Report

Emission chamber test according to GEV-EMICODE

Product: ECO HYDRO GLASS

Report No.: CAL22-038227-1

Sample No.: 21-211675-03 Order No.: CAL-29807-21

Client: ETS Europe BVBA

Herentalsebaan 406 UNIT D1

2160 Wommelgem

Belgien

Date of order: 12th December 2021

Project manager: Monique Elmer

Table of contents

1	Introduction	3
2	Test data	3
2.1	Product data	3
2.2	Test chamber specifications	3
2.3	Preparation of the test specimen	3
2.4	Investigative Procedures	4
2.5	Sampling	4
3	Bases	5
4	Results and evaluation	7
4.1	Measurement after 3 Days	7
4.1.1	Table TVOC _{3,} K1/K2	7
4.1.2	Table Aldehydes-Results	7
4.2	Measurement after 28 Days	8
421	Table TVOC ₂₀ TSVOC VOC without LCL R-value K1/K2	8

1 Introduction

The company ETS Europe BVBA commissioned WESSLING GmbH to perform an emission chamber test of the sample ECO HYDRO GLASS according to the GEV EMICODE (27th April.2020).

The sample was dispatched by the client.

2 Test data

2.1 Product data

Sample identifier	ECO HYDRO GLASS
Sample number WESSLING	21-211675-03
Type of packaging	1 kg bottle
Date of receipt	09 th December 2021
Test period	3 rd march 2022 – 14 th April 2022

2.2 Test chamber specifications

Type of test chamber	Stainless steel		
Volume of test chamber	110 L		
Temperature	23 °C		
Rel. humidity	50 %		
Air exchange	0,5 h ⁻¹		

2.3 Preparation of the test specimen

The test specimen was prepared according to manufacturer information.

Area-specific flow rate	1,25 m³/m²h (use: floor)
Sample area	0,044 m²
Mass oft he sample	4,4 g
Actual consumption	100 g/m²
Beginning of the emission chamber test	3 rd March 2022

2.4 Investigative Procedures

Parameter	Test Norm	Measu in % (relativ)	Ausführender Standort
Testchamber Procedure	DIN EN 16516 (2020-10) ^A	-	WESSLING GmbH Altenberge
VOC - Measurement	DIN EN 16516 (2020-10) ^A	55	WESSLING GmbH Altenberge
Aldehyde - Measurement	DIN ISO 16000- 3 (2013-01) ^A	20	WESSLING GmbH Hannover

Notice:

If conformity assessments were carried out for the examined sample(s) as part of the test report creation, the measurement uncertainties of the measurement methods were not taken into account (with reference to the specifications of DIN EN ISO 17025:2018), both in the case of compliance and non-compliance of limit values (= decision rule).

2.5 Sampling

Sampling after 3 days								
Date	Parameter	Test norm	Sorbens	Sampling volume	Duration of sampling			
10 th March	VOC	DIN ISO 16000-6	Tenax-TA	5 L	50 min.			
2022	Aldehydes	DIN ISO 16000-3 ^A	DNPH	50 L	100 min.			
Sampling a	Sampling after 28 days							
Date	Parameter	Test norm	Sorbens	Sampling volume	Duration of sampling			
4th April	VOC	DIN ISO 16000-6	Tenax-TA	5 L	50 min.			
2022	Aldehydes	DIN ISO 16000-3 ^A	DNPH	50 L	100 min.			

The examinations according to DIN ISO 16000-3^A and DIN ISO 16000-6 were performed at the WESSLING sites Hanover and Budapest*. (* not within the national accreditiation of WESSLING GmbH; measured in double determination)

CAL22-038227-1 / CAL-29807-01 / ETS Europe BVBA / ECO HYDRO GLASS 26th April 2022 / elm / Page 5 of 9

3 **Bases**

EMICODE® is the trademark-protected designation for a classification system with which installation materials, adhesives and building products can be classified according to their

emission behavior in the following three classes:

EMICODE® EC1Plus: "very low-emissionPlus"

EMICODE® EC1: "very low emissions"

EMICODE® EC2: "low emissions"

The classification according to EMICODE® is based on analytically determined measurement data and specific classification criteria, measured according to a defined test method. The organic compounds that can be released from a product over a longer period of time are determined using a defined chamber procedure. Based on the result of this test, products are assigned to the appropriate EMICODE class depending on their type and intended use. The emissions are evaluated after 3 days and after 28 days using the following parameters:

TVOC Total Volatile Organic Compounds

TVOC₃ TVOC value after 3 days

TVOC₂₈ TVOC value after 28 days

TSVOC₂₈ Sum of all semi-volatile organic compounds (Total Semi-Volatile Organic

Compounds) after 28 days

LCI lowest concentration of interest: Auxiliary values of the health-related individual substance evaluation for product emissions, the so-called LCI values, are updated annually or longer by the AgBB (committee for the health-related evaluation of building products).

R value The R value is the sum of all quotients from the measured substance concentrations and their associated LCI values

K1/K2 volatile organic substances that are considered carcinogenic or suspected of being carcinogenic (classification as K1, K2) according to European and/or German hazardous substance legislation.

The GEV provides the following requirements for the EMICODE classification:

Parameter (µg/m³)	EC1Plus	EC1 (µg/m³)	EC2 (µg/m³)
Total VOC after 3 Days	≤ 750	≤ 1000	≤ 3000
Total VOC after 28 Days	≤ 60	≤ 100	≤ 300
Total SVOC after 28 Days	≤ 40	≤ 50	≤ 100
R-value	1	-	-
Sum of unrated VOC	≤ 40	-	-
Formaldehydes after 3 Days	≤ 50	≤ 50	≤ 50
Acetaldehydes after 3 Days	≤ 50	≤ 50	≤ 50
Sum of From- and Acetalde- hydes	≤ 0.05 ppm	≤ 0.05 ppm	≤ 0.05 ppm
Sum of K1/K2 after 3 Days	≤ 10	≤ 10	≤ 10
All K1/K2 after 28 Days	≤ 1	≤ 1	≤ 1

Only substances from 5 μ g/m³ des are included in the calculation of TVOC and TSVOC, as well as TVVOC for parquet varnishes. The individual compounds are quantified both substance-specifically and with toluene as a reference substance for calibration (toluene equivalent = TÄ). When assessing the TVOC, however, only the value calculated from the toluene equivalents is taken into account.

4 Results and evaluation

4.1 Measurement after 3 Days

4.1.1 Table TVOC₃, K1/K2

Parameter (CAS-Nr.)	VOC- Concent- ration Test Chamber- spez. (µg/m³)	VOC- Concent- ration Test Chamber- TE (µg/m³)	Test value* (µg/m³)	Evalua- tion
Single Compounds				
Aceton (DNPH VVOC) (67-64-1)	6	-		
Nonanal (DNPH VVOC) (124-19-6)	2	-		
TVOC (C6-C16)**	-	-		
TVOC (C6-C16)** DIN EN 16516 (TE)	-	-	750 / 1000 / 3000	EC 1 ^{Plus}
Sum of volatile K1/K2	n.v.	n.v.	10 /10 /10	EC 1 ^{Plus}

^{*}according to GEV requirement criteria for installation materials, adhesives and construction products EC 1 Plus / EC1 / EC2

n.v.: not verifiable (limit of quantification: < 1 μg/m³, as far as technically feasible)

TE = toluene equivalent

4.1.2 Table Aldehydes-Results

Parameter	Concentration Test Chambe (µg/m³)	Concentration Test Chambe (ppm)	Test value*	Evaluation	
Formaldehyds	< 2	< 0,01	50 / 50 / 50 ug/m³	EC 1 ^{Plus}	
Acetaldehyds	3	< 0,01	50 / 50 / 50 μg/m³	EC I was	
Total	3	< 0,01	0,05 / 0,05 / 0,05 ppm	EC 1 ^{Plus}	

^{*}according to GEV requirement criteria for installation materials, adhesives and construction products EC 1 Plus / EC1 / EC2

^{**} taking into account the limits of substances with a LCI value > 5 μg/m³

4.2 Measurement after 28 Days

4.2.1 Table TVOC₂₈, TSVOC, VOC without LCI, R-value, K1/K2

Parameter (CAS-Nr.)	VOC- Concent- ration Test Chamber- spez. (µg/m³)	VOC- Concent- ration Test Chamber- TE (µg/m³)	LCI (µg/ m³)	Ri	Test value* (µg/m³)	Evaluati- on
Single Compounds						
Aceton (67-64-1)	5	n.v.	1200	0,000		
Acetaldehyd (75-07-0	3	n.v.	1200	0,000		
TVOC _{spez} (C6-C16)**	< 5	-				
TVOC (C6-C16)** DIN EN 16516 (TE)	-	< 5			60 / 100 / 300	EC 1 ^{Plus}
TSVOC (>C16)	< 5	< 5			40 / 50 / 100	EC 1 ^{Plus}
VOC without LCI	< 5	< 5			40 / - /	EC 1 ^{Plus}
R-value	0,000	-			1 / - /-	EC 1 ^{Plus}
Sum of volatile K1/K2	n.v.	n.v.			1/1/	EC 1 ^{Plus}

^{*}according to GEV requirement criteria for installation materials, adhesives and construction products EC 1 Plus / EC1 / EC2

n.v.: not verifiable (limit of quantification: < 1 μg/m³, as far as technically feasible)

TE = toluene equivalent

^{**} taking into account the limits of substances with a LCl value > 5 μg/m³

CAL22-038227-1 / CAL-29807-01 / ETS Europe BVBA / ECO HYDRO GLASS 26th April 2022 / elm / **Page 9 of 9**

5 Summary

The company ETS Europe BVBA commissioned WESSLING GmbH to perform an emission chamber test of the sample ECO HYDRO GLASS according to the GEV EMICODE (27th April 2020)

The sample was prepared and then placed in a test chamber according to DIN EN 16516 (2020-10)^A. On the 3rd and 28th day after loading, the test chamber air was examined for VOC/SVOC, carcinogens and also on the 3rd day for formaldehyde and acetaldehyde. The measurement results were evaluated using the EMICODE classification criteria.

With regard to manner and extent of the performed examination, the tested product complies with the requirements of the EMICODE EC 1^{Plus} after 3 and 28 Days.

Monique Elmer

Chemical engineer Project manager