Seventh Annual Iowa Collegiate Mathematics Competition

Iowa State University
March 31, 2001
Problems by Jerry Heuer of Concordia College

Problem 1. Side of a triangle.

If the area of an equilateral triangle is $\frac{3}{4}$, what is the length of each side?

Problem 2. Solve for x.

Find all real solutions of the equation $\left\lfloor x \right\rfloor^2 - 5\left\lfloor x \right\rfloor - 6 = 0$.

Here $\left\lfloor x \right\rfloor$ denotes, as usual, the greatest integer less than or equal to x.

Problem 3. Taylor’s Theorem.

According to Taylor’s Theorem, if f is a twice differentiable function on an interval containing a and b, with $a \neq b$, then there is a number c between a and b such that

$$f(b) - f(a) = f'(a)(b-a) + \frac{f''(c)}{2}(b-a)^2.$$

Express c as simply as possible in terms of a and b if $f(x) = x^3$.

Problem 4. An irrational number.

Let r and s be positive rational numbers with \sqrt{r} irrational. Prove that $\sqrt{r} + \sqrt{s}$ is irrational.

Problem 5. Multiplicative inverses.

Let R be the ring of integers modulo 2001. For example, in R, $1900 + 125 = 24$ and $90^2 = 96$.
(a) Determine whether the element 1334 has a multiplicative inverse in R, and if so, find it. If not show this.

(b) Do the same for the element 1333.

Problem 6. A harmonic identity.

For each positive integer \(n \), let

\[
\frac{h(n)}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.
\]

Prove that for every integer \(n \geq 2 \),

\[
n + h(1) + h(2) + \cdots + h(n-1) = nh(n).
\]

Problem 7. Sum of squares divisible by \(n \).

A certain set of \(n \) integers has the property that the difference between the product of any \(n - 1 \) of them and the remaining one is divisible by \(n \). Prove that the sum of the squares of all \(n \) integers is divisible by \(n \).

Problem 8. Sum the series.

Find the sum of the series

\[
\sum_{n=1}^{\infty} \frac{n^2 + 3n}{3^n},
\]

and justify your answer.

Problem 9. A multiple of 49.

After several applications of the operation of differentiation and the operation of multiplication by \(x - 1 \), performed in unspecified order, the polynomial \(x^8 + x^7 \) is changed to \(ax + b \), where \(a \neq 0 \).

Prove that \(a - b \) is an integer divisible by 49.

Problem 10. Integer roots.

Find all real numbers \(p \) such that all three roots of the cubic equation

\[
5x^3 - 5(p + 1) x^2 + (71p - 1)x + 1 = 66p
\]

are positive integers.