in simple environments, but a 
creature armed with such a simple system is easily ‘fooled,’ and when it is fooled, it trundles to its 
misfortune without appreciation of its folly” (Dennett 1996, p. 105). 
 
Behaviors that result from associative learning are typically understood as unintelligent in the sense of 



 14 

being rigid, brittle or sphexish. We should expect Skinnerian creatures to be mechanical or “mindless” 
in this way. However, which creatures, if any, are Skinnerian in nature? According to Dennett, “if 
there are any purely Skinnerian creatures, capable only of blind trial-and-error learning, they are to be 
found among the simple invertebrates” (Dennett 1996, pp. 92-93). Dennett holds that most animals 
are capable of associative learning but remains agnostic regarding which creatures are limited to only 
this form of learning. The categories of Darwinian, Skinnerian, and Popperian creatures are also best 
understood as nested rather than exclusive: although a Darwinian creature is only Darwinian, a 
Skinnerian creature is Skinnerian and Darwinian, and a Popperian creature is Popperian, Skinnerian 
and Darwinian (Godfrey-Smith 2018, Dennett 2018).  
 
Although it is unclear which creatures are merely Darwinian or Darwinian and Skinnerian, the 
Standard View holds that we must eliminate the possibility that a creature is Darwinian or Skinnerian 
before concluding that it is exhibiting intelligent behavior. Like the digger wasp bringing a cricket 
into her burrow or a chick engaging in Mamataxis, a behavior might look intelligent, but upon further 
inspection be a product of simple innate behavioral programs or associative learning. Indeed, when 
considering behavior that looks intelligent in animals like the piping plover, hare and gazelle (Dennett 
1996, pp. 122-125), Dennett writes that the needs of these animals to engage in what looks like 
sophisticated behavior “can probably be provided by networks designed almost entirely by Darwinian 
mechanisms, abetted here and there by Skinnerian mechanisms” (Dennett 1996, p. 130). Although 
determining whether these organisms are in fact merely Darwinian or Skinnerian in nature is an 
empirical question, it is one we must answer, and eliminate as a possible explanation of their 
behavior, before concluding that the observed behavior is intelligent. 
 
The idea that we must eliminate the possibility that an organism is relying on innate behavioral 
programs or associative learning before concluding that it is behaving intelligently is central to the 
Standard View. Indeed, although there is some variation in views regarding the exact mechanisms 
underlying intelligent behavior, there is broad consensus regarding the mechanisms underlying 
unintelligent behavior—namely, innate behavioral programs and associative learning. As Seed and 
colleagues write, animal intelligence is, “usually defined by exclusion, rather than by some positive 
assessment of the mechanisms underpinning it” (Seed et al. 2009, p. 402) and this “principle of 
exclusion” defines intelligence as complex and flexible behavior that “cannot easily be explained in 
terms of simple conditioning, or hardwired action patterns” (Seed et at. 2019, p. 410). In other words, 
to determine whether an organism is behaving intelligently, we need to first exclude the possibility 
that they are Darwinian or Skinnerian creatures like the digger wasp who has “tricked” us into 
thinking it is intelligent, when in fact it is not. 
 
1.5 Conclusion 
 
The above provides a sketch of the Standard View of intelligent behavior. According to this view, 
intelligent behavior involves successfully achieving one’s goals in a wide range of circumstances and 
is often underpinned by mechanisms such as imagination, future planning, and causal reasoning. 
Unintelligent behavior, on the other hand, is rigid and brittle and a product of simple mechanisms like 
innate behavioral programs and associative learning. One method for distinguishing intelligent 
behavior from unintelligent behavior involves probing the behavior of an organism and seeing 
whether that behavior fails when small changes are made to the environment. Once a behavior has 
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been uncovered as unintelligent in this way, then we know that we are observing the products of 
Darwinian or Skinnerian, rather than Popperian, processes. Such mechanisms do not enable 
organisms to act flexibility in such a way that allows them to achieve their goals in new situations. 
Instead, successful performance is limited to a narrow range of environments. 
 
With the Standard View of intelligence in hand, in the next section, we will consider contemporary 
work on nonhuman animal behavior and cognition. Based on this work, I argue that we should reject 
the Standard View, as it fails to accommodate the empirical and theoretical state of the art on animal 
minds. In particular, the idea that animals can be sorted into Darwinian, Skinnerian and Popperian 
creatures is a fiction. It distorts the true capacities of organisms to such a degree that our best option is 
to dissolve these categories altogether. 
 

2. Against the Standard View 
 
Our understanding of innate behavioral programs has changed dramatically over the past few decades 
(Versace et al. 2018). Associate learning is also now recognized as a powerful tool for adapting to 
new circumstances (Heyes 2012). In this section, I show how innate behavioral programs and 
associative learning both result in flexible and domain-general abilities. Thus, these hallmarks of 
intelligence are not limited to organisms with capacities like imagination and causal reasoning. 
Moreover, the fact that an organism relies on innate behavioral programs and associative learning 
does not mean its resulting behavior will be unintelligent. 
 
Crucially my point here is not that we should understand flexible behavior in nonhuman animals as 
“merely” the product of innate behavioral programs and associative learning. My aim instead is to 
show that Darwinian and Skinnerian creatures, as they are traditionally conceived, do not exist. Those 
organisms that rely on innate behavioral programs and associative learning (which includes humans) 
are not limited to rigid and brittle behavior. Indeed, given what we know about the form these 
mechanisms take across the animal kingdom, we should not expect to encounter organisms that are 
sphexish in the way that the digger wasp has been characterized. Indeed, as we will see, it appears that 
even this often-repeated account of the digger wasp is a myth. Intelligent behavior is not a product of 
so-called “sophisticated” cognition alone but arises from innate behavioral programs and associate 
learning as well. 
 
2.1 Innateness and Intelligence 
 
Do innate behavioral programs result in rigid, brittle behavior? For those organisms that do rely on 
innate behavioral programs, are they best understood as Darwinian creatures? The answer to both 
questions I argue is “no.” Crucially, innate behavioral programs often work in concert with experience 
to produce appropriately flexible responses. Such “programs” are not typically “triggered” by a 
specific stimulus causing a rigid sequence of behaviors to unfold. Instead, organisms enter the world 
with adaptive priors. And these adaptive priors scaffold learning, making it faster and more effective. 
 
A common model organism for investigating innate behavioral programs is the newborn chicken 
(Gallus gallus). Chicks are precocial, meaning they have relatively mature sensory-motor systems, 
and can act independently to a high degree, from birth. Soon after birth, chicks seem to have some 
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understanding of occlusion and solidity (that a solid object cannot pass through another solid object), 
numerosity, the ordinal value of numbers, basic athematic, geometrical relationships, as well as other 
abilities (Vallortigara 2012, Versace & Vallortigara 2015).  
 
Chicks often do not require long periods of trial-and-error learning to behave successfully in the 
world. However, chicks are also not equipped with a set of innate behavioral programs that 
predetermine behavior. Instead, they are born with mechanisms that guide learning. Crucially, these 
mechanisms guide learning in a way that leaves room for environmental variation. For example, in the 
case of imprinting, there are mechanisms that orient the chick towards objects that visually resemble a 
mother hen. However, given there is much variation in the form that a mother hen can take, these 
orienting mechanisms are not overly specific, as this would result in too many false negatives 
(Versace et al. 2018). Instead, the mechanisms bias the chick to orient towards objects exhibiting 
properties like biological motion and face-like features. As the psychologist Elisabetta Versace and 
colleagues write, “[o]ptimal learning mechanisms must trade being sufficiently open to allow a wide 
range of stimuli to be stored as imprinted memories, against being sufficiently specific to avoid 
imprinting on inappropriate objects that in natural environments coexist with the chick’s mother and 
siblings” (Versace et al. 2018, pp. 963-964). It is findings like these that have led researchers working 
in this area to conclude that innate predispositions and learning mechanisms are dynamically 
interdependent with experiences driving the emergence of predispositions and predispositions guiding 
learning. As Orsola Rosa-Slava and colleagues write: “Predispositions are not fixed and immutable 
mechanisms” (p. 9). Instead, such mechanisms respond to and guide learning throughout the ontogeny 
of an organism. 
 
Adaptive priors such as these also allow organisms like the chick to successfully generalize from a 
limited number of cases (Versace et al. 2018, p. 964). Chicks recognize a mother hen from many 
points of views and against many different backgrounds. They also recognize their siblings despite 
these siblings transforming during development (Versace et al. 2018, p. 963). This is possible because 
the mechanisms involved in imprinting allow an agent to generalize from an imprinted object to novel 
objects in remarkable ways. For example, in one study, researchers showed that newborn ducklings 
have the capacity to identify logical relations among objects and generalize these abstract relations to 
novel stimuli. Domesticated mallard ducklings were exposed to pairs of objects one hour after 
hatching. These objects were either the same in their color and shape or different in one of these 
properties. Later, when presented with a new pair of objects, ducklings preferred those exhibiting the 
relation (same or different) to which they had been initially exposed, suggesting they had imprinted 
on the original abstract relation and were able to identify it in the new case (Martinho & Kacelnik 
2016). This and related studies suggest that “simple” mechanisms like imprinting are sensitive to 
high-level patterns in the world like abstract relations between objects and can facilitate the transfer of 
knowledge of these patterns to new situations. 
 
Thus, the role of innate behavioral programs in producing behavior are more complex than portrayed 
by the Standard View. Even canonical examples of purported inflexible behavior, determined by 
innate behavioral programs, have found to be more complicated than traditionally described. For 
example, the animal behavior scientist Alexis Breen and colleagues note that, “public and scholarly 
consensus [holds] that bird nests are achieved by instinct alone” (Breen et al. 2016, p. 83). However, 
after reviewing almost 150 years of data on avian nest building, they conclude that a variety of forms 
of learning are involved in nest building, including social learning. Breen (2021) builds on this 
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finding, arguing that nest building would make a promising (but hitherto neglected) framework for 
investigating material culture in animals. Similarly, studies suggest that spiders adjust their web 
design based on both long-term web-building experience and recent experiences capturing prey 
(Heiling & Herberstein 1999). Finally, other “hardwired” or “innate” behaviors, such as mating and 
fighting, are now known to be highly variable. For example, attack behavior in mice can be 
understood as “fixed” in the sense that there is a motor circuit dedicated to executing the behavior. 
However, there is large individual variability regarding when and whether an individual attacks 
another, based on the individual’s experience, as well as the potential rewards and costs (such as 
metabolic and opportunity costs) associated with making an attack. Similarly, mating behavior, 
partner preferences, social attraction, and social avoidance in vertebrates like rodents are affected by 
experience in nuanced ways. For example, if a mouse is defeated by another individual, it will avoid 
that individual for a few days; if it is defeated many times, however, it will sometimes exhibit general 
social avoidance and “depression-like behavior” such as a decreased preference for previously 
rewarding stimuli (Wei 2021, pp.1609-1611). As researchers reviewing “innate” vertebrate social 
behavior write: “The combination of learning-dependent and -independent modulatory mechanisms 
makes seemingly stereotypical social behaviors incredibly flexible and adaptive” (Wei et al. 2021, p. 
1614; see also Gorostiza 2018). 
 
It is worth noting that humans likely share many innate priors with other animals. It is challenging to 
investigate such predispositions in humans, given the difficulty of controlling for experience after 
birth. However, there is evidence that soon after birth, humans have some understanding of solidity, 
occlusion, number, geometry, social attractiveness, physical danger, the difference between animate 
and inanimate objects, causality, and other things (Spelke & Kinzler 2007, Platt & Spelke 2009, 
Vallortigara 2012, Versace & Vallortigara 2015). One recent study, for example, suggests that three-
month-old human infants already have some intuitions regarding causal agency. When observing 
others acting causally in the world (for example, reaching for and touching a ball, causing it to 
illuminate and emit a sound), they look longer when the agent’s reach is unnecessarily circuitous, 
rather than direct. This contrasts with observing non-causal actions (actions and effects lacking 
spatiotemporal continuity—for example, the ball activating not on contact). In this case, infants do not 
look longer at the circuitous versus direct reach. This suggests that three-month-old infants have some 
understanding of the goals of agents acting causally in the world and the cost of such actions. At three 
months, infants do not yet reach for or grasp objects, so this causal knowledge cannot be acquired 
from experiencing their own actions. The authors conclude that, “before infants can reach for objects 
themselves, they represent other people’s reaching actions in accord with the abstract concept of 
‘cause,’ a concept that may function together with the associated concepts of ‘cost’ and ‘goal’” (Liu et 
al. 2019, p. 5). They further suggest that such concepts are present at birth and guide learning and note 
that this is consistent with what we know about the abilities of precocial animals—for example, newly 
hatched chicks prefer self-propelled objects over objects that have been caused to move by an external 
force (Liu et al. 2019, p. 5; Mascalzoni et al. 2010; see also Mascalzoni et al. 2013). 
 
The above discussion shows that innate behavioral programs work in concert with learning and 
plasticity to provide organisms, such as newly hatched chicks, with tools for navigating an 
unpredictable world. When one examines contemporary research on other purportedly rigid behaviors 
that are a product of innate behavioral programs, one finds that the picture is more complex than that 
advanced by the Standard View. As Shettleworth writes,  
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attempting to classify behavior as learned as opposed to innate is meaningless. Trial-and-error 
learning likely perfects the crows’ skill, but it operates on appropriate motor patterns which they 
are predisposed to engage in. By the same token, tool use is not innate either, if by innate we mean 
performed without any relevant experience. And if we mean by innate not modifiable by 
experience once it is performed, that cannot be correct either. Every moment of an organism’s 
development from the very beginning results from a seamless interplay of the learned and the 
innate, or genes and environment.” (2013, pp. 13-14, emphasis original) 

 
Considerations such as these have led some philosophers to reject the concept of innateness 
altogether. For example, Mateo Mameli (2008) argues that the concept of innateness, as it is typically 
used in the literature, conflates numerous properties that are in fact distinct—it treats properties like 
“not learned,” “genetically encoded” and “inflexible” as a natural cluster, when in fact they constitute 
a clutter (see also Bateson & Mameli 2007). Recognizing this is important for avoiding bad 
inferences, such as using the concept of innateness to infer that a trait with high heritability will also 
be difficult to modify through environmental intervention. Unless there is good evidence that these 
properties are causally connected in some way, such inferences are dubious. Mameli writes: “Even if 
it turns out that INNATENESS is not theoretically useful, it does not follow that the Nativist Debates are 
misguided or pointless. It follows instead that there are better ways of conducting (at least some of) 
these debates, ways that do not make any use of INNATENESS” (2008, p. 735).  
 
Similarly, we have seen that the properties used to characterize Skinnerian creatures (simple, innate 
mechanical structures that lead to inflexible, domain-specific responses) do not in fact cluster in the 
natural world, according to contemporary research. Creatures that depend on innate concepts and 
priors do so in a way that is integrated with learning rather than distinct from it. Such “innate” 
structures also lead to flexible and domain-general behavior, allowing organisms to transfer 
knowledge to new situations. Innate behavioral programs underpin intelligent behavior. 
 
2.2 Associative Learning and Intelligence 
 
To begin, it is worth noting that the term “associative” does not refer to a single, simple cognitive 
mechanism. As the philosopher Mike Dacey points out, terms like “association” are “so abstract that 
they are merely filler terms that could be realized by many different mechanisms” (2016, p. 3764, 
emphasis original). Dacey argues that associative models are often mistakenly interpreted as 
representing simple psychological or neural mechanisms, such as those held by the Standard View. 
But when one looks closely at particular associative models, one finds that they typically do not 
represent simple mechanisms, but instead abstract away from the details of mechanisms. Thus, 
associative models are simple insofar as they leave out mechanistic detail, but the mechanisms they 
represent are not simple in this way. As Dacey writes, associative models “are useful when we don’t 
know enough about the mechanistic detail. They can be an early step in a top-down characterization 
of the process (that is, moving from and [sic] abstract, partial characterization of the process to one 
including more causal and mechanistic detail)” (2016, p. 3779). Thus, holding that an organism relies 
on “association” does not imply that it employs a simple psychological or neural mechanism in the 
sense maintained by the Standard View. 
 
Psychologists have made similar observations. The comparative psychologist Daniel Hanus, for 
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example, has noted that contemporary associative models are diverse (Hanus 2016). Indeed, he writes 
that the models can be so diverse that “nearly any empirical finding could potentially be simulated by 
an associative model” (Hanus 2016, p. 243). Given this diversity, Hanus argues that associative 
models do not form a coherent category of models. Like Dacey, Hanus is also skeptical that 
associative learning can be understood as instantiated in simple neural processes (Hanus 2016, p. 
242). He notes that, first, it is unclear that the theoretical entities posited by associative models 
correspond to anything physiological. Second, if associative learning were simple in the sense of 
being implemented by large look-up tables, for example, then this would be computationally very 
expensive. As the psychologist C. Randy Gallistel writes with respect to neural network models of 
dead reckoning construed in terms of a look-up-table architecture: “Such an architecture is prodigally 
wasteful of material resources. It is nakedly exposed to combinatorial explosions that lurk behind 
every tree in the computational forest” (2008, p. 240). 
 
Recent work on the evolution of cognition also suggests that a wide range of organisms engage in 
forms of associative learning that support flexible behavior. One form of such learning is what 
researchers call “unlimited associative learning” (Bronfman et al. 2016a, Bronfman et al. 2016b, 
Ginsburg & Jablonka 2019, 2021, Birch et al. 2020). Unlimited associative learning (UAL) is a form 
of associative learning in that it involves learning associations between objects, events, and actions. 
However, it is effectively unlimited in the range of associations that can be formed. An animal with 
UAL can associate novel stimuli, as well as compound, multimodal stimuli composed of different 
elements or action-patterns. Such an animal can learn to associate stimuli even if there is a temporal 
gap between them. Finally, an animal with UAL can engage in second-order conditioning or form 
associations between new stimuli and actions and prior associations (Bronfman et al. 2016, Bronfman 
et al. 2018, Ginsburg & Jablonka 2021). According to Bronfman and colleagues, “a system enabling 
UAL entails the integration of information, leads to a massive increase of discrimination, and allows 
the generation of flexible goal-directed behavior” (Bronfman et al. 2016b, p. 12). An organism with 
UAL then has the capacity to flexibly adapt to a wide range of situations. 
 
Researchers studying UAL also believe it is widely distributed across the animal kingdom. As 
Ginsburg and Jablonka write, “A survey of the learning literature suggests that these [unlimited 
associative] learning capacities are present in three phyla: in almost all vertebrates, some arthropods 
(including honeybees and cockroaches) and some cephalopod molluscs (the colloid cephalopods: 
octopods, squid and cuttlefish)” (Ginsburg & Jablonka, 2021, p. 6; see also Ginsburg and Jablonka 
2019). If these researchers are correct, then we should expect flexible behavior to be found in 
numerous organisms, underpinned by a form of associative learning.  
 
One might object that UAL is not what most researchers have in mind when they appeal to associative 
learning. Instead, they have simple associative processes in mind like classical and operant 
conditioning. However, here we can return to the point made by Hanus, that the category of 
associative models is incredibly diverse. It is not clear what, if anything, gives this category of models 
theoretical or mechanistic coherence. It is also not clear that traditional associative models are simple, 
rather than simply abstract, as argued by Dacey. Thus, excluding UAL from the category of 
associative models on the grounds that it is too different or too complex compared to other associative 
models would be difficult to justify without first clarifying what is meant by “different” and 
“complex.” 
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Thus, associative models of cognition and behavior do not always represent simple mechanisms, and 
some forms of associative learning produce complex, flexible behavior. These findings are consistent 
with research on the role of associative learning in human behavior. For example, associative learning 
has been shown to contribute not just to basic human functions, but a range of complex behaviors. 
Indeed, a study conducted by the psychologist Scott Barry Kaufman and colleagues suggests that 
associative learning is one of the mechanisms underlying general intelligence (g) understood as a 
“positive manifold” or the tendency for a battery of cognitive tests to be positively correlated with one 
another (Kaufman et al. 2009). Kaufman and colleagues found that individual differences in 
associative learning predicts g. This is the case even when one controls for other mechanisms thought 
to underly g, such as working memory or processing speed. As Kaufman et al. (2009) write, according 
to their analysis, “associative learning, working memory, and processing speed all made statistically 
independent contributions to g. This finding suggests that each of these elementary cognitive 
processes may represent a mechanism that contributes differentially to general intelligence” (p. 379).  
 
There is evidence that associative learning contributes to a range of other human cognitive abilities 
and behaviors, including a sense of agency, imitation, social learning, flexible planning, learning 
higher-order relationships between multiple environmental outcomes, and others (Heyes 2012, Lind 
2018). The fact that a behavior is a product of associative learning then does not mean it is rigid or 
unintelligent. These and other considerations have led researchers like the psychologist Konstantinos 
Voudouris to conclude that associative and cognitive processes are often not mutually exclusive 
(Voudouris 2020).   
 
Even if some abilities, like causal reasoning and associative learning, are best understood as distinct, 
it is not clear that relying on causal reasoning is “smarter” than relying on procedural rules learned 
through association. For example, the trap-tube task is a common paradigm used to probe an 
organism’s causal reasoning abilities (Seed et al. 2006). In this task, participants are presented with a 
transparent tube baited with a reward (usually food). To obtain the reward, participants must use their 
body (e.g., finger or beak) or a tool (such as a stick or rake) to retrieve (by pushing or pulling) the 
reward from the tube. The tube, however, contains various traps that must be avoided if the reward is 
to be successfully extracted. If the reward falls into a trap, it can no longer be retrieved. Various 
animals such as chimpanzees, rooks, and New Caledonian crows have been tested using this 
paradigm. However, often the results have been inconclusive, as there is some simple procedural rule 
that participants could have acquired through associative learning that might explain their 
performance (Seed et al. 2011). However, when adult humans are tested on the same task, their 
pattern of performance is also more consistent with the implementation of a procedural rule rather 
than the application of abstract causal principles (Silva & Silva 2006). Presumably, adult humans 
have some understanding of the causal principles involved in this task (e.g., that unsupported objects 
fall). If they do, however, they do not always make use of that causal knowledge. Perhaps it is 
somehow “smarter” to rely on procedural rules instead (we will return to the topic of trade-offs in 
section 3).  
 
The above suggests that the Standard View is mistaken. Associative learning is not a simple 
mechanism that gives rise to unintelligent behavior. Quite the contrary, associative models are 
enormously diverse and often leave mechanistic details unspecified. Associative learning also gives 
rise to a wide range of flexible behaviors from unlimited associative learning in molluscs to general 
intelligence in humans. Associative learning is also implicated in cognitive processes like flexible 
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planning, which are viewed by some psychologists as key processes involved in producing intelligent 
behavior (see section 1.2). 
 
2.3 Conclusion 
 
Contemporary work on innate behavioral programs and associative learning suggests that these 
mechanisms work in concert with other cognitive mechanisms and give rise to flexible behavior. The 
idea that innate behavioral programs and associative learning are best understood as simple 
mechanisms that lead to rigid behavior is mistaken. There is no neat mapping of intelligent behaviors 
onto one set of mechanisms and unintelligent behaviors onto another. There is also no neat divide 
between Darwinian, Skinnerian, Popperian and Pearlian creatures. Instead, empirical research 
suggests that both human and nonhuman animals rely on a tangled web of innate priors, learning 
mechanisms, and other abilities to flexibly engage with the world. These mechanisms typically do not 
operate in isolation but depend on each other. 
 
Given the above, how do we make sense of sphexish behavior? Are at least some animals best 
understood as simple automata? As we have seen, many behaviors are more flexible than 
characterized by the Standard View, such as nest construction and web building. Indeed, even the 
often-repeated case of the digger wasp appears to be a myth. The philosopher Fred Keijzer (2013) 
notes that already in the original digger-wasp study, Fabre noted that there was variation among 
individuals of the same species, with some individuals repeating the behavior of checking the den 
after replacing the displaced cricket, and others not. Later attempts to reproduce the behavioral 
repetition in Fabre’s study also failed. The entomologists George and Elizabeth Peckham, for 
example, found that the wasps adapted to displaced prey after a few trials; other replications showed 
that longer repetitions could be elicited, but that wasps adapted eventually. Finally, more recent 
studies suggest that the digger wasps’ behavioral repetitions might not be superfluous but rather an 
adaptive response (see Keijzer 2011, 2013). 
 
Recall that Hofstadter categorized the behavior of the digger wasp as one level above “a stuck 
record”. Keijzer’s analysis suggests that the stuck record here might instead be the human tendency to 
retell the digger wasp story and others like it. He writes: 
 

While the Sphex story does not teach us a lot about insect behavior, the real interest of the 
Sphex story might lie somewhere else: the tenacity of the story might teach us something 
important about human thought and behavior. The interesting fact is not so much the 
presumed endless repetition made by the wasp, but the endless repetition of humans retelling 
the story as a matter of significance despite all the available counterevidence. (Keijzer 2013, 
p. 515-516, emphasis original) 

 
If there is poor evidence for sphexish behavior, why do researchers continue to appeal to this 
example? Keijzer suggests that the story reinforces the human intuition that an organism can be 
interpreted as agential and minded on the one hand, and mechanical and mindless on the other. He 
writes, “what initially seems like a sign of mind in insects is suddenly shown to be a mere 
mechanism” (Kiejzer 2013, p. 516). We can extend this analysis to innate behavioral programs and 
associative learning. As we have seen, the Standard View attributes sphexish behavior to these 
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processes and this serves as a contrast class for identifying intelligent behavior. In other words, the 
Standard View draws on the idea that innate behavioral programs and associative learning give rise to 
rigid behavior to reinforce the idea that we have a handle on what constitutes intelligence. Identifying 
intelligent organisms requires excluding these alternatives. 
 
This point can be made more precise by drawing on contrastivism in philosophy. Contrastivism is the 
view that reasons are always relative to contrast classes. Within the context of epistemology, the idea 
is that reasons are required for knowledge and justified belief. Given that a reason is relative to a 
contrast class, what is included in that contrast class is important for determining whether one has 
knowledge. For example, if you see an animal, and the appearance of that animal leads you to 
conclude that it is a zebra, as opposed to a rhinoceros or horse or any other large mammal with which 
you are familiar, then you are justified in believing it is a zebra (Dreske 1970, Sinnott-Armstrong 
2008). However, you are not justified in believing it is a zebra as opposed to a perfect simulation of a 
zebra. Your visual experience rules out that the animal is a rhinoceros or horse but does not rule out 
that what you see is a perfect simulation of a zebra. Contrast classes are important for determining 
whether there is sufficient evidence to rule out the alternatives, and thus whether someone is justified 
in their belief. As Sinnott-Armstrong writes, “Someone, S, is justified out of a contrast class, C, in 
believing a proposition, P, when and only when S is able to rule out all other members of C but is not 
able to rule out P” (2008, p. 259). 
 
For our purposes, what matters is that the Standard View regularly treats innate behavioral programs 
and associative learning as the relevant contrast class for believing that a system is intelligent. In 
doing so, it seeks evidence to eliminate these alternatives. However, the picture it paints of these 
processes, that they are simple, mechanical and lead to inflexible behaviors is incorrect. As we have 
seen, innate priors and associative learning work in concert with other mechanisms and give rise to a 
wide range of flexible behaviors. Supplying evidence that these processes are not at work does not 
give us insight into whether a system is intelligent. 
 
Even if sphexish behavior does exist in the form of rigid or “stupid” responses to certain situations, 
such responses are unlikely to comprise the whole behavioral repertoire of an organism. Also, as we 
have seen, humans rely on a combination of associative learning, innate mechanisms, and other 
cognitive strategies for a wide range of sophisticated behaviors. Although such constraints might lead 
to behavior that appears suboptimal, irrational or unintelligent in some situations, it might be that the 
behavior is optimal against a background of various trade-offs over the lifetime of an organism (see 
Shettleworth 2013, p. 68). We explore such trade-off in the following section, as well as consider how 
best to understand and investigate intelligent systems once the Standard View has been cast aside. 
 

3. Kinds of Intelligence 
 
The cognitive scientist Aaron Sloman advanced the idea of a space of possible minds in the 1980s. In 
doing so, he hoped to move away from dichotomous thinking concerning minds and behavior. Sloman 
writes: 
 

A common approach to this space of possible ‘behaving systems’, to coin a neutral phase, is 
to seek a single sharp division, between those with minds, consciousness, souls, thoughts, or 
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whatever, and those without. Where to draw the line then becomes a major problem, with 
protagonists of the uniqueness of man [sic], or of living things, or champions of machine 
mentality, all disputing the location of the boundary, all offering different criteria for 
allocating things to one side or another. (Sloman, 1984, para. 3). 

 
Sloman argues that we should reject such dichotomies and instead “acknowledge that there are many 
discontinuities, or divisions within the space of possible systems: the space is not a continuum, nor is 
it a dichotomy” (1984, para. 11, emphasis original). Sloman encourages researchers to focus instead 
on exploring the space of possible minds or behaving systems by, first, surveying and classifying the 
abilities of different systems and, second, seeking explanations for the abilities (and inabilities) of 
these classified systems. I believe this is the approach we should take for studying intelligent systems. 
Instead of attempting to neatly divide behaving systems into intelligent and unintelligent, or rank 
them on a scale of intelligence, we must recognize that intelligent systems are diverse: domain-
general, flexible behavior takes a variety of forms and is underpinned by a variety of mechanisms 
(including innate priors and associative learning). 
 
Much comparative psychology and cognitive ethology today is dedicated to this project of describing, 
classifying, and explaining behavior across a wide range of cultures, species, individuals (biological 
and artificial), developmental periods, etc. However, as we have seen, when it comes to intelligence, 
there is a tendency towards dichotomous thinking. The Standard View aims to divide the natural 
world according to those organisms that are rigid in their behavior and depend on simple, mechanical 
processes, and those organisms that can behave flexibly and depend on more sophisticated processes 
like causal reasoning and planning. The central aim of this Element has been to show that this 
dichotomy does not reflect what we currently know about cognition and behavior. Eliminating this 
dichotomy however leads to the question, how should we structure the space of intelligent systems? 
Also, if there is no compelling distinction between intelligent and unintelligent systems, why not 
eliminate the concept of intelligence altogether? 
 
In this section, I address these questions. I first revisit the question, “what is intelligence?” to see 
whether we can pin down a precise definition that does not rely on the Standard View, but that can 
also be applied across species or taxa. I argue that the unique trade-offs each organism faces precludes 
such an approach and that we should also avoid relying on humans as a standard for intelligence. I 
then draw on three recent suggestions in philosophy and cognitive science for research strategies that 
better capture the diversity of mechanisms and behavioral abilities found across the animal kingdom. 
These strategies provide a good starting point and guide regarding how to construct a space of 
intelligent systems. I conclude by considering whether we should avoid or eliminate the term 
“intelligence” altogether, given our inability to define it precisely. I follow other philosophers in 
holding that umbrella terms such as these can help orient a research community towards a class of 
phenomena that we do not yet understand, and that doing so may facilitate research. Crucially, 
however, we must reject the Standard View and not contrast intelligence with innate behavioral 
programs and associative learning but instead recognize that intelligence emerges from a 
heterogenous suite of mechanisms and takes a variety of forms. 
 
3.1 What is Intelligence? 
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In section 1, we broadly defined intelligent behavior as the ability to flexibly achieve one’s goals in a 
wide range of situations. Although the Standard View couples such behavioral flexibility with 
capacities like imagination, planning and causal reasoning, and behavioral inflexibility with innate 
behavioral programs and associative learning, we have seen that cognition and behavior does not lend 
itself to such a neat divide. The latter mechanisms also give rise to behavioral flexibility. If we think 
the concept of intelligence is worth retaining, then we need to provide an approach that serves as an 
alternative to the Standard View. 
 
Recall that in section 1 we made the distinction between narrow or domain-specific intelligence on 
the one hand, and general intelligence on the other. This concept of general intelligence is what 
Shettleworth (2013) seems to have in mind when discussing the capacities of organisms like Clark’s 
nutcrackers (Nucifraga columbiana). She notes that Clark’s nutcrackers (a corvid species native to 
North America) have excellent spatial memory when it comes to retrieving the thousands of seeds that 
they store for the winter. However, when one examines their other memory abilities, such as 
remembering the colors of items or remembering where items stored by other birds are located, then 
they are either no better or worse than other corvids. Shettleworth concludes that animals like the 
Clark’s nutcracker are “not exceptionally ‘intelligent’ in general, just especially good at specific skills 
that are important for their survival and reproduction” (Shettleworth, 2013, p. 11). According to 
Shettleworth, the nutcracker’s spatial memory is an example of an adaptive specialization of cognition 
and not general intelligence. 
 
This distinction between domain-specific cognitive adaptations and domain-general intelligence 
suggests that perhaps we could define intelligence along these lines. That is, rather than commit to 
any specific mechanisms underlying intelligent behavior, we could instead categorize organisms 
according to behavior alone—namely, according to the degree of domain-general flexibility they 
exhibit. Setting the problem of how to delineate a domain aside, this approach immediately runs into 
what me might call the “more is not better” problem. What does it mean for a particular species of 
corvid to be more intelligent with respect to a capacity like memory, for example? If species A 
remembers more properties than species B, is it more intelligent? What about if it remembers more 
properties for a greater length of time? The problem with this approach is that it fails to consider the 
necessary trade-offs that occur with the exercise of any cognitive capacity. Agents who remember too 
much are often impaired. In the words of patient “AJ”, the first person diagnosed with highly superior 
autobiographical memory (HSAM): “Whenever I see a date flash on the television (or anywhere else 
for that matter) I automatically go back to that day and remember where I was, what I was doing, 
what day it fell on and on and on and on and on. It is non-stop, uncontrollable and totally exhausting” 
(Parker et al. 2006, p. 35). AJ has detailed autobiographical memories of every day of her life 
stretching back decades. Patients with HSAM, however, suffer from impairments such as obsessive 
thinking and difficulty attending to the present. Moreover, neuroscientists like Blake Richards argue 
that forgetting has various critical functions, such as allowing agents to generalize and make 
predictions: remembering too much may lead to overfitting to past experience (Richards et al. 2017). 
Indeed, people with severely deficient autobiographical memory (SDAM) seem to excel at abstract 
thinking and problem solving (Gravitz 2019). 
 
Similar trade-offs occur in the context of flexible problem solving. Research led by the developmental 
psychologist Alison Gopnik and colleagues suggests that humans become less flexible as they grow 
older: adults are less likely than children, for example, to adopt an unfamiliar hypothesis, despite the 
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hypothesis being consistent with the evidence (Gopnik et al. 2017). Instead, adults prefer familiar 
hypotheses even if those hypotheses are less consistent with the evidence. This means that children 
outperform adults on problem-solving tasks when the solutions to those problems require adopting an 
unfamiliar hypothesis. Gopnik and colleagues interpret this and similar findings as demonstrating a 
trade-off between exploration and exploitation. Early in life, learners maximize exploration at the 
expense of exploitation. Exploring new, unfamiliar solutions to problems, however, means taking a 
risk of getting it wrong. Later in life, learners favor exploitation at the expense of exploration. Here 
there is less risk of getting it wrong insofar as the learner has experienced success applying this 
hypothesis. Instead, the risk is that the solution is suboptimal. When one ceases exploration too early, 
one might mistake a locally optimal solution for a globally optimal one. One way out of this problem 
is to begin with a broad search (more exploration) followed by a narrower search (more exploitation), 
which is what we find in developing humans (Lucas et al. 2014, Gopnik et al. 2015). 
 
It thus seems that behaving intelligently does not mean simply having more of one ability or another, 
but rather striking an appropriate balance amongst a wide range of trade-offs. Furthermore, the nature 
of the trade-offs will vary depending on the environment, as well as the evolutionary and ecological 
history of an organism. Intelligence under this view is not a one-dimensional capacity of which more 
is better, but rather a multi-dimensional capacity that requires a context-dependent balance between 
trade-offs. 
 
Considerations such as the above suggest that there is no precise definition or metric for evaluating 
the intelligence of animals. It might be tempting at this point to appeal to humans as a paradigm 
example of an intelligent organism. As the psychologist Robert Sternberg notes: “Most evolutionary 
approaches place humans at the top of some kind of scale of intelligence. They view humans as 
supremely intelligence” (Sternberg 2010, p. 251). If this is the case, why not use humans as a standard 
by which to measure the intelligence of other species?  
 
There are several problems with this approach. First, like other animals, humans have their own 
unique specializations. Philosophers of mind have long been concerned with overcoming human 
chauvinism when evaluating the mental properties of other organisms (Block 1978). A chauvinist 
approach or theory is one that tends to deny that a system has mental properties when in fact it does 
(that is, the approach produces many false negatives). If we construct a benchmark for intelligence 
based on theories of human intelligence, then we will likely overlook many if not all cases of 
intelligence that diverge from the human form. This is a problem, given that the brains and bodies of 
organisms like the kea, octopus and bee differ dramatically from the primate brain. While humans and 
chimpanzees evolutionarily diverged 5-7 million years ago, humans and cephalopods, like the 
octopus, diverged around 600 million years ago. As the philosopher Peter Godfrey-Smith writes, 
“cephalopods are an independent experiment in the evolution of large brains and complex behavior” 
(Godfrey-Smith 2017, p. 9; see Halina 2018 for discussion). If a desideratum of comparative 
cognition is to understand the minds and behaviors of creatures like the octopus, then we cannot rely 
on humans as our standard (Birch 2020, Shevlin 2021).  
 
In addition to the concern that intelligence is realized in dramatically different ways, there is the 
worry that our understanding of human intelligence is biased. The philosopher Cameron Buckner 
argues that we have good reason to think that we have an inflated conception of human abilities 
(Buckner 2013). Psychology studies suggest that humans consistently overestimate their own 
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cognitive sophistication: attributing actions that are a result of situational factors, for instance, to 
rational choice. This tendency to overestimate our cognitive capacities might be exacerbated in the 
case of intelligence, as this concept has a long history of being used by humans to legitimize power 
hierarchies (with the more intelligent having the right to command or control the less intelligent). 
Thus, identifying humans as “intelligent” likely conveys not just information about our cognitive or 
behavioral abilities, but also where we stand on a social or dominance hierarchy (Cave 2020). Given 
this, we should treat claims of human intelligence and “supreme intelligence” with caution and work 
carefully to control for cognitive biases in our investigations of diverse intelligences (see Dacey 2017, 
Shevlin & Halina 2019). 
 
We can think of the above concerns in terms of the observational bias known as the streetlight effect, 
illustrated by the following anecdote: Imagine you come across someone searching for their keys 
under a streetlight. You offer to help the person search for their keys, and when after some time you 
cannot find them, you ask, “are you sure you lost them here?” They reply, no, that they lost their keys 
elsewhere, but that they’re searching here because “this is where the light is”. Similarly, searching for 
intelligence under the streetlight of our conception of human intelligence severely limits our 
understanding of the diverse forms that intelligence might take across the animal kingdom. It also 
risks adopting an inflated view of intelligence and using this to evaluate the capacities of other 
organisms. If we would like to genuinely understand the kinds of intelligence that are found on earth 
(and possibly elsewhere), then we must adopt a different approach towards mapping this space. 
 
3.2 Towards a New Approach 
 
Developing a compelling account of what renders a behavior “intelligent” is challenging. It appears 
there is currently no underlying process or principle uniting those behaviors we might pick out as 
“intelligent”. Although we can fall back on our original definition of intelligence as the ability to 
solve problems or achieve one’s goals in a wide range of situations, we must leave behind the idea 
that such behavioral flexibility tracks a particular suite of mechanisms (and excludes others). We must 
also recognize that organisms face many trade-offs: in the face of limited resources, more will often 
not be better. 
 
In developing an approach to intelligence, I suggest we begin by following Sternberg (2003) and think 
of intelligence as an interaction, rather than a property of an individual. He writes: “Intelligence has 
meaning by virtue of the kinds of problems one needs to solve in some environment. If there are no 
meaningful problems to solve, there is no meaningful intelligence or intelligent problem solving. 
Similarly, competencies and expertise exist only with respect to some kind of environmental niche” 
(pp. 252-253). Sternberg’s point is that the concept of intelligence is meaningful only when 
understood as involving an interaction with an environment. Organisms are not intelligent in 
themselves; it is the interaction between an organism and its environment that is meaningfully 
described as “intelligent”. Moving from individuals to interactions transforms the project of mapping 
the space of intelligent systems. Rather than mapping where particular categories of organisms (such 
as humans, honey bees, and jellyfish) fall with respect to their intelligence, we might instead focus on 
the interaction between the systems that make up an organism and the systems that make up the 
environment. For example, rather than ask, are honey bees intelligent? Or, how intelligent are honey 
bees? We can ask, given 1) the evolutionary and developmental history of the organism under study, 
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2) this organism’s immediate environment, and 3) a particular goal or task, what kind of behavioral 
flexibility should we expect? What do we find? How is this flexibility achieved? How do these 
behavioral patterns and processes compare with those of other organisms? Crucially, with respect to 
this last question, we are not asking “which is more intelligent?” but simply “what similarities and 
differences do we find?” Understanding these similarities and differences provides a clearer picture of 
the many ways cognitive mechanisms work together to achieve adaptive behavior, and the role of the 
environment in this achievement.  
 
Similar proposals regarding how to approach animal cognition and intelligence have been made in the 
literature. For example, the psychologists Michael Colombo and Damian Scarf write that researchers 
should shift their focus from “evaluating how animals differ in ‘intelligence’” to “specific, definable, 
and measurable capacities that allow direct comparisons to be made between species” (Colombo & 
Scarf 2020, p. 2). Similarly, in an analysis on “rationality” in nonhuman animals, the philosopher 
David Papineau and psychologist Cecilia Heyes argue that, “research should refocus on specific 
explanations of how animals do specific things, rather than on the presence or absence of some 
general or ideal form of rationality that contrasts with associative mechanisms” (Papineau & Heyes 
2006, p. 187; see also Allen 2014). I suggest that this applies to intelligence research as well. 
Although the coarse-grained contrast between rigid, mechanically produced behavior on the one hand, 
and flexible, intelligent behavior on the other, might have served useful functions in the past, it is now 
an obstacle to research. 
 
How then should we proceed? Three recent suggestions provide useful starting points. First, the 
zoologist Corina Logan and colleagues outline an approach for understanding the relationship 
between brain morphologies and behavioral capacities, which goes “beyond brain size” and involves 
“deemphasizing coarse-grained notions of ‘intelligence’” (Logan et al. 2018, p. 56). After reviewing 
the limitations of research seeking to draw a meaningful link between intelligence and absolute or 
relative brain size, they argue that a more nuanced approach is needed. One of their key suggestions is 
that researchers should take a “bottom-up” approach towards validating the relationship between 
behavior and neural mechanisms by focusing on individuals within a species. This would help ensure 
the validity of the posited causal relationships and avoid potential reifications of hypothetical 
mechanisms. It would also help place cognitive abilities within an evolutionary, developmental, and 
ecological context (Logan et al. 2018, p. 72). Once such intraspecies accounts are in place, they could 
then be scaled across taxa. As Logan et al. write, “rather than positing or assuming a coarse-grained, 
cross-taxa category and applying it across a range of cases (thus losing ecological relevance and 
increasing the potential for post hoc explanations and reification), the bottom-up approach makes 
scaling a much more piecemeal, empirically tractable matter” (Logan et al. 2018, p. 74; see also 
Brown 2018). Such a bottom-up approach to the study of intelligence would have similar advantages. 
Rather than starting with a coarse-grained conception of intelligence (or one reflecting what we take 
to be human intelligence) and trying to apply this across taxa, we should start by validating 
intraspecies accounts of behavioral flexibility and the mechanisms responsible for such flexibility. 
 
A second recent suggestion comes from the philosopher Tobias Starzak and evolutionary biologist 
and psychologist Russell Gray. Focusing on causal cognition, they advance a framework aimed at 
helping researchers move away from viewing behavior as a product of sophisticated and human-like 
causal understanding on the one hand, and simple and nonhuman-like mechanisms on the other. They 
write: “Over and over again the familiar refrain is, ‘do animals have complex human-like cognitive 
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abilities or can their behavior be explained in terms of simpler processes such as associative 
learning?’” (Starzak & Gray 2021, p. 2). Like Logan and colleagues, they propose a more fine-
grained approach and think a critical step in the right direction is to get a better handle on what is 
meant by “causal understanding”. They propose three parameters of causal cognition: sources of 
causal information, integration, and explicitness. Focusing on the first parameter, an organism can 
gain causal information from a wide range of sources, such as experience of their own behavior, 
experience of the behavior of others, innate priors (as we saw in section 2.1), and other sources. One 
can thus compare individuals and species according to which sources of causal information they 
exploit (and when and how). Starzak and Gray also note that some parameters are conceptually 
dissociable and whether they dissociate in biological organisms is an empirical question. Such an 
approach highlights the many dimensions along which a general cognitive ability may vary, moving 
us away from an all-or-none or complex-versus-simple way of thinking. 
 
We might similarly break down intelligent behavior according to its purported properties. For 
example, we might decide that problem-solving speed, multi-modal sensory information integration, 
and inhibition are all important dimensions of behavioral flexibility (see Buckner 2014). This would 
then provide us with the more tractable task of evaluating how these specific abilities are instantiated 
in a given organism and how they vary across taxa. There is, however, the further question of whether 
these dimensions are in fact dimensions of one thing. That is, whether they form a natural cluster or 
kind that captures what researchers mean when they use the term “behavioral flexibility” or 
“intelligent behavior”. Buckner (2014) provides several proposals for thinking that properties such as 
those listed above do naturally cluster. However, the empirical evidence is still mixed. For example, 
although it is often assumed that behavioral flexibility requires inhibition: that one must inhibit a 
previously learned response to successfully adapt to a new situation, studies in humans and nonhuman 
animals have failed to find such a correlation (Logan et al. 2020). In studies of great-tailed grackles, 
behavioral flexibility has also failed to correlate with problem solving abilities and problem solving 
speed (Logan 2016). Logan writes that this result, “reveals how little we know about behavioral 
flexibility, and provides an immense opportunity for future research to explore how individuals and 
species can use behavior to react to changing environments” (2016, p. 25). 
 
Finally, Taylor and colleagues have recently suggested that when investigating intelligence 
comparative psychologists should move from “success testing” to “signature testing” (Taylor 2014, 
Bastos & Taylor 2020, Taylor et al. 2021). Success testing focuses on whether an organism has 
succeeded or failed to solve a problem. Signature testing, in contrast, examines patterns in 
information processing, including errors, biases, and limitations. The problem with success testing is 
that simply knowing whether an organism has passed a test provides little information regarding the 
cognitive processes underlying that performance. Signature testing provides more information in this 
respect. As Taylor and colleagues write, “errors and biases can be strongly diagnostic, because while 
there is often only one way to solve a problem, there are many ways to make an error at a task or have 
a bias in how information is processed” (2021, p. 6). If two organisms rely on the same cognitive 
mechanisms to solve a problem, they should exhibit the same suite of signatures or patterns of errors, 
limitations, etc. Given that the signature-testing approach provides additional constraints on the 
cognitive hypothesis space, it can help researchers move away from interpreting task performance as 
either the result of “rich” human-like cognition or “lean” cognitive processes like associative learning, 
and instead home in on forms of cognition that fall between these extremes (Taylor et al. 2021, pp. 
12-13). 
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The above strategies (validating causal relationships within species, thinking of intelligent behavior as 
multidimensional, and focusing on signatures rather than success) should help us map the space of 
intelligent systems in a way that moves beyond the Standard View. Rather than categorizing 
organisms as intelligent or not, these strategies seek to provide a fine-grained account that is sensitive 
to the unique contextual factors in which an organism or system is embedded. Once we move in this 
direction, however, one might ask, “what role is left for the concept of intelligence?” Intelligence and 
behavioral flexibility are vaguely defined. In attempting to map the space of intelligent systems, 
shouldn’t our first task be to provide a precise definition of intelligence so that we know what to 
include (and exclude)? 
 
Here I agree with the philosopher Colin Allen that some terms, like “cognition” and “life”, are 
umbrella terms that need not be precisely defined. The same I believe is true of “intelligence.” Such 
terms can be given a working definition, like “the capacity to achieve one’s goals in a wide range of 
environments.”, but such working definitions are often as loose as the original concept. Rather than 
precisely defining intelligence, such definitions might instead help orient novices to the phenomenon 
of interest. As Allen writes: 
 

To insist on precisely defining the terms that make up a working definition is to put the cart 
before the horse inasmuch orienting towards phenomena worthy of further investigation does 
not depend upon the kind of precisification that follows from detailed study of those 
phenomenon—just as fruitful investigation of samples of soft, yellow metal did not depend on 
providing, in advance, precise definitions of the terms making up that working definition of 
‘gold’. (Allen 2017, p. 4239) 

 
The purpose of the term “intelligence” then might be to orient researchers towards a general class of 
phenomena before we know the precise nature of that class of phenomena. Given the unknown nature 
of the target, it might be a “superficial kind” in the sense that the members of the kind have little but 
the mark by which we sort them in common (Hacking 2005). This, however, need not serve as an 
obstacle to research. As Allen notes, research in cognitive science tends to operate on the level of 
specific capacities, like memory, learning, and problem solving, rather than “cognition” or 
“intelligence”. Thus, this research can proceed despite the umbrella terms being vaguely defined. 
However, we should expect research on specific capacities to feed back into our understanding of the 
umbrella concept. 
 
Although we need not provide a precise definition of intelligence, we should prevent the concept from 
distorting what we have learned about animal cognition and behavior thus far. As we have seen, the 
Standard View of intelligence distorts the natural world by attempting to divide it into those creatures 
that are intelligent and those that rely on simple, mechanical processes. Given our current knowledge 
of capacities like innate priors and associative learning, however, the Standard View of intelligence is 
clearly in need of an update. The investigative strategies proposed here can help us better understand 
the specific mechanisms and abilities that fall under the umbrella term “intelligence”. However, we 
must also be explicit that this term is too vaguely defined to do any real scientific or philosophical 
work. We currently do not know exactly what class of mechanisms and behaviors it picks out. Rather 
than prejudging the situation (based on sweeping theories and intuitions), we should limit the use of 
the term to the role of “vague guide”, but let the real guidance come from research on specific 
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mechanisms and behaviors. 
 
3.3 Conclusion 
 
We have seen that the line between intelligent and unintelligent organisms is not as clear as assumed 
by the Standard View. First, innate behavioral programs and associative learning can give rise to 
flexible behavior, and there is good evidence to think that they do in a wide range of organisms. 
Second, there is reason to think that the rigid, mechanical behavior traditionally associated with 
Darwinian and Skinnerian creatures is a myth. Mapping out the space of intelligent systems is best 
accomplished using a bottom-up approach that focuses on the specific capacities and behaviors of 
organisms within their evolutionary, developmental, and ecological context. The term “intelligence” 
can still be used to loosely orient scientific research, but it should not be mistaken for a precise 
account of mechanisms and behavior.  
 
We began this Element with the cases of the mechanical Turk and tic-tac-toe playing chicken. The 
skeptical response to such systems was that they must result from some trick: intelligent, flexible 
behavior could not possibly be the product of simple mechanisms; thus, there must be a human behind 
the scenes pulling the strings. A less skeptical response to these systems was to stand in wonder and 
curiosity: how could nonhuman mechanisms give rise to such intelligent behavior? Although the 
skeptics turned out to be correct in the case of the mechanical Turk and tic-tac-toe playing chicken, 
contemporary research suggests that this skeptical heuristic fails when applied to animals more 
broadly. The world does not consist of only simple or human-like mechanisms, but instead a 
multitude of processes that fit neither category, and which many of us have trouble grasping in an 
intuitive way. Rather than trying to fit these processes into the more familiar categories of “simple” or 
“human-like”, I suggest we embrace the feelings of wonder and curiosity and recognize that we are 
facing something that will take some time to intuitively understand. 
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