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Abstract  

Background: 

Stress contributes to premature aging and susceptibility to alcohol use disorder (AUD) and AUD 

itself is a factor in premature aging; however, the interrelationships of stress, AUD and 

premature aging are poorly understood. 

Methods: 

We constructed a composite score of stress (CSS) from thirteen stress-related outcomes in a 

discovery cohort of 317 individuals with AUD and controls. We then developed a novel 

methylation score of stress (MS Stress) as a proxy of CSS comprising 211 CpGs selected by a 

penalized regression model. The effects of MS Stress on health outcomes and epigenetic aging 

were assessed in a sample of 615 AUD patients and controls using epigenetic clocks and DNAm 

telomere length (DNAmTL). Statistical analysis with an additive model using MS Stress and a 

methylation score for alcohol consumption (MS Alcohol) were conducted. Results were 

replicated in two independent cohorts (Generation Scotland GS n=7028 and the Grady Trauma 

Project GTP n=795).      

Results: 

CSS and MS Stress were strongly associated with heavy alcohol consumption, trauma 

experience, epigenetic age acceleration (EAA) and shortened DNAmTL in AUD. Together, MS 

Stress and MS Alcohol additively showed strong stepwise increases in EAA.  Replication 

analyses showed robust association between MS Stress and EAA in the GS and GTP cohort. 

 

Conclusion: 

A methylation-derived score tracking stress exposure is associated with various stress-related 

phenotypes and EAA. Stress and alcohol have additive effects on aging, offering new insights 

into the pathophysiology of premature aging in AUD, and potentially, other aspects of gene 

dysregulation in this disorder. 

 

Keywords: Alcohol, Stress, DNA Methylation, Aging, Epigenetics 
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Introduction 

 Chronic and excessive stress have negative health consequences and are linked to 

cardiovascular, autoimmune, chronic inflammatory, psychiatric and substance use disorders (1-

5). Stress triggers drinking behavior and has been suggested to play a critical role in all phases of 

alcohol abuse and addiction, including drinking initiation, duration, and relapse (6-8). In 

addition, there is strong evidence that stress contributes to premature aging and overall mortality 

(9-11), however the underlying mechanisms remain unclear and the interactions between stress 

and other environmental exposures, including alcohol, are largely unexplored. 

Stress is defined as any stimulus/change that causes physical, emotional, or psychological 

strain or demand (12). The sources and types of stress are heterogeneous, both in terms of the 

nature of the stressor, stress exposure duration (acute versus chronic), timing of exposure 

(developmental versus later in life) and severity. Large inter-individual differences in perception 

of stress (13, 14) do not necessarily reflect the physiologic impact of stress, and currently most 

assessments of stress are based on self-report questionnaires dependent on memory recall and 

that may overestimate or underestimate the impact of the same event on different people. To 

better understand the biological mechanism by which stress affects risks for substance use, 

accelerated aging and ultimately mortality, robust biological markers are needed.  

The classical pathway of human stress response is the hypothalamic-pituitary-adrenal 

(HPA) axis which includes the production of stress hormones by the adrenal glands calibrated by 

release of adrenocorticotropic hormone (ACTH) by the anterior pituitary, and in turn prompting 

physiologic changes throughout the body (15). The HPA axis has been extensively studied with 

regard to stress-response and direct measures of HPA function at one or more timepoints 

including measures of cortisol and ACTH at various points in the diurnal cycle or following 

stressful cues or pituitary suppression have overall offered mixed results with regard to 
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predictive validity and/or diagnostic usefulness as a biomarker (16). An alternative, and 

hypothesis-free way of studying the long-term effects of stress on the body is by studying 

changes in the epigenome and transcriptome. While certain epigenetic signatures are stable 

during the lifetime, other epigenetic components dynamically respond to environmental 

exposures such as stress, and therefore might offer an opportunity to measure stress exposure. 

DNA methylation of cytosine nucleotides in the context of phosphate guanine (CpG) 

dinucleotides can show a dynamic pattern that correlates with environmental exposures, 

including childhood trauma, smoking and alcohol use (17, 18). Remarkably, DNA methylation 

patterns are strongly correlated with age/aging which has led to the development of several 

epigenetic clocks. 

Early-stage DNA methylation age (DNAm Age) clocks such as Horvath’s and Hannum’s 

clocks were designed to predict chronological age (19-21). Recently, newer generation 

epigenetic clocks also incorporate other age-related indicators. DNAm PhenoAge was designed 

as a composite estimate of phenotypic age using both physiological biomarkers of mortality and 

morbidity as well as chronological age (22), and DNAm GrimAge aggregates DNAm proxies for 

seven plasma protein biomarkers and DNAm smoking pack-years (23). Similarly, DNAm 

telomere length (DNAmTL) is a proxy for leukocyte telomere length which can index cellular 

aging and predict certain clinical outcomes and lifespan (24). Each clock captures different 

characteristics of biological aging (25) but little is known about the interaction of stress and 

alcohol on cellular aging as captured by these different indices. 

To address the unmet clinical need of identifying biological markers of stress that can 

guide early intervention strategies and identification of underlying molecular mechanisms for 

many chronic age-related disorders, and to address the gaps in our understanding of the 
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interaction between stress and alcohol on aging, we conducted a multi-level investigation of 

epigenetic biomarkers for stress. We first aimed to construct a composite score of stress (CSS) 

using 13 stress-related domains ranging from a physiological biomarker to neuropsychological 

variables in a sample of healthy controls (HC) and individuals with AUD. We then developed a 

novel epigenetic prediction of stress, which we termed Methylation Score of Stress (MS Stress) 

as a predictor of CSS. Moreover, we aimed to study the interplay between MS Stress, alcohol, 

and epigenetic age acceleration (EAA), replicating findings in independent large cohorts and 

ethnic groups. 

 

Materials and Methods 

 

Study participants 

 We used two nested cohorts to develop CSS and MS Stress and two independent cohorts 

to validate and replicate our findings (Figure 1). A detailed description of the study participants 

and methods is provided in the Supplementary Methods S1. 

NIAAA Discovery Stress Cohort: The sample consisted of 317 participants, 166 AUD 

cases and 151 HC (Table 1, Methods S1).  

NIAAA Epigenomic Cohort: The epigenetic cohort consisted of 615 participants (372 

AUD and 243 HC, Methods S1). All study participants provided written informed consent in 

accordance with the Declaration of Helsinki and were compensated for their time.  

DNA methylation measurements  

Whole blood DNA methylation was quantitated with Infinium MethylationEPIC 

BeadChip microarrays (Illumina Inc., San Diego, California). Detailed descriptions of the data 

process and a robust strategy to minimize the batch effects can be found in the Supplementary 
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Methods S2. The final methylome dataset consisted of β-values for 835,928 CpG sites for all 

615 participants.  

 

Factor analysis for a composite score of stress in a discovery stress cohort 

Factor analysis (FA) was performed on thirteen stress-associated measures (Table 1) 

extracting maximum variance with the first factor and then extracting variance attributable to 

successive factors. The top three factors, all with eigenvalues ≥ 1, captured 70% of the total 

variance (see Figure S1). Varimax rotation was applied to yield the most easily interpretable 

factors. The loading scores of variables onto factors were computed. Finally, the three 

independent homogeneous factor scores for each participant were added to construct a composite 

score of stress (CSS).  

 

Estimation of MS Stress and MS Alcohol consumption 

For the larger epigenomic cohort in which some stress-related variables (i.e. morning 

cortisol) were not measured for some participants, we developed a stress prediction model 

estimated by DNA methylation profiling. We employed a penalized regression approach based 

on an Elastic Net models, combined with bootstrap approaches (26). We then selected CpGs 

when they were presented in more than half of all 1000 bootstraps and included the 211 selected 

CpGs in the final model to regress them on CSS and estimate weighted coefficients of the 211 

CpG sites. MS Stress was then calculated by the weighted sum of linear combinations of the 

selected CpG sites at the individual level. A detailed description of all procedures is available in 

the Supplementary Methods S3.  
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Calculating DNAm Age and Telomere Length 

Six epigenetic clocks including DNA-methylation predictor of Pace-of-Aging (named 

DunedinPoAm) were estimated by the weighted averages of selected CpG sites (19, 20, 22-24, 

27, 28). Detailed descriptions of these epigenetic clocks are in the Supplementary Methods S4 

and Table S1. A measure of epigenetic age acceleration (EAA) was defined by taking the 

residual resulting from regressing DNAm age on chronological age to remove inter-individual 

variance of chronological age (19, 20, 22, 28). All epigenetic clocks with exception of 

DunedinPoAm were calculated using the Horvath epigenetic age calculator software 

(http://dnamage.genetics.ucla.edu/).  

 

Multivariate models 

A linear regression model was used to examine the effect of stress (i.e., CSS) on EAA as 

a dependent variable and stress as an independent variable with adjustment for covariates. A 

basic model was defined by adjustment for sex, race, AUD, five blood cell types compositions 

(CD8T, CD4T, NK, Bcell, Mon) by the variance inflation factor analysis. The full model 

included additional covariates, smoking status and body mass index (BMI). Detailed statistical 

analyses are available in the Supplementary Methods S5.  

 

Replication Studies 

Generation Scotland cohort (GS, Set 1: n=2578, Set 2: n=4,450) 

DNA methylation from whole blood was assessed using the Infinium MethylationEPIC 

BeadChip arrays. Detailed cohort descriptions are provided in the Supplementary Methods S6.  

Grady Trauma Project (GTP, n=795) 
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The Grady Trauma Project (GTP) (29, 30) sample includes 795 participants with DNA 

methylation profiles (MethylationEPIC BeadChip) and a subset of the sample (n=268) was used 

to validate accuracy of CSS and MS Stress generation. More details are provided in the 

Supplementary Methods S6. 

 

Results 

Detailed demographic characteristics of the cohorts can be found in Table 1, Table S2, 

and the Supplementary Results S1. The exploratory factor analysis revealed three independent 

homogeneous factors. All three factors were evenly correlated with CSS and MS Stress 

respectively (50-60%, p<0.0001, Figure S1-S2A-B). Finally, the correlation between MS Stress 

and CSS was 98.8% (Figure S2A-B) and was replicated in a subset of the GTP cohort (R=92.7%, 

p<2.2E-16, Figure S3B), suggesting that our prediction model for MS Stress was highly 

accurate. Further analysis showed the correlation between CSS and MS Stress in males and 

females was not different and there was no difference between AUD and HC (Figure S2C-D, 

p=0.68).  

 

Association of Stress Scores with Clinical Phenotypes 

In the NIAAA epigenomic cohort, increased MS Stress was associated with chronic 

heavy drinking measured by Total Drinks, Number of Drinking Days, Average Drinks per Day, 

and Heavy Drinking Days (ps<0.001, Table 2). These significant associations were also observed 

when analyzed with AUD cases only (Table S3). The findings were replicated in the two datasets 

of GS in which MS Stress correlated with weekly alcohol use (p<0.02, Table 2) in this cohort 

that was not ascertained based on AUD. In the GTP, MS Stress was significantly higher in 

participants with PTSD symptoms within 30 days compared to participants without PTSD 
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symptoms (β=0.18, p=0.02, Table S6). However, we did not observe any association with 

Trauma Events Inventory total score and moderate and severe childhood trauma assessed by 

CTQ. 

 

Association of Stress with Epigenetic Age Acceleration 

  EAA in AUD: EAA derived from GrimAge was 3.2 (SE=0.66) years higher in AUD 

compared to HC (p=2.5E-06) after additionally adjusting for CSS in the basic model. The EAA 

difference in AUD and HC remained significant in the full model (Table 3, β=2.53, SE=0.59, 

p=2.3E-05).  

Composite Score of Stress: We observed that with every one-unit increase in CSS, 

GrimAge was accelerated by 0.62-years (SE=0.17, p=0.0003) and PhenoAge by 0.75-years 

(SE=0.21, p=0.0005) respectively after additional adjustment for the effect of AUD in the basic 

model (Table3, Figure 2A-B). We did not observe any significant correlation of CSS with 

Horvath and Hannum clocks (Table 3). Furthermore, GrimAge was accelerated by 5.7-years 

(SE=0.71, p=4.55E-13) and PhenoAge by 4.5-years (SE=0.94, p=4.1E-06) in the highest CSS 

quartile, compared to the lowest quartile (Figure 2C-D). These results indicate that severe stress 

remarkably accelerates epigenetic aging. Two stress variables, morning cortisol level and PSS, 

were not associated with any epigenetic clocks after additionally controlling for AUD, while 

CTQ total score was associated with PhenoAge and Horvath’s clocks (Table S7A-C).   

Methylation Score of Stress: In the NIAAA epigenome cohort, increased MS Stress was 

associated with accelerated GrimAge; each one-unit increase in MS Stress accelerating GrimAge 

by 1.18-years (SE=0.19, p=1.5E-09) in AUD cases in the basic model (Figure 3A-B, Table 4) 

and was still observed, although attenuated, in the full model (β= 0.40, SE=0.18, p=0.03). We 

observed no significant association between GrimAge and MS Stress in HC. Additional 
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adjustment for comorbid psychiatric disorders such as either/both MDD or drug dependences did 

not change our findings of the association between MS Stress and EAAs (Table S4). 

DunedinPoAm had an increase pace-of-aging of 0.02 (SE=0.003, p=2.2E-13) with every one-unit 

increase of MS Stress in AUD, but no significant increase in HC (β=0.006, p=0.05, Figure 3C). 

We found no correlation of MS Stress to the Horvath or Hannum clocks. Furthermore, 

individuals (including AUD patients) in the highest MS Stress quartile were 6.5-years higher in 

GrimAge (SE=0.51, p<2E-16) and 4.8-years in PhenoAge (SE=0.70, p=3.3E-11) compared to 

those in the lowest quartile (Figure 3D-E). DunedinPoAm aging rate in the highest quartile was 

0.11(SE=0.008, p<2E-16) faster than that in the lowest. In AUD cases showing biological age 

acceleration, we observed the prominent effects of MS Stress on EAA (Figure 3G-H). Notably, 

AUD cases in the severe MS Stress exhibited accelerated GrimAge by 4.7-years (SE=0.70, 

p=3.0E-10) and PhenoAge by 3.6-years (SE=0.88, p=6.1E-05) relative to the lowest stress in the 

basic model. In the full model, GrimAge was accelerated by 2.42-years in the highest MS Stress 

quartile (SE=0.65, p=0.0002). DunedinPoAm aging rate in the highest stress had a 0.08 

acceleration (p=1.4E-12) in the basic model. In contrast to MS Stress, MS Alcohol had stronger 

association with PhenoAge than GrimAge: It accelerated PhenoAge by 4.12-years and GrimAge 

by 1.91-years in both models (ps<0.0001, Table 4). Detailed descriptions of the relationship 

between MS Alcohol and EAA is provided in the Supplementary Results S2. 

Additive effect of MS Stress and MS Alcohol: Our joint analysis in AUD cases 

revealed that stress and alcohol consumption additively contribute to EAA. In comparison with 

individuals with low MS Stress and low MS Alcohol as a reference group, GrimAge and 

PhenoAge were step-wise increased across groups by high stress or high alcohol use, or both 

(Figure 4A-B). Notably, the group with high stress/high alcohol use exhibited a 3.86-year 
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increase in GrimAge (SE=0.63, p=3.2E-09) and those with high stress/low alcohol exhibited a 

2.2-year acceleration (SE=0.68, p=0.001). Similarly, individuals with both high levels of stress 

and alcohol use had a 4.0-years increases in PhenoAge (SE=0.78, p=4.7E-07), and those with 

low stress/high alcohol use had a 2.44-years increase (p=0.006). The additive effect of stress and 

alcohol consumption on EAA was replicated on the GTP cohort where GrimAge was accelerated 

by 4.57 (SE=0.83, p<2E-16), 4.14 (SE=0.57, p=1.2E-12), and 2.16 (SE=0.37, p=8.2E-09)-years 

in the high stress/high alcohol, high stress/low alcohol, and low stress/high alcohol groups, 

respectively (Figure 4C-D).    

DNAm Telomere Length: Age-adjusted DNAmTL was 0.12-kilobases/yr shorter in 

AUD cases compared to HC in the basic model (SE=0.016, p=3.6E-14) and the accelerated 

decline in DNAmTL in AUD cases persisted after controlling for the effect of MS Stress in the 

basic model (β=-0.08, p=1.3E-05). Figure 5A-B shows the negative correlations of DNAmTL 

with PhenoAge in both AUD (β=-14.3, p<2E-16) and HC (β=-10.8, p=6.8E-09) but GrimAge 

more strongly predicted telomere shortening in AUD cases (β=-13.6, p<2E-16) than that in HC 

(β=-2.5, p=0.05). Moreover, DNAmTL decreased 0.03-kilobase/yr with every one-unit increase 

in MS Stress in AUD (p=9.6E-05), while it decreased 0.10-kilobase/yr in MS Alcohol (p=6.5E-

08) (Table 4, Figure 5C-D). The relationship between MS Alcohol and DNAmTL shortening 

remained significant in the full model (β=-0.01, p=5.5E-08, Table 4). These findings suggested 

that alcohol use impacted DNAmTL shortening even more dramatically than stress, although 

both were associated with DNAmTL shortening in AUD.  

 

Replication of the effect of MS Stress on EAA in two independent cohorts  
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We replicated the findings that MS Stress accelerates biological aging in three 

independent datasets: in the GTP PTSD cohort (Table S5, GrimAge was accelerated by 1.55-

years (SE=0.16, p<2E-16) and PhenoAge by 0.90-years (SE=0.24, p=0.0002) and DNAmTL 

decreased by 0.03-kb/yr (SE=0.007, p=3.6E-05) with MS Stress in the basic model. These 

findings were also replicated in the two GS datasets, in which MS Stress correlated with 

accelerated GrimAge (β>0.06, p<2E-16), accelerated PhenoAge (β>0.02, p<0.001), and 

DNAmTL shortening (β=-0.001, p<1.0E-15). The effect size of these three EAA by MS Stress in 

the full model were reduced but remained significant (Table S5). 

 

Functional annotation of 211 CpGs underlying MS Stress 

The 211 CpGs underlying the MS Stress methylation index were annotated to 151 genes, 

and the remainder to regions lacking annotation (Table S10, Results S3, Supplementary 

Discussion). We used the Genomic Regions Enrichment of Annotations Tool (GREAT) to assign 

potential biological meaning to CpGs (31). Using the default settings (5kb upstream, 1kb 

downstream, up to 1000kb expansion), 342 genes were associated with the 211 CpGs. 

Enrichment analysis revealed gene sets related to three categories of GO terms (32) and the 342 

genes showed enrichment for cell cycles, regulation of cell death and junction, and neurogenesis 

in the GO pathways (Table S8, FDR p-value<10E-05). 

 

Discussion 

This study uses a novel methylome-based stress score to understand the effect of stress 

and its interaction with alcohol use on biological aging in AUD. It was performed in a deeply 

phenotyped sample with replication of the effects of stress on DNA methylation age and 
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telomere length in two independent cohorts. We constructed a composite score of stress (CSS) 

that broadly combined stress exposure and responses, including a physiological measurement of 

cortisol level. We then developed a methylome based MS Stress index that accurately predicted 

CSS having strong correlations with all thirteen stress-related variables and investigated the 

relationship between MS Stress and epigenetic age acceleration (EAA), focusing on DNAm 

PhenoAge and GrimAge, which showed strong correlations with CSS. Our studies revealed that 

both CSS and MS Stress had similar patterns; increased stress was associated with accelerated 

epigenetic aging in AUD (Table 3 and 4, ps<0.001) and individuals in the highest quartile of 

stress showing the most pronounced EAA (Figure 2-3). Furthermore, the epigenetic signature of 

stress was associated with DNAmTL shortening (ps<0.0001) and increased aging rate of 

DunedinPoAm (ps<0.0001) in AUD after additional adjustment for the stronger effect of AUD in 

the basic model (β= -0.03, p=4.7E-05).  

Our sequential analyses revealed a dramatic 4-5 year epigenetic age acceleration among 

AUD cases in the highest MS Stress quartile (Figure 3, ps<0.0001). In addition to MS Stress, MS 

Alcohol was associated with both acceleration in epigenetic aging and DNAmTL shortening 

(Table 4, Figure S3, Figure 5D). More importantly, we further showed that in AUD epigenetic 

age acceleration was additively rather than synergistically increased by stress and alcohol use 

(Figure 4). Surprising, drinking by participants who did not have AUD did not appear to 

accelerate cellular aging, either alone or additively with stress. In this same vein, we were able to 

dissociate stress and alcohol exposure using MS Stress and MS Alcohol high/low categories and 

observed a greater effect when both were at the “worst”.  This additive effect is clinically 

important since AUD is often inherently tied to stress-related disorders and comorbidities such as 

PTSD, which commonly results in worse treatment outcomes and prognosis (33, 34). We 
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replicated the impact of our newly developed biological signature of stress on the epigenetic 

clocks using a stress-enriched sample comprising African American individuals as well as a 

European population-based cohort (Table S5). These replications further suggest that our 

findings are detecting stress that can be measured in other general populations as well as 

populations with severe trauma experience.   

Interestingly, we observed main effects for the second-generation epigenetic clocks, 

(DNAm PhenoAge and GrimAge) as they might capture more pronounced biological aging 

processes including factors such as stress and alcohol exposure but did not find associations with 

the first-generation epigenetic clock which are mainly influenced by chronological age. 

Furthermore, Levine’s PhenoAge clock has been found to be more strongly associated with 

alcohol intake, while GrimAge was methodologically designed to consider smoking-associated 

effects in contrast to the first-generation clocks (35). Interestingly, those findings are in line with 

our observation that GrimAge had a stronger correlation with stress than PhenoAge, while 

PhenoAge had a stronger correlation with alcohol consumption than GrimAge and confirms that 

the epigenetic clocks of the second generation reflect manifest aspects of stress- or alcohol-

related aging process. Additional discussion regarding the effects of smoking on the clocks can 

be found in the Supplementary Discussion. 

Clinically our findings illuminate the potential roles of a stress-related epigenetic 

signature on biological aging and health complications in AUD, with an aggregative, 

independently additive, effect of alcohol consumption. There are several reasons why the 

epigenetic effects of alcohol and stress might have been sub-additive, or super-additive. Alcohol 

is acutely anxiolytic, alleviating stress but on the other hand, and more profoundly, alcohol itself 

serves as a stressor activating the HPA axis (36, 37) and via longer term effects such as alcohol 
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withdrawal and social, medical, and legal problems triggered by alcohol vastly increases anxiety 

and dysphoria. Although we could not examine the role of alcohol abuse in the stress-alcohol 

mechanism directly, our findings that heavy drinking and stress additively accelerate biological 

age may have profound implications for reduced life expectancy and widespread organ damage 

observed in AUD. 

  AUD and stress-related disorders may share similar biological pathways (38) including 

similar regulatory epigenetic mechanisms which may lead to epigenetic age acceleration (39). 

The 211 stress-related CpGs we identified are co-localized to genes showing enrichment for cell 

cycle, regulation of cell death and junction, and cancer in the GO pathways (Supplementary 

Table S8, FDR p-value <10E-05). Cells respond to stress in various ways ranging from 

activation of pathways promoting survival to the initiation of cell death eliminating damaged 

cells and it is known that cell cycle is involved in recovery of stress (40). Furthermore, alcohol 

exposure alters cell cycle and disrupts growth factor related cell cycle progression (41). 

Therefore, stress and alcohol consumption might share the common pathways signaling that is 

involved in regulation of cell cycle and biological age acceleration. Moreover, our top six highest 

weighted CpGs are in CDKN2C, FBXO42, TBRG4, FKBP11, FAM115A, ANAPC11 (see 

Supplementary Discussion).  

There are several strengths of our study including the largest sample cohort with 

comprehensive stress measurements in AUD populations to date, providing accurate prediction 

to develop methylation driven stress and adequate statistical power to detect significant effects of 

stress and alcohol consumption on age acceleration. Furthermore, the availability of thirteen 

stress domains increase power to carry out the relationship with health complication rather than 

using individual stress variable. Finally, the validation from stress-enriched population to general 
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healthy populations supported our broad applicability of MS Stress. We also note some 

weaknesses that should be considered when interpreting our results. First, like measuring stress, 

the current standard is self-reports which induced recall bias and might not accurately, or fully 

capture stress exposure. Furthermore, the effect of the identical event can differ dramatically 

from one person to the next, depending on attachment to the lost object, concurrent events, 

personality, genotype, and culture. Analogously, alcohol assessments are mostly self-reported 

and more accurate measures for alcohol exposure are needed (42). In that regard, we would point 

out that the AUD diagnosis itself is highly reliable, having a very high kappa coefficient in 

interview/re-interview studies, and the diagnosis even being captured with very high ROC AUC 

(>.95) sensitivity/specificity with simple questionnaires such as the AUDIT. All our cases and 

controls were diagnosed by psychiatric interview. However, quantitation of lifetime alcohol 

exposure is less accurate. Using morning cortisol level as a single physiological stress measure 

can be problematic, as it is not correlated consistently with other stress domains (43-45). In this 

regard, both stress methylome and alcohol methylome indices can offer an improved 

understanding of the severity of exposure over a lifetime, especially when combined with other 

measures of exposure such as a CTQ childhood trauma/neglect questionnaire.  

Although we replicated and confirmed the contribution of stress to EAA in independent 

populations, our study does not identify a causal relationship between stress and biological 

aging. A limitation of our cross-sectional study was that it included individuals of different 

chronological age at one time point. Future studies may collect methylome data longitudinally at 

multiple time points to better understand how stress and heavy drinking together accelerate 

epigenetic aging across the life-span. It would be beneficial to determine whether EAA can be a 
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biomarker that tracks changes in stress-related alcohol use over time and whether the prevention 

of harmful stress such as childhood abuse can decelerate aging.  

MS Stress developed in peripheral blood should be followed by studies in various tissues 

and cells, and especially to uncover organ-specific pathoetiology. Even though epigenetic aging 

in peripheral blood and tissues has been shown to be highly correlated (20, 46), future studies 

should confirm the effect of biological stress on health outcomes in the various tissues and cells. 

In addition, our findings showed that DNA methylation differences in stress and long-term 

alcohol use are additively associated with EAA, but we could not determine the directions such 

as stress stimulates heavy alcohol use or alcohol compensates stress by HPA axis.  

In conclusion, our study demonstrates that a methylation derived score tracking stress 

exposure is associated with various stress-related phenotypes and EAA. We find that stress and 

alcohol have additive effects on aging, offering new insights into the complex pathophysiology 

of AUD. Stress seems to affect methylation patterns of cell-cycle sensitive genes providing 

important new insights and targets for better understanding of the biology of stress.  
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Figure Descriptions 

 

Figure 1: Flowchart of datasets, phenotypes, and analyses 

Four cohorts were assessed. These include the Discover Cohort with all stress-associated 

biomarkers, the Epigenomic Cohort to develop MS Stress, and two replication cohorts. The 

clinical phenotypes are listed under each cohort. MS Stress: methylation score of stress, MS 

Alcohol: methylation score of alcohol consumption, EAA: epigenetic age acceleration, 

DNAmTL: DNA methylation-based telomere length, PTSD: Posttraumatic Stress Disorder.  

 

 

Figure 2: Relationship of composite scores of stress to epigenetic age acceleration in the 

discovery cohort 

A-B: The scatter plots describe two epigenetic age accelerations (EAA) versus composite score 

of stress (CSS) and the line in which DNA methylation age was regressed on CSS in AUD and 

HC respectively. R is a Pearson correlation with 95% confidence interval in parenthesis and p-

value of the correlation in the legend. The scatter plot of PhenoAge versus CSS showed in the 

basic model there was no difference in EAA between AUD and HC (p=0.14) but with each one-

unit change in CSS, PhenoAge was increased by 0.75 years (SE=0.21, p=0.0005) in both AUD 

and HC together; The scatter plot of GrimAge versus CSS demonstrated that there was 

significant EAA difference between AUD and HC (3.16-yr in AUD, SE=0.66, p=2.5E-06). 

Every one-unit increases in CSS was associated with 0.62 years (SE=0.17) age acceleration in 
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GrimAge (p=0.0003). C-D: The bar plots show estimated means of EAA and standard error (SE) 

after adjusting for sex, race, and blood cell composition. Individuals with the highest CSS 

quartile (top 25 percentile) were compared to individuals with the lowest quartile (bottom 25 

percentile). The PhenoAge and GrimAge were accelerated by 4.5 years (SE=0.94, p=4.1E-06) 

and 5.66 years (SE=0.71, p=4.55E-13) respectively in the highest quartile of CSS compared to 

the lowest quartile.  

 

Figure 3: Relationship of MS Stress to epigenetic age acceleration in the epigenome cohort 

A-B: The scatter plots describe two epigenetic age accelerations (EAA) versus methylation  

score (MS) Stress and the line in which DNA methylation age was regressed on MS Stress in 

AUD and HC respectively, R is a Pearson correlation with 95% confidence interval in 

parenthesis and p-value of the correlation in the legend. In the basic model, AUD cases show a 

0.89-years (SE=0.24) acceleration in PhenoAge (p=0.0002) and 1.18-years advance in GrimAge 

(SE=0.19, p=1.52E-09) for every one-unit increase of MS Stress, while HC showed no 

significant GrimAge acceleration (β=0.32, SE=0.19, p=0.22) and a nominal significant 

PhenoAge (β=0.60, SE=0.29, p=0.04). C:  the scatter plot with two regression lines describes the 

DunedinPoAm versus MS Stress in AUD and HC. AUD had a pace-of-aging of 0.02 (SE=0.003, 

p=2.2E-13), while HC had 0.006 of aging rate (SE=0.003, p=0.05).  D-F: The bar plots show 

estimated means of EAA and DunedinPoAm in the basic model. Individuals with the highest 

quartile (top 25%) of MS Stress were compared to individuals with the lowest quartile (bottom 

25%). EAA and DunedinPoAm differed significantly between the highest and lowest quartiles of 

MS Stress. PhenoAge and GrimAge was accelerated by 4.8 (SE=0.70, p=3.3E-11) and 6.5 years 

(SE=0.51, p< 2E-16) respectively in the highest quartile compared to the lowest. The aging rate 

is 0.11 (SE=0.008, p<2E-16) times faster in individuals with the highest quartile of MS Stress 

comparing the lowest quartile. G-I: AUD cases with the highest quartile of MS Stress were 

compared to AUD individuals with the lowest quartile. GrimAge was accelerates by 4.7 years 

(SE=0.70, p=3.0E-10) and PhenoAge increased by 3.6 years (SE=0.88, p=6.1E-05) in the highest 

comparing to the lowest quartiles of MS Stress. Aging rate of DunedinPoAm is 0.08 (SE=0.01, 

p=1.4E-12) faster in the highest to lowest quartile.  

 

Figure 4: Additive effects of MS Stress and MS Alcohol on Epigenetic Age Acceleration in 

AUD 

The bar plots show the estimated means of EAA in the basic model across four groups classified 

by median splits of MS Stress and MS Alcohol use.  High/High indicates individuals with above 

the median value of MS Stress and MS Alcohol; High/Low with above the median of MS Stress 

and below the median of MS Alcohol use, etc. A-B: The estimated means of EAA of 

PhenoAge and GrimAge over the four groups in NIAAA. Comparing to AUD participants 

with low stress/low alcohol as a reference group, MS Stress and MS Alcohol had an additive 

effect on both epigenetic clocks; GrimAge had 3.86 (SE=0.63)-years acceleration in high 

stress/high alcohol (p=3.2E-09), 2.2-years (SE=0.68, p=0.001) in high stress/low alcohol, 1.42 

years (p=0.05) in low stress/high alcohol, while PhenoAge was advanced by 4.0 years (SE=0.78, 

p=4.7E-07) in high stress/high alcohol, 1.77 years (SE=0.83, p=0.03) in high stress/low alcohol, 
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2.44 years (SE=0.88, p=0.006) in low stress/high alcohol group respectively. Furthermore, a 

linear trend test (an additive effect) using the four groups (0=low/low, 1=low/high, 

2=high/low,3=high/high) shows a linear trend (β=1.29, SE=0.25, p=5.5E-07 for PhenoAge, 

β=1.19, SE=0.21, p=3.02E-08 for GrimAge) in the basic model. C-D: The estimated means of 

EAA of PhenoAge and GrimAge over the four groups in GTP. Similarly, GrimAge was 

associated with 4.57 years acceleration (SE=0.48, p<2E-16) in high stress/high alcohol, 4.14 

years (SE=0.57, p=1.2E-12) in high stress/low alcohol, 2.16 years (SE=0.37, p=8.2E-09) in low 

stress/high alcohol group. PhenoAge had 2.07 years advance (SE=0.71, p=0.003) in high 

stress/high alcohol group, but it was not significantly accelerated in the other two groups (1.40, 

SE=0.85 and 0.94, SE=0.55 years, ps >0.05). 

 

Figure 5: DNAm Telomere Length and MS Stress in the epigenome Cohort 

The scatter plots show two EAAs versus Age-adjusted DNAm Telomere Length (DNAmTL). R 

is a Pearson correlation with 95% confidence interval in parenthesis and p-value of the 

correlation in the legend. A-B: The plots describe that in the basic model, PhenoAge has a 

negative correlation with DNAmTL in both AUD cases (β=-14.3, SE=1.5, p<2E-16) and HC 

(β=-10.8, SE=1.8, p=6.8E-09). GrimAge also has a negative association with DNAm TL in only 

AUD (β=-13.6, SE=1.2, p< 2E-16) but not in HC (β=-2.5, SE=1.3, p=0.05). C-D: MS Stress was 

associated with DNAmTL shortening in AUD (β= -0.03, SE=0.007, p=9.6E-05) but not in HC 

(β= -0.016, SE=0.01, p=0.10). MS Alcohol had a significant negative correlation with shortened 

DNAm TL in AUD (β=-0.10, SE=0.02, p=6.5E-08), but not in HC (β=-0.05, SE=0.03, p=0.08). 
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Resource Type Specific Reagent or Resource Source or Reference Identifiers Additional Information

Add additional rows as needed for each 

resource type
Include species and sex when applicable.

Include name of manufacturer, company,  

repository, individual, or research lab. 

Include PMID or DOI for references; use 

“this paper” if new.

Include catalog numbers, stock numbers, 

database IDs or accession numbers, and/or 

RRIDs. RRIDs are highly encouraged; search 

for RRIDs at https://scicrunch.org/resources. 

Include any additional information or 

notes if necessary.

Public Database: GEO database (GSE132203: Grady Trauma Project)

Software: SAS (version 9.4; SAS Institute Inc., Cary, NC), R (version 4.1.0)

Software: R (version 4.1.0)

Software: the Horvath epigenetic age calculator software (http://dnamage.genetics.ucla.edu/). 
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Table 1. Sociodemographic characteristics of discovery stress cohort  

 
HC (n=151) AUD (n=166) p-value 

 
N % N % 

 

Sex 
    

0.014 

   Male 73 48.34 103 62.05 
 

Race 
    

0.28 

  White 72 47.68 92 55.42 
 

  Black 72 47.68 70 42.17 
 

  Others 7 4.64 4 2.41 
 

 Smoking status 8 5.3 92 55.42 <0.0001 
 

Mean SD Mean SD 
 

Age 37.59 13.47 46.10 11.23 <0.0001 

BMI 26.82 4.62 27.36 5.73 0.35 

Multiple Stress domains 

Morning Cortisol 9.92 4.25 12.89 5.19 <0.0001 

Perceived Stress Score 8.87 5.67 20.32 7.61 <0.0001 

Anxiety (BSA) 0.83 1.88 10.87 7.99 <0.0001 

Anxiety (STAIT) 27.46 6.48 47.01 12.70 <0.0001 

Depression (MADRS) 1.03 2.40 14.69 10.14 <0.0001 

Early Life Stress (ELSQ) 

total score 

2.59 2.86 3.22 3.05 0.07 

Childhood Trauma 

Questionnaire (CTQ) Total 

Score 

34.39 12.61 43.71 20.36 <0.0001 

Emotional Abuse score 7.21 4.09 9.92 5.65 <0.0001 

Physical Abuse score 6.57 2.70 8.04 4.45 0.0004 

Sexual Abuse score 6.11 3.66 7.81 5.60 0.001 

Emotional Neglect score 8.34 4.26 10.37 5.55 0.0003 

Physical Neglect score 6.42 2.38 7.47 3.90 0.004 

Composite Score of Stress -1.20 0.96 1.15 1.46 <0.0001 
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Table 2. Association of MS Stress to alcohol consumptions in the NIAAA and Generation 

Scotland samples 

 

Note: GS stands for Generation Scotland cohort and NIAAA stands for National Institute of Alcohol Abuse and 

Alcoholism. The p-values for NIAAA sample were from a linear regression model with natural log transformation 

of alcohol consumption variables and adjustment for age, sex, race, and AUD. Boldface indicates significance. The 

p-value for GS were from a linear model with original unit of weekly alcohol use and adjustment for age, sex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples Alcohol Consumption β SE STAT P-value 

NIAAA  

Epigenome 

cohort 

(n=615) 

Total Drinks 0.214 0.043 4.92 9.59E-07 

Drinking Days 0.107 0.033 3.2 0.0015 

Average Drinks Per Day 0.084 0.018 4.66 5.33E-06 

Heavy Drinking Days 0.163 0.031 5.27 2.54E-07 

GS      

Data set1 

(n=1501) 
Standard Drinks/wk 0.075 0.023 3.19 0.001 

Data set 2 

(n=2717) 
Standard Drinks/wk  0.035 0.016 2.25 0.024 
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Table 3. Association of AUD diagnosis and composite score of stress on Epigenetic Age 

Acceleration in discovery cohort (N=317) 

 AUD   Composite Score of Stress 

 EAA β SE P-value  β SE P-value 

GrimAge        

Basic model  3.16 0.66 2.54E-06  0.62 0.17 0.0003 

Full model 2.53 0.59 2.3E-05  -0.1 0.17 0.57 

PhenoAge        

Basic model  1.2 0.82 0.14  0.75 0.21 0.0005 

Full model 0.66 0.81 0.42  0.58 0.23 0.01 

Hannum        

Basic model  1.0 0.55 0.07  0.20 0.14 0.16 

Full model 0.90 0.56 0.11  0.17 0.16 0.28 

Horvath 2013        

Basic model  0.01 0.60 0.99  0.20 0.16 0.20 

Full model -0.10 0.60 0.87  0.30 0.17 0.08 

Horvath 2018        

Basic model  -0.36 0.52 0.48  0.17 0.13 0.21 

Full model -0.44 0.52 0.40  0.15 0.15 0.33 

DNAmTL        

Basic model  -0.09 0.03 0.003  -0.01 0.008 0.09 

Full model -0.08 0.03 0.008  0.00003 0.008 0.99 

 

Note: Adjusted for sex, race, five blood-cell type compositions (CD8T, CD4T, NK, Bcell, Mon) in the basic 

model, and additionally adjusted for smoking status and body mass index in the full model for all EAA 

variables. Boldface indicates significance. Effect of AUD was obtained by additionally adjustments of stress 

(CSS) from a basic or full model; an effect of stress was obtained by additional adjustment by AUD diagnosis 

from a basic or full model. 
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Table 4. Associations between EAA and MS Stress and MS Alcohol in the epigenome 

cohort (n=615) 
 

Methylation Score of Stress (MS Stress) 

 AUD cases  Healthy Controls  AUD vs HC 

 EAA β SE p-value  β SE p-value  p-value 

GrimAge          

Basic model  1.18 0.19 1.52E-09  0.24 0.19 0.22  0.0003 

Full model 0.40 0.18 0.03  -0.03 0.18 0.85  0.03 

PhenoAge          

Basic model  0.89 0.24 0.0002  0.60 0.29 0.04  0.23 

Full model 0.61 0.26 0.018  0.65 0.29 0.03  0.27 

DNAmTL          

Basic model  -0.03 0.007 9.6E-05  -0.016 0.01 0.09  0.09 

Full model -0.011 0.008 0.15  -0.015 0.01 0.14  0.39 

DunedinPoAm          

Basic model  0.02 0.003 2.2E-13  0.006 0.003 0.05  0.0001 

Full model 0.01 0.003 9.5E-05  0.002 0.003 0.48  0.01 

 Methylation Score of Alcohol Consumption (MS Alcohol)   

GrimAge          

Basic model  1.91 0.50 0.0002  0.61 0.59 0.30  0.06 

Full model 1.77 0.42 2.9E-05  0.05 0.56 0.93  0.008 

PhenoAge          

Basic model  4.12 0.58 7.3E-12  -0.06 0.90 0.95  0.0005 

Full model 4.14 0.57 2.2E-12  0.02 0.90 0.98  0.0003 

DNAmTL          

Basic model  -0.103 0.018 6.5E-08  -0.054 0.03 0.08  0.16 

Full model -0.098 0.018 5.5E-08  -0.052 0.03 0.09  0.09 

DunedinPoAm          

Basic model  0.03 0.008 0.0008  0.002 0.01 0.85  0.018 

Full model 0.025 0.007 0.0003  -0.007 0.01 0.46  0.002 
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• MS Alcohol
• Alcohol consumption
• Epigenetic age acceleration
• DNAm telomere length
• DunedinPoAm aging rate

Methylation Score of Stress

• Epigenetic age acceleration
Composite Score of Stress

MS Stress

NIAAA: Discovery cohort 
(AUD/HC, N=317)

Factor

analysis

Elastic net

regression

• Epigenetic age acceleration
• DNAmTL
• PTSD
• MS Alcohol

Grady Trauma Project (N=795)
Data set 1 & 2
• Epigenetic age acceleration
• DNAmTL
• Alcohol consumption

Generation Scotland (N>7000)

NIAAA: Epigenomic cohort 
(AUD/HC, N=615)
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