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Abstract

Background: Attentional disruptions are common in PTSD, but findings across 

neuropsychological and neuroimaging studies have been variable. Few PTSD studies have 

investigated abnormalities in attention networks using a multi-modal imaging approach and 

attentional tasks that include emotionally-salient images. This study combined a behavioral task 

that included these images (emotional Stroop) with functional and structural neuroimaging (fMRI 

and diffusion tensor imaging; DTI) methods to comprehensively investigate attentional control 

abnormalities in a highly-traumatized civilian sample.

Methods: 48 traumatized women with and without PTSD received clinical assessments, fMRI 

and DTI. During fMRI, the Affective Stroop (AS), an attentional control task that includes 

emotionally-salient distractor images (trauma-relevant, positive, neutral) and variable task 

demands, was administered.

Results: In response to more difficult AS trials, participants with PTSD demonstrated lower 

activation in the dorsal and rostral anterior cingulate cortex and greater activation in the insula. 

This group also showed comparatively poorer performance on positive AS distractor trials, even 

after adjusting for trauma exposure. Performance on these trials inversely correlated with 

structural integrity of the cingulum bundle and uncinate fasciculus.

Conclusions: Even after adjusting for trauma exposure, participants with PTSD showed worse 

performance on an attentional control task in the context of emotional stimuli. They also showed 
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relatively lower cognitive control network activation and greater salience network activation. 

Fronto-parietal and fronto-limbic white matter connectivity corresponded with AS performance. 

Our findings indicate that attentional control impairments in PTSD are most evident in the context 

of emotional cues, and are related to decrements in function and structure of cognitive control and 

salience networks.
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1. Introduction

Attentional disruptions are frequently experienced by traumatized people, and are reflected 

in several posttraumatic stress disorder (PTSD) symptoms: intrusive recollections or 

flashbacks of the trauma, an impaired ability to concentrate on desired tasks, and 

hypervigilance for trauma-related cues. Attention comprises three different processes: 

alerting, orienting, and executive control (Petersen and Posner, 2012). Among these, 

executive or attentional control may be the most amenable to modification; it functions 

under conscious awareness, making it a frequent target of treatments (Badura-Brack et al., 

2015). Attentional control includes the ability to maintain focus on a given task and 

disregard irrelevant information, a process that is critical to many daily life activities.

Evidence for diminished attentional control in PTSD has emerged from studies that used 

neuropsychological tasks, including the Stroop paradigm (Scott et al., 2015; Stroop, 1935). 

The existing PTSD neuropsychological studies employing the Stroop task show some 

evidence for diminished attentional control in PTSD populations (Lagarde et al., 2010) via 

poorer task performance, as indicated by a recent meta-analysis (Cisler et al., 2011). 

However, effect sizes have been relatively small (d~.2) (Cisler et al., 2011), and some studies 

have not found between-group effects at all (Kanagaratnam and Asbjornsen, 2007; Lagarde 

et al., 2010; Vasterling et al., 2002). One potential reason relates to variations in PTSD 

symptom clusters between the different samples in these studies—there is evidence that 

these symptom clusters are differentially related to attentional control deficits (Grisanzio et 

al., 2018), with fearful arousal symptoms corresponding most with cognitive control 

problems.

Problems with attentional control in the context of emotion are likely to be related to 

dysfunction in two distinct neural circuits (Petersen and Posner, 2012; Posner and Petersen, 

1990). The cingulo-opercular network includes the anterior cingulate cortex (ACC) and 

insula as well as the amygdala, and supports error monitoring and salience detection 

(frequently termed “salience network”). The fronto-parietal network, which includes the 

dorsal ACC, dorsolateral prefrontal (DLPFC) and inferior parietal cortex, supports the 

implementation of executive control and adjustment of attentional strategy. Increased 

cingulo-opercular and decreased fronto-parietal network function appears to characterize 

anxious populations in general (Sylvester et al., 2012).

However, neuroimaging studies of attention in traumatized populations indicate more mixed 

findings, both in terms of neural network response and behavior (Block and Liberzon, 2016). 
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This may, in part, reflect methodological differences, including the types of stimuli 

employed in attentional control tasks (i.e., images vs words, trauma-relevant vs generally 

aversive stimuli), as well as heterogeneous samples. Studies using affective versions of the 

Stroop have indicated differential fronto-parietal and cingulo-opercular network activation in 

PTSD in response to emotional stimuli. One study of women with complex PTSD indicated 

higher dACC, dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex 

(vmPFC) and anterior insula response to trauma-related words in civilians with complex 

PTSD on an emotional Stroop task, compared to both traumatized and healthy controls 

(Herzog et al., 2017). Participants with PTSD demonstrated poorer Stroop task performance, 

particularly when presented with trauma words. Using an image-based Affective Stroop 

(AS), Blair et al. (2007) observed decreased DLPFC activation in patients with PTSD in 

response to heightened task demands (Blair et al., 2007), but no significant differences in 

task performance were observed; aversive images used in the task were not trauma-specific. 

Building upon this work by examining the functional connectivity during this same task, 

White et al. (2015) observed that PTSD symptoms positively correlated with amygdala 

connectivity to the DLPFC and dACC in veterans in response to emotionally-valenced vs 

neutral images, particularly to trials with positive image distractors (White et al., 2015). The 

authors also found that PTSD symptoms correlated with increased functional connectivity 

between the amygdala, dACC and anterior insula (White et al., 2015). However, no group 

differences were observed in task performance, and their population did not meet clinical 

criteria for PTSD. Studies using other word or number-based emotional Stroop tasks have 

indicated higher dACC response (Bremner et al., 2004) but lower response in the rostral 

ACC (Bremner et al., 2004; Shin et al., 2001) in participants with PTSD versus controls; in 

these two studies, significant differences in task performance were not observed. These data 

indicate that salience network activation appears to be more consistently related to 

attentional control disruptions in PTSD, whereas the direction of fronto-parietal circuit 

involvement has been more variable. Only one such study observed significant differences in 

task performance (Herzog et al., 2017).

Decrements in the structural integrity of these neural pathways may contribute to the altered 

responses previously observed. In studies of depression, poorer microstructure of the 

cingulum bundle has been associated with increased interference on a Stroop task (Keedwell 

et al., 2016). This white matter tract connects brain regions in the attentional control network 

(ACC and parietal cortex) and is also a primary route of communication between prefrontal 

and entorhinal cortices. Similar findings with respect to cingulum integrity and Stroop task 

performance have been observed in schizophrenia (Kubicki et al., 2009). Our earlier studies 

suggest that the cingulum as well as the uncinate fasciculus, a fronto-limbic tract that 

connects the amgydala and vmPFC, are specifically compromised in PTSD (Daniels et al., 

2013; Fani et al., 2015, 2012a, 2016). These tracts have been associated with treatment 

outcome as well (Kennis et al., 2015). However, little is known about how the structure of 

these pathways affects attentional control in PTSD.

To our knowledge, no studies to date have used a multi-modal approach, combining 

behavioral data (Affective Stroop task performance) with structural and functional MRI data 

to comprehensively investigate the nature of attentional control abnormalities in PTSD. We 

measured responses of traumatized participants with and without PTSD on the affective 
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Stroop (administered during fMRI) to examine differences in attentional performance during 

neutral and emotional conditions, including both positive and trauma-relevant distractors in 

this task. We predicted that a PTSD diagnosis would be associated with poorer performance 

on the Affective Stroop (error rates and response times were used to assess attentional 

control), particularly in the presence of emotional stimuli. We expected decreased activation 

in the fronto-parietal/cognitive control network and increased cingulo-opercular/salience 

network activation in response to increased task demands. We hypothesized that poorer 

integrity of cingulum bundle (CB) and uncinate fasciculus (UF) pathways would be 

associated with poorer AS task performance in the presence of emotionally-valenced 

distractors. To assess for specificity of findings with respect to white matter, we included a 

third pathway, the medial forebrain bundle, in analyses. We conducted exploratory analyses 

to examine the relationships between task performance, neural response patterns and PTSD 

symptom dimensions.

2. Methods

2.1. Participants

A sample of 48 African-American women aged 22–61 (M = 38.7, SD = 11.2) was recruited 

from an NIH-funded study of attentional control in PTSD (MH101380) and received MRI. 

Individuals were approached in general medical clinics of a publicly-funded hospital serving 

low income individuals in inner-city Atlanta, Georgia. On average, nearly half of all 

participants had completed up to 12 years of schooling or the equivalent (GED), and had 

monthly incomes of less than $1000. Only 39% of the sample was employed. Participant 

characteristics are further detailed in Table 1.

The eligibility criterion for participation in the current study included the ability to 

understand English (assessed by a study researcher) and willingness to provide informed 

consent. Participants were excluded if they had current neurological conditions or psychosis, 

as well as current psychotropic medication use. Participants were excluded from MRI on the 

basis of: claustrophobia; contra-indications to MRI scanning (e.g., metal implants); current 

bipolar disorder (as assessed with the MINI interview Sheehan et al., 1998); current 

substance or alcohol dependence or intoxication. Participants were given a urine drug test on 

the day of the scan and tested negative. Although handedness was not used as an inclusion/

exclusion factor, a majority of participants were right handed (n = 42; 88%). After being 

enrolled in the study, one participant reported starting on psychotropic medications. 

Participants receiving MRI were asked to refrain from caffeine consumption on the day of 

the scan, given possible effects on BOLD signal and cognition, as shown previously 

(Koppelstaetter et al., 2010; Laurienti et al., 2002). The Institutional Review Board of Emory 

University and Grady Hospital Research Oversight Committee approved all study 

procedures.

2.2. MRI acquisition, image processing

Scanning was conducted on a research-dedicated Siemens 3-Tesla TIM-Trio scanner (12 

channel head coil) at Emory University Hospital. Acquisition parameters and image pre-

processing details are provided in the Supplement.
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2.3. Clinical assessments

We administered the following assessments, detailed further in the Supplement. The 

Traumatic Events Inventory (TEI) was administered to measure lifetime trauma exposure. 

Given that the two diagnostic groups demonstrated significant differences in trauma 

exposure (see Table 1), overall TEI scores were submitted as covariates in statistical 

analyses. The Clinician Administered PTSD Scale (CAPS; DSMIV; administered to18 

participants) and DSM5 (administered to 30 participants; Blake et al., 1995, Weathers et al., 

2017) was administered to determine presence or absence of PTSD. Based on the CAPS, 26 

participants met criteria for PTSD, whereas 22 did not meet PTSD criteria (Controls); all 

had experienced trauma. The PTSD Symptom Scale (PSS; (Foa et al., 1993) was 

administered on the day of the MRI scan, and subscale scores (re-experiencing, avoidance, 

hyperarousal, anhedonia) were used for correlational analyses with MRI data, given their 

similar time of administration. Participants in the control group had low PSS scores, with a 

mode of 0, a median score of 2 and mean = 3.4 (SD = 4). As expected, participants in the 

PTSD group had clinically significant PSS scores, with a mode of 25, a median score of 25 

and mean = 25.4 (SD = 11.3) and scores were had a relatively even distribution across the 

symptom clusters.

2.4. fMRI task: affective stroop

The Affective Stroop (AS) is a measure of attentional control that has been detailed in earlier 

studies (Blair et al., 2007, 2012b; White et al., 2015), further described in the Supplement. 

Participants rapidly identify, via button-press, the number of numbers in a given display (3, 

4, 5, or 6) while ignoring distractor images (trauma-relevant, positive, and neutral scenes) 

that appear prior to and following each number stimulus (Fig. 1a and b). The distractor 

images are identical. In some of these trials, the number of numbers is inconsistent with the 

actual number displayed, posing a heightened cognitive challenge. In addition, the task 

includes trials with no cognitive demands (“view only” trials). Error rates and response 

times were recorded and analyzed.

2.5 fMRI data analysis

To examine blood-oxygen-level dependent (BOLD) signal change to task stimuli, a first-

level, fixed-effects analysis was conducted. Onset times for each task condition were entered 

into a general linear model, convolved with a hemodynamic response function and linear 

contrasts between conditions were estimated. Subject-specific motion parameters were also 

included in the model as effects of non-interest. Given our interest in examining neural 

response and task performance under high vs low attentional demands, and in accordance 

with earlier studies using this task (Blair et al., 2012b; White et al., 2015), our primary 

analysis involved contrasting number incongruent versus number congruent trials. Events 

included the distractor and number stimuli. Since our primary objective was to examine 

differences in performance between PTSD and traumatized controls, between-group 

analyses were conducted at a whole brain, voxel-wise level, for this contrast. Where 

between-group differences in task performance were observed, we performed correlational 

analyses including all participants; PSS subscale scores were entered as subject-level 

regressors. Regions of interest included the ACC (dorsal and rostral), DLPFC, superior 
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parietal cortex, insula, and amygdala, similar to prior studies (White et al., 2018). Results 

were considered significant at a whole brain statistical threshold of p < .001, with cluster-

level FWE correction at a threshold of p < .05 conducted with these a priori specified 

regions of interest, as recommended to account for error inflation due to multiple 

comparisons (Woo et al., 2014). Contrast parameters were extracted from clusters showing 

significant between-group differences and were used in analyses with behavioral data. To 

confirm that findings were within established networks of interest, we used Neurosynth 

(www.neurosynth.org; Yarkoni et al., 2011) to conduct a meta-analysis using cognitive 

control and salience network terms to identify regions consistently related to these networks.

2.6. DTI data processing and probabilistic tractography

To examine structural connectivity, probabilistic fiber tracking was conducted with 

PROBTRACKX implemented in FSL, detailed further in the Supplement. Masks of the CB 

and UF were created using the JHU White Matter Tractography Atlas (Mori et al., 2005) and 

used as an anatomical waypoint for these paths; a separate exclusion mask was created to 

eliminate the likelihood of pathways in irrelevant white matter tracts, gray matter regions 

and CSF. The medial forebrain bundle (MFB) was included in analyses to assess for 

specificity of findings. To create probabilistic streamlines for MFB pathways, we selected 

the nucleus accumbens and orbitofrontal cortex as seed regions using the Harvard-Oxford 

Subcortical Structural Atlas (http://www.cma.mgh.harvard.edu/fsl_atlas.html. Example 

probabilistic paths for the UF and CB are provided in Fig. 3c and d. Fractional anisotropy 

(FA) was used as our measure of tract integrity, given that earlier studies have indicated it to 

be a reliable assessment of microstructural integrity of white matter fibers (Fox et al., 2011). 

Data from 8 participants were discarded due to motion artifacts or unusable tracts (included 

anatomically unfeasible, deviated projections), leaving a sample size of 40; this sample of 

participants was used in all Affective Stroop and DTI data analyses. This sub-group of 

participants was also similar to the overall sample in terms of age (M = 38.4, SD = 11.3), 

PTSD symptoms (PSS total: M = 16.1, SD = 14.1), and trauma exposure (TEI lifetime 

trauma: M = 4.7, SD = 2.6).

2.7. Affective number stroop data analysis

Multivariate analyses of covariance were conducted to examine between-group differences 

in performance on cognitive measures (AS: error rate and response time) after accounting 

for the effects of trauma exposure (TEI), given between-group differences and associations 

found previously with test performance (Palmer et al., 1997); data were analyzed for the 40 

participants with both fMRI and DTI data. PTSD diagnosis was the grouping variable, 

outcome variables included performance on the AS. Where group differences were 

observed, we also examined associations between PTSD symptom clusters and AS task 

performance in the entire sample. Finally, we examined correlations of task performance 

with structural connectivity of cingulum, uncinate fasciculus, and medial forebrain bundle 

pathways; using IBM SPSS version 24, partial correlations were conducted with mean FA 

values of all tracts and AS performance variables, controlling for trauma exposure (TEI), 

given its possible effects on white matter integrity (Fani et al., 2012a; Lebel et al., 2012; Ly 

et al., 2013; Wang et al., 2010). A threshold of p < .05, two-tailed, was used to define 

Fani et al. Page 6

J Affect Disord. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.neurosynth.org/
http://www.cma.mgh.harvard.edu/fsl_atlas.html


statistical significance; Sidak correction was applied to adjust for error due to multiple 

comparisons (p < .006).

3. Results

3.1. Affective stroop task performance

3.1.1. PTSD vs controls—We examined effects of emotion and task condition on 

differences in accuracy and response time in the sample using two 3 (emotion: positive, 

trauma-relevant, neutral) × 2 (task condition: number congruent, number incongruent) 

repeated measures ANCOVAs, with trauma exposure (TEI) as a covariate. We observed a 

significant emotion by task condition by TEI interaction (F1,37 = 3.6), p =.04), a significant 

emotion by diagnostic group interaction (F1,37 = 5, p =.01), as well as a significant emotion 

by task condition by diagnostic group interaction (F1,37 = 4.1, p =.02). Participants with 

PTSD demonstrated significantly poorer performance (more errors) on positive number 

congruent AS distractor trials (Cohen’s d = 0.65). Controls had average error rates of 

approximately 4%, whereas participants with PTSD demonstrated average error rates of 9% 

(see Table 2). No other main effects or interactions were observed. With respect to response 

time, a main effect of task condition was observed (F1,37 = 23, p < .001), with slower 

response times observed in response to number incongruent trials. However, no other main 

effects or interactions were observed with respect to response time.

3.1.2. PTSD symptom clusters—In the group as a whole, a significant correlation was 

observed between PTSD hyperarousal symptoms and performance on neutral number 

incongruent distractor trials (r = 0.36, p = .03), with a marginally significant correlation 

observed with trauma-relevant number congruent trials (r = 0.32, p = .05). Anhedonic PTSD 

symptoms also correlated with performance on neutral number incongruent distractor trials 

(r = 0.34, p = .03) and trauma-relevant number congruent distractor trials (r = 0.32, p = .05).

Response times for all conditions were normally distributed in the sample, as indicated by 

Shapiro-Wilk tests (all ps > .25). Hyperarousal was significantly associated with longer 

response times on trauma-relevant number congruent (r = 0.39, p = .02), positive number 

congruent (r = 0.34, p = .04), trauma-relevant number incongruent (r = 0.42, p = .01), 

positive number incongruent (r = 0.38, p = .02) and neutral number incongruent (r = 0.45, p 
< .01) distractor trials. Anhedonic PTSD symptoms correlated with response time on 

traumarelevant number congruent (r = 0.37, p = .02), trauma-relevant number incongruent (r 
= 0.43, p < .01), positive number incongruent (r = 0.35, p = .03) and neutral number 

incongruent (r = 0.42, p < .01) distractor trials.

3.2. fMRI analyses

3.2.1. PTSD vs controls—In response to AS number incongruent vs number congruent 

trials (increased attentional demands), PTSD participants demonstrated lesser activation in 

the dorsal ACC (Brodmann Area; BA 32, MNIx,y,z = 9,23,34; Table 3) and rostral ACC (BA 

24, MNIx,y,z = 9,35,7) as compared to controls; the dACC cluster fell within the cognitive 

control network as defined by Neurosynth. For this contrast, participants with PTSD 

demonstrated heightened response in the insula (BA 13, MNIx,y,z = −39,−37,22). No other 
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significant between-group differences in activation were found at the p < .001 statistical 

threshold between groups for all contrast conditions.

3.2.2. PTSD symptom clusters—As planned, regression analyses were conducted 

with the AS condition that had yielded between-group performance differences: positive 

versus neutral images. In response to positive vs neutral images, re-experiencing symptoms 

were associated with greater dACC activation (Brodmann area 24; MNIx,y,z = 0,23,22; Fig. 

2a), whereas avoidance was positively correlated with activation in the parahippocampal 

gyrus (MNIx,y,z = 9, −10, −23; Fig. 2b). Hyperarousal symptoms were not significantly 

correlated with activation in specified ROIs, but were positively correlated with activation in 

the uncus (BA 34, MNIx,y,z = 15, −7, −23) and middle cingulate gyrus (BA 24, MNIx,y,z = 

0,−19,34; Fig. 2c). No significant patterns of activation were observed for correlations with 

anhedonic symptoms for this condition.

3.3. White matter analyses

After accounting for trauma exposure, uncinate fasciculus FA was negatively associated with 

errors on positive number congruent trials (r = −0.44, p = .005; Fig. 3a, c) and trauma-

relevant number incongruent trials (r = −0.46, p = .002). These relationships remained 

significant after removing trauma covariates (r = −0.44, p = .004 for positive number 

congruent trials and r = −0.46, p = .002 for trauma-relevant number incongruent trials). 

Right cingulum FA was also negatively correlated with performance on positive number 

congruent trials (r = −0.42, p = .01) and neutral number incongruent trials (r = −0.33, p = .

04); however, these findings did not survive Sidak correction. After removing trauma 

covariates, right cingulum FA remained negatively correlated with performance on positive 

number congruent trials (r = −0.39, p = .01; Fig. 3b, d) and trauma-relevant number 

incongruent trials (r = −0.35, p = .03). After controlling for depression symptoms (BDI total 

score), all ps < .05 but were not less than the Sidak-corrected threshold. No other significant 

associations were observed between white matter integrity and task performance. 

Participants with PTSD showed lower right cingulum FA as compared to controls (F1,41 = 

6.6, p = .01), replicating our earlier findings (Fani et al., 2012a, 2016).

4. Discussion

We administered an attentional control task with variable attentional demands and both 

neutral and emotionally-salient distractor stimuli to examine the precise nature of attentional 

control abnormalities in PTSD. We investigated potential differences in performance and 

neural response, as well as white matter connectivity. Together, our data indicate 

abnormalities in cognitive control and salience networks in participants with PTSD. As 

compared to traumatized controls, we found that participants with PTSD demonstrated 

similar task performance in the context of neutral stimuli, but performed more poorly in the 

context of emotional AS distractor stimuli, as we had predicted. Specifically, those with 

PTSD made more errors on positive AS distractor trials and demonstrated lower activation in 

cognitive control (fronto-parietal) and higher activation in salience networks in the context 

of higher AS task demands. Further, task performance on these AS positive distractor trials 

was correlated with structural integrity of the cingulum bundle (CB), a primary fronto-
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parietal white matter connection, and the uncinate fasciculus (UF), a fronto-limbic white 

matter fiber implicated in various social and emotional processes (Johnson et al., 2011; 

Zappala et al., 2012). Re-experiencing, avoidance, and hyperarousal symptom clusters were 

correlated with distinctly different patterns of BOLD activation to positive AS stimuli. 

Hyperarousal and anhedonic PTSD symptoms were associated with poorer performance on 

neutral and emotion AS trials.

When faced with higher attentional demands on the AS, the PTSD group demonstrated 

lower activation in the dorsal and rostral ACC, regions involved with regulation of response 

on attentional tasks. The dACC has been implicated in top-down control more generally, and 

rACC involvement appears to be more specific to emotional task conditions (Banich et al., 

2009). Decreased dACC activation during affective attentional processing has been observed 

in anxious populations (Blair et al., 2012a), and lower dACC and rACC response have been 

linked to PTSD in meta-analyses (Etkin and Wager, 2007). The rACC is implicated in 

performance monitoring (Ridderinkhof et al., 2004)—during emotional Stroop task 

performance, this region is more active when attentional demands are increased (Etkin et al., 

2006). In healthy individuals, increased rACC corresponds with the ability to successfully 

identify erroneous responding and improve subsequent performance (Ridderinkhof et al., 

2004). Volume of the rACC (Bryant et al., 2008) and increased response in the rACC 

(Bremner et al., 2017; Peres et al., 2011) and dACC (Malejko et al., 2017) has also been 

associated with successful treatment of PTSD. Similar to prior Stroop studies (Bremner et 

al., 2004; Shin et al., 2001), our findings indicate that participants with PTSD demonstrated 

under-engagement of the rACC during emotional Stroop task performance—unlike these 

studies, we also observed a difference in task performance. Participants with PTSD 

performed more poorly than controls on AS trials that included positive images. In the 

context of conditions with higher attentional demands, they also demonstrated comparatively 

higher insula activation. Given the role of the insula in salience detection, and the frequent 

observation of insula hyper-activation in PTSD (Hughes and Shin, 2011), it is likely that 

activation on this salience network disrupted the appropriate function of fronto-parietal 

networks, precluding their ability to exert cognitive control successfully.

We were somewhat surprised to find that attentional performance was disrupted by positive, 

rather than trauma-relevant, distractor images in PTSD—however, studies of other 

traumatized populations have observed similar findings with respect to positive images, 

including one using the AS task (White et al., 2015). Emotionally-salient images, including 

those with positive valence, have been found to disrupt attention in anxious (Chen et al., 

2012, 2014; Taylor et al., 2010) and traumatized populations, such as our own (Fani et al., 

2011). Disruptions in cognitive control circuits have also been observed in children with 

PTSD in response to positive images (Jatzko et al., 2006). Increasingly, disrupted behavioral 

and neural response to appetitive stimuli are being observed as manifestations of PTSD 

(Nawijn et al., 2015). People with high/frequent exposure to past trauma and adversity may 

have a complex relationship with positive images—these scenes may be incongruous with 

the realities and expectations of this population, and as such, can disrupt attentional focus.

Poorer white matter connections extending from the ACC were likely to play a role in 

producing these attentional decrements—task performance on positive emotion distractor 
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trials corresponded with UF, and to a lesser degree, right CB integrity. The UF is an 

association fiber extending from ventromedial prefrontal (vmPFC) regions to the amygdala, 

permitting bi-directional communication. Integrity of this tract has been associated with 

Stroop task performance (He et al., 2016; Schulte et al., 2012); more broadly, it is involved 

in emotion regulation (d’Arbeloff et al., 2018; Zheng et al., 2018). Disruptions in UF 

integrity have been linked to mood, anxiety, and trauma-related disorders (Lindner et al., 

2018; Jenkins et al., 2016; Koch et al., 2017; Liao et al., 2014). Taken together, alterations in 

this fronto-limbic pathway appear to influence attentional control in the context of emotion 

in people with PTSD.

Task performance was also linked to integrity of the CB, a large, c-shaped white matter tract 

extending from prefrontal (orbitofrontal and ACC) to limbic (parahippocampal) regions. In 

addition to connecting fronto-parietal control network areas, the limbic aspects of this tract 

access emotion processing regions. Integrity of the CB has been associated with 

performance on cognitive control/response inhibition tasks in healthy (Takahashi et al., 

2010; Yamamoto et al., 2015) and psychiatric populations (Keedwell et al., 2016; Takei et 

al., 2009). Stroop performance, particularly in the context of positive distractors (Keedwell 

et al., 2016), has been associated with CB integrity, indicating the functional consequences 

of these white matter decrements. Other studies have observed that CB integrity is linked to 

performance on tasks of response conflict and sustained attention (Takahashi et al., 2010; 

Yamamoto et al., 2015). Injury to this path has been linked to deficits on tasks of executive 

control e.g., (Cohen et al., 1999; Janer and Pardo, 1991; Kim et al., 2003), and reduced 

emotional responsivity (Cohen et al., 2001). In light of this corpus of data, the CB is thought 

to play a role in modulating attentional control in the context of emotion (Bubb et al., 2018). 

We have previously observed how decrements in cingulum structure and connectivity 

characterize PTSD (Fani et al., 2012a, 2016) and related functions, including extinction 

learning (Fani et al., 2015). The present findings extend our earlier work, elaborating on how 

these decrements play a role in dysfunctional attentional control in this disorder.

Re-experiencing symptoms were associated with increased response in the dACC to positive 

versus neutral distractor trials. These findings are aligned with earlier studies showing 

PTSD-specific increases in dACC response to trauma-related stimuli more generally (Hayes 

et al., 2012) and to emotional stimuli embedded in cognitive tasks (Fani et al., 2012b; 

Herzog et al., 2017; White et al., 2015). After successful treatment, individuals with PTSD 

have shown differences in dACC response (Malejko et al., 2017) and improved performance 

during emotional, but not neutral Stroop task conditions (Thomaes et al., 2012), further 

suggesting that attentional control measures that include emotional stimuli are more 

sensitive to treatment effects. We did not find group-wise differences in amygdala activation, 

similar to other studies of PTSD using the same task (Blair et al., 2007, 2013; White et al., 

2018). This suggests that the AS measure is a better probe of attention network function vs 

basic emotion processing/fear network function in traumatized populations. This task can 

also provide meaningful multimodal data in treatment outcome research.

Symptoms of avoidance and hyperarousal were predominantly associated with activation in 

regions involved with salience detection, including limbic (parahippocampal) and the mid-

cingulate gyrus, in response to positive images. Hyperarousal was also correlated with 
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poorer AS task performance, particularly on trauma-relevant and neutral trials. Given the 

other relationships observed between integrity of the UF, CB and AS task performance, it is 

possible that avoidance and hyperarousal clusters emerge as a result of abnormalities within 

salience and cognitive control networks. Traumatized people with more fearful arousal and 

avoidance symptoms may show attentional control deficits in the context of emotion, 

heightened limbic activation and under-activation in attention control regions. Other studies 

have observed specific associations between hyperarousal and attentional control deficits 

(Grisanzio et al., 2018). This could indicate that these specific clinical and cognitive features 

of PTSD (hyperarousal and attentional control deficits, both of which are transdiagnostic 

features) may have shared neural substrates.

Although participants with PTSD demonstrated poorer performance on emotion-related AS 

trials, they demonstrated relatively similar performance on neutral trials. These findings 

highlight the fact that PTSD-related deficits in attention may be most visible in emotional 

contexts, and similarly illustrate the value of using attentional tasks that incorporate 

emotional stimuli in research and clinical settings. Given that they can accommodate 

images, tasks such as the AS are most useful in PTSD studies and are both sensitive enough 

to detect attentional disruptions and equipped to identify the nature of these disruptions in 

various traumatized populations.

Our findings not only reveal specificity in attentional control dysfunction and PTSD 

symptoms, but also shed light on attractive targets for PTSD treatment. Greater ACC 

response at pre-treatment has been shown to predict treatment response (Malejko et al., 

2017). As a hub of attention and salience networks, the ACC is an excellent target for 

neuromodulation. Cognitive control can be trained in PTSD, as has been shown recently in a 

study that observed improved performance after training with an affective working memory 

task (Schweizer et al., 2017; others have proposed the use of web-based cognitive training 

(Fine et al., 2018). Mindfulness-based treatments, which involve training attentional focus to 

a sensory stimulus while monitoring emotional states, has been shown to improve response 

in fronto-parietal attentional control networks; a recent study found increased DLPFC and 

dACC response, as well as improved AS performance, in participants who completed 6 

weeks of mindfulness treatment compared to those who received an active control condition 

(Allen et al., 2012).

The limitations of this study include the fact that the majority of our sample had experienced 

multiple traumas, which can influence cognition, brain structure and function. However, 

PTSD-specific effects remained even after accounting for trauma exposure in statistical 

analyses. We also used two different versions of the CAPS to diagnose PTSD, which 

introduces a source of variance to the findings, and included one participant with 

psychotropic medication use, a factor that may influence results. Given our cross-sectional 

study design, we were also unable to determine the onset of attentional control abnormalities 

and their temporal relationship to trauma—this is worthy of examination in future 

prospective designs with more heterogenous and expansive sample sizes.

In conclusion, we found that PTSD was characterized by impaired attentional control in 

emotional contexts, and that these disruptions were associated with abnormal fronto-parietal 
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and fronto-limbic network function and structural integrity, as well as increased salience 

network activation. Our data show a mechanism through which attentional control problems 

may emerge in PTSD, and highlight the importance of using emotionally-salient tasks in 

PTSD assessment and intervention research.
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Fig. 1. 
Response to number incongruent (b) vs number congruent (a) Affective Stroop trials, 

voxelwise p < .001. Controls demonstrated higher activation in the dorsal and rostral ACC 

(shown in red, MNIx,y,z = 9,35,7) in response to higher Affective Stroop task demands.
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Fig. 2. 
Correlations between PTSD symptom clusters and response to positive vs neutral Affective 

Stroop distractor trials, voxelwise p < .001. (a) Reexperiencing positively correlated with 

dACC (MNIx,y,z = 0,23,22) activation. (b) Avoidance positively correlated with right 

parahippocampal gyrus (MNIx,y,z = 9,−10,−23) activation. (c). Hyperarousal correlated with 

middle cingulate cortex (MNIx,y,z = 0,−19,34) activation.
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Fig. 3. 
White matter integrity and performance on positive Affective Stroop distractor trials in 

PTSD. Errors on positive number congruent distractor trials were inversely correlated with 

microstructure of the uncinate fasciculus (a) and right cingulum (b). Example probabilistic 

tracts of the uncinate fasciculus (c) and right cingulum (d).
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Table 1

Demographic and clinical characteristics.

Trauma
controls
(n = 22)
Mean (SD)

PTSD
(n = 26)
Mean (SD) F

Age 40.7 (9.9) 39.3 (12.8) 0.2

TEI lifetime trauma 2.4 (1.3) 4.2 (2.3) 11.1

TEI types of interpersonal trauma in adulthood 2.2 (1.6) 4.5 (2.3) 14.8*

X2

TEI childhood sexual, physical abuse endorsed 18% 53.8% 7.1*

PSS total score 3.1 (3.8) 25.4 (11.3) 77.9*

PSS re-experiencing 1 (1.2) 6.9 (3.9) 45.5*

PSS avoidance 0.5 (1) 4 (1.8) 64.6*

PSS hyperarousal 1 (1.6) 8.4 (3.7) 77*

PSS anhedonia 0.5 (0.7) 4.1 (3) 31.9*

BDI-II total score 6.5 (10.1) 20.8 (12.7) 21.6*

No (%) Yes (%) X2

Currently employed 50 70 2.7

Currently married or domestic partnership 27% 19% 2.8

% Fisher’s exact test

Education 1.4

<12th grade 9.1 15.4

High school graduate/GED 36.4 30.8

Some college/tech school 36.4 42.3

College graduate 9.1 3.8

Graduate school 9.1 7.7

Monthly income % 7.3

$0–249 0 15.4

$250–499 18.2 3.8

$500–999 31.8 46.2

$1000–1999 31.8 15.4

$2000 + 18.2 19.2

TEI = Traumatic Events Inventory.

BDI-II = Beck Depression Inventory.

*
p < .01.
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Table 2

Affectivestroop performance.

Controls
(n = 22)
Mean (SD)

PTSD
(n = 26)
Mean (SD) F

Percent error

Trial type

Trauma-relevant, number congruent 8 (10.6) 11.8 (12.2) 1.2

Positive, number congruent 3.7 (8.3) 9.2 (8.6) 7.4*

Neutral, number congruent 6.3 (9.4) 8.4 (10.3) 0.4

Trauma-relevant, number incongruent 9.7 (10.9) 12.5 (13.1) 0.6

Positive, number incongruent 6.8 (9.2) 12.5 (15.3) 0.7

Neutral, number incongruent 6.2 (8.4) 11.5 (12.2) 1.9

Overall errors 6.9 (8.2) 11.5 (10) 1.6

Response time

Trauma-relevant, number congruent 871.2 (160.6) 942.4 (147.4) 1.4

Positive, number congruent 856.1 (164.9) 926.4 (132.8) 1.9

Neutral, number congruent 861 (170.5) 914 (130) 1.2

Trauma-relevant, number incongruent 928.1 (157) 1010.5 (137.7) 2.1

Positive, number incongruent 906.7 (135.2) 996.7 (163.5) 2.3

Neutral, number incongruent 914.5 (139.2) 997.3 (143.7) 3.2

Overall response time 889.6 (148.6) 968.8 (135.9) 1.9

*
p < .05.
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Table 3

Anatomical locations of voxel-wide BOLD response to Affective Stroop distractor trials (p < .001, 

uncorrected).

Brodmann area x y z Cluster size
(mm3)

Number incongruent vs number congruent trials

Trauma controls ≥ PTSD

Anterior Cingulate Gyrus (dACC) 32 9 23 34 8

Superior frontal gyrus 6 −6 29 58 12

Medial frontal gyrus 8 −6 41 40 6

Anterior cingulate gyrus (rACC) 24 9 35 7 7

PTSD ≥ Trauma controls

Insula 13 −39 −37 22 5

−33 −37 16

Precuneus 7 15 −70 46 7

Positive vs Neutral trials

PTSD ≥ Trauma controls

Middle temporal gyrus 21 54 5 −23 7

PTSD Re-experiencing symptoms

Positive correlation

Middle temporal gyrus 21 54 2 −20 8

Midbrain 0 −13 −5 10

Anterior cingulate cortex (dACC) 24 0 23 22 7

PTSD avoidance symptoms

Positive correlation

Parahippocampal gyrus 34 9 −10 −23 33

Uncus 28 18 −7 −26

Cerebellum −24 −46 −11 8

Precentral gyrus 6 45 −13 28 8

Brainstem 0 −13 −5 5

Orbitofrontal gyrus 11 12 50 20 7

PTSD hyperarousal symptoms

Positive correlation

Middle cingulate cortex 24 0 −19 34 12

Uncus 34 15 −7 −23 8
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