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Abstract

Choice architecture and recommender systems both address information overload but have

developed largely independently of each other and make strong assumptions about decision-

makers’ unobserved preferences. In this paper, we introduce cognitive information filters as

an algorithmic approach to choice architecture that mitigates information overload in a more

principled and effective manner: our method combines machine learning with a cognitive model

of choice behavior to solve the economic problem of nudging or persuading decision-makers by

tailoring information to their revealed preferences and cognitive constraints. We first develop

a rational-inattention model of multi-attribute choice to describe the behavior of a consumer

(receiver) facing information costs. We then use reinforcement learning to solve the information

design problem of a sender choosing which options and attributes are accessible to the receiver.

Observing only the receiver’s choices, the sender learns from repeated interactions which infor-

mation is most effective in attaining desirable behavioral outcomes. By inferring preferences

from boundedly rational behavior, our methodology can optimize for revealed welfare and

hence promises to be (1) less paternalistic than traditional nudging and (2) less susceptible

to misalignment than recommender systems optimizing for imperfect welfare proxies such as

engagement. This has implications beyond economics and marketing, for example for digital

platforms and alignment research in artificial intelligence.

JEL classification: C90, D11, D82, D83, D91, M31

Keywords: choice architecture, information design, rational inattention, reinforcement learn-

ing

∗Tübingen AI Center & Max Planck Institute for Biological Cybernetics. Contact: stefan.bucher@nyu.edu.
The authors thank Adam Brandenburger, Andrew Caplin, Sam Kapon, and Oleg Solopchuk for helpful discussions, and anony-
mous reviewers for the MIT Conference on Digital Experimentation and the NeurIPS Workshop on Information-Theoretic
Principles in Cognitive Systems for helpful comments.

https://www.stefan-bucher.com/s/Bucher_JMP.pdf
mailto:stefan.bucher@tuebingen.mpg.de


“It’s Not Information Overload.
It’s Filter Failure.”

— Clay Shirky

1 Introduction

Information overload is ubiquitous because constraints on our cognitive capacity to process
information adversely impact the quality of the decisions we make.1 Limited attention
and cognition have important consequences for welfare and markets (McFadden, 2023), and
have consequently become of central interest to economists and policymakers concerned that
“individuals are able to pay only limited attention to important aspects of their environment,
often have a difficult time processing information, and make cognitive errors even in simple
situations,” as stated in the National Academies’ recent consensus study report on behavioral
economics (Buttenheim et al., 2023, p. 7).

Since the field’s inception, behavioral economists have thus devised remedies such as
choice architecture and “nudging,” with the goal of helping policymakers induce desirable
behavioral outcomes (Thaler and Sunstein, 2008; Johnson, 2021). Because attention is a
scarce good in the digital economy, unsurprisingly, firms are also competing for it with
increasingly sophisticated recommender systems affecting our choices and beliefs (Fleder
and Hosanagar, 2009; Aridor et al., 2022). Yet, identifying reliable nudges with significant
effect sizes can be difficult and costly (DellaVigna and Linos, 2022; Mertens et al., 2022;
Maier et al., 2022) – particularly with heterogeneous populations. By contrast, algorithmic
recommender systems are designed to learn from observing individual user choices, but they
often suffer from misalignment due to the difficulty of inferring users’ preferences from their
boundedly rational behavior (Kleinberg et al., 2022; Hébert and Zhong, 2022; McLaughlin
and Spiess, 2022).

This paper addresses the question of whether and how a choice architect can learn to pro-
vide a boundedly rational decision-maker with the information that most effectively induces
desirable behavioral outcomes, by tailoring it to their revealed preferences and cognitive
constraints. We achieve a solution by using machine learning based on a model of stochas-
tic choice under cognitive costs. By combining the advantages of recommender systems
with careful revealed preference, our principled approach to algorithmic choice architecture

1The notion that information overload is detrimental to decision-making is often attributed to manage-
ment scholars (e.g. Jacoby et al., 1974; Jacoby, 1984), but the concept itself goes back much further (Blair,
2011).
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promises to be more effective and less paternalistic, in allowing to explicitly maximize con-
sumer welfare.

We introduce the concept of cognitive information filters, which we define as a method
selecting a subset of information to be shown to a decision-maker to affect their choice
behavior by changing their cognitive load. Specifically, we consider a setting in which a
consumer (henceforth receiver) repeatedly makes multi-attribute choices. Confronted with
information about a potentially large number of attributes (features) of a large number of
options, the receiver is free to choose what information to attend to (at a cost) and what
information to disregard. Observing only the receiver’s choices, a choice architect (henceforth
sender) can affect the receiver’s choice behavior by determining which choice options and
information on which attributes are accessible (in principle) to them, either to nudge them
(with the goal of increasing their welfare) or persuade them. The sender’s incentives may or
may not be aligned with the receiver’s.

The paper’s contributions include a model of the receiver and a model of the sender, both
of which are novel. To model the receiver, we introduce a model of multi-attribute search
and choice under information costs. Our model builds on the rational-inattention literature
(Sims, 2003; Maćkowiak et al., 2023), to which we contribute a multi-attribute choice model
with an analytical solution. We do so by generalizing the result of Bucher and Caplin (2021)
to identify conditions under which the (undistorted) multinomial logit choice probabilities
of Matejka and McKay (2015) do not only satisfy their necessary conditions, but also the
sufficient conditions of Caplin et al. (2019). The resulting discrete-choice model describes
a consumer optimally acquiring costly information before making a multi-attribute choice,
and promises to be a powerful alternative to models of costly sequential search in empirical
(multi-attribute) settings in which the latter are intractable or empirically less relevant (cf.
Honka and Chintagunta, 2017).

Our model allows for only a subset of information to be accessible, and makes a number of
novel predictions regarding consumer demand and welfare under different information sets.
In an example with quality and price as the only attributes, we show how the price elasticity
of demand depends on the presence of information on quality: our model predicts demand is
more elastic to the price in presence of information on quality than in its absence. This effect
operates through an information channel based on the observation that positively correlated
quality and price are informational complements: the consumer has a higher incentive to
attend to the price in the presence of information on quality than in its absence.

The sender’s problem is to choose an information filter determining which options
and attributes are available to the receiver. The sender does not, however, know the re-
ceiver’s type, which consists of their preferences and information costs. Instead, the sender
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infers the receiver’s type in repeated interactions from observing their choices, using revealed
preference. The sender thus solves a dynamic, model-based (inverse) reinforcement-learning
problem, which we formulate as a partially observable Markov decision process (POMDP).
POMDPs have originated in robotics (Kaelbling et al., 1998) and model sequential decisions
under uncertainty in which latent states (in our case, the receiver’s type) are inferred from
noisy observations (in our case, the receiver’s choices).

To solve the sender’s information design problem, we rely on a model-based, online re-
inforcement learning and planning algorithm: Partially Observable Monte Carlo Planning
(Silver and Veness, 2010) relies on Monte Carlo Tree Search (MCTS) to estimate continua-
tion values, and on particle filters to update beliefs.2 This algorithm makes an approximate
solution feasible even if the state space is large. Using model-based reinforcement learning
based on our structural receiver model has several important advantages: First, it is more
robust to changes (i.e., less susceptible to the Lucas (1976) critique) than model-free re-
inforcement learning, and more explainable. Second, it is more data efficient because the
exploration is more directed. And third, it allows inferring and optimizing for otherwise
unobservable consumer welfare.

In simulations, we demonstrate the receiver indeed attains higher welfare under the fil-
tered information than under the full-information benchmark.

These results illustrate our approach to algorithmic choice architecture promises to have
several advantages over traditional nudging (Thaler and Sunstein, 2008). First, the approach
is more principled in explicitly formulating the problem and constraints it is intended to
address. Second, it is less paternalistic in that it infers consumer preferences rather than
assuming them. Third, it is more personalized and can thus meet the needs of heterogeneous
populations. These advantages also promise recommender systems that are better aligned
with the preferences of boundedly rational users. Our findings have implications beyond
economics and marketing, for example for alignment research in artificial intelligence.

The paper proceeds as follows: after discussing the related literature, section 2 introduces
the model. Section 3 builds economic intuition by discussing a simple example in which the
receiver type is observable. Section 4 provides the solution to the rational inattention model
of multi-attribute choice characterizing the receiver’s behavior. Section 5 formulates the
sender problem, and demonstrates how to solve it using reinforcement learning algorithms.
Section 6 concludes. Appendix A summarizes the notation; all proofs are given in Appendix
B.

2MCTS is also a crucial component of DeepMind’s AlphaGo (Silver et al., 2017) and MuZero (Schrittwieser
et al., 2020) algorithms.
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Related Literature

This paper contributes to several strands of literature. First and foremost, our paper is a
contribution to the emerging literature in cognitive economics, which seeks to understand
the cognitive foundations of choice behavior (e.g. Woodford, 2020; Enke and Graeber, 2021;
Frydman and Jin, 2022; Glimcher, 2022; Caplin, 2023). It also relates to models of costly
sequential search in economics (Stigler, 1961; Weitzman, 1979; Santos et al., 2012) and
marketing (Honka et al., 2019; Compiani et al., 2021; Ursu et al., 2023), as well as the
literature on choice overload (Iyengar and Lepper, 2000; Scheibehenne et al., 2010; Chernev
et al., 2015; Dean et al., 2022). Specifically, our paper focuses on information costs in
multi-attribute choice, and thus complements recent accounts of multi-attribute choice with
sequential information acquisition in economics (Sanjurjo, 2017) and psychology (Busemeyer
et al., 2019; Callaway et al., 2022; Yang and Krajbich, 2023). Our choice to abstract from the
dynamics of information acquisition is motivated by recent equivalence results expressing the
choices resulting from a dynamic choice process in static terms (Choi et al., 2018; Hébert and
Woodford, 2021). Our multi-attribute choice model is in the realm of multivariate rational
inattention (Dewan, 2020; Miao et al., 2022), to which it contributes a simple analytical
solution imposing only a weak exchangeability condition on prior beliefs.

Second, our sender solves an information design problem reminiscent of Bayesian persua-
sion (Kamenica and Gentzkow, 2011; Kamenica, 2019; Bergemann and Morris, 2019) with
a rationally inattentive receiver (Bloedel and Segal, 2021). The main difference to Bloedel
and Segal (2021) is that our sender does not know the receiver’s preferences. Because our
focus is on practical applications, we restrict the sender to disclosing truthful information to
a strategically naïve receiver, instead of assuming that the sender has commitment power.
Our paper also relates to a literature on algorithmic Bayesian persuasion (Dughmi and Xu,
2019) in economics and computation.

Third, our paper also contributes to the literature on website morphing (Hauser et al.,
2009a,b, 2014), which models the multi-armed bandit problem of a website designer serv-
ing consumers information that matches their “cognitive type”. In contrast to existing ap-
proaches, we explicitly model the receiver’s cognitive constraints. The resulting POMDP is
more general than the multi-armed bandits and hidden Markov models (Liberali and Fere-
catu, 2022) of the website morphing literature. In the absence of a Gittins index solution,
we solve the problem using modern reinforcement learning algorithms. Our paper thus also
contributes to the recent use of reinforcement learning methods in marketing (Liu, 2023).
In contrast to existing work (Liu, 2022), we use model-based reinforcement learning, whose
reliance on the receiver model has the advantage of being more data-efficient, while also
allowing us to explicitly optimize for consumer welfare.
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2 Model

A sender (Alice) observes, in each period t ∈ {0, . . . ,∞}, the choice of a receiver (Bob) from
a grand set A of m actions, which are characterized by a set F of n attributes. The attribute
values for all actions are encoded in an m × n matrix Xt ∈ X whose rows correspond to
actions and columns to attributes, and which is drawn, independently across periods, from
a common prior

Xt
iid∼ µ ∈ ∆(X ).

The only assumption we impose on µ is that it is row-exchangeable.

Definition 1. µ ∈ ∆(X ) is row-exchangeable if, for any m×m permutation matrix Pm,

µ(PmX) = µ(X) ∀X ∈ X . (1)

This assumption allows for arbitrary statistical dependency across attributes, and for
values to be correlated across actions as long as they are exchangeable.3 For example, it
could be the case that exactly one action has a given attribute, as long as each action is
equally likely to be that one.

Alice’s Choice In each period, Alice determines which actions and attributes are available
to Bob by choosing an information filter consisting of an ordered action selection matrix
At ∈ A ⊆ Rk×m and an ordered feature selection matrix Ft ∈ F ⊆ Rl×n (with 1 ≤ k ≤ m

and 1 ≤ l ≤ n chosen by Alice). Both matrices must have entries in {0, 1} with exactly one
positive entry per row and at most one per column; with the interpretation that columns
correspond to actions or attributes, respectively, and the rows determine which subset of –
and order in which – these are presented.

Bob’s Choice Bob is myopic and strategically naïve with respect to Alice, and only has
access to the filtered state

Yt := AtXtF
T
t ∈ Y .

Bob’s problem is to choose an option from choice set A(A) := {a ∈ A :
∑

i Aia > 0}, and
his utility function is given by uθ : A × Rk×n → R where θ = (w, κ) ∈ Θ is Bob’s type,
which consists of a preference parameter w along with a marginal cost parameter κ to be
used below. The only assumption we impose on Bob’s utility function is that it is invariant
under permutation, defined as follows.

3The assumption is satisfied, for instance, by any row-column-exchangeable (RCE; Aldous et al., 2006,
p. 123) random matrix X; column-exchangeability however is not necessary.
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Definition 2. The utility function uθ(a,AX) is invariant under permutation if, for any
A and any k × k permutation matrix Pϱ

k with associated permutation ϱ : A(A) → A(A)

satisfying eϱ(a) = Pϱ
kea for all a ∈ A(A), it is the case that

uθ(ϱ(a),P
ϱ
kAX) = uθ(a,AX) ∀a ∈ A(A), X ∈ X . (2)

Bob’s Information Bob observes his type θ and Alice’s choice of At and Ft, but not the
state Xt. Before making a choice, he can reduce the uncertainty in his prior belief µ by
acquiring a costly signal about the filtered state Yt. Bob is restricted to signals and hence
actions that are independent of Xt conditionally on Yt. Given θ, At, Ft, and µ, Bob chooses
a state-dependent distribution over actions

Pt(·|Yt; θ,At,Ft, µ) ∈ ∆(A(At))

which is equivalent to choosing a costly signal and making a choice contingent on its re-
alization (e.g. Matejka and McKay, 2015, Corollary 1) and hence standard in the rational
inattention literature.4 The choice of Pt comes at a cost

Kθ(P ;A,F, µ) = κIP (a; vec(AXFT ))

that is linear in the Shannon mutual information IP (a; vec(Y)) under P between a and the
vectorized filtered state vec(Y). The problem of a receiver of type θ is thus, given At, Ft,
and µ, to choose

P ∗
t = argmax

Pt

∫
X

∑
a∈A(A)

Pt(a|AtXtF
T
t ; θ,At,Ft, µ)uθ(a,Xt)dµ(Xt)−Kθ(Pt;At,Ft, µ) (3)

Alice’s Information and Preferences Alice observes the state Xt before choosing At

and Ft, but not Bob’s type θ. Instead, she only knows that the static type is distributed
according to τ ∈ ∆(Θ). Alice’s utility function v(a,AX, θ) may nonetheless depend on Bob’s
type. Alice discounts Bob’s information costs with a discount factor α ∈ [0, 1], so that her
per-period utility is given by

Rv
α(a,X, θ,A,F;µ) = v(a,AX, θ)− (1− α)Kθ(P

∗;A,F, µ). (4)

It will also be convenient to define the expected utility, conditional on X and θ, of Bob’s
stochastic choice function P ∗ under utility v and with discount factor α ∈ [0, 1] on Bob’s

4Note in particular that Bob conditions his actions on Yt without (fully) observing it.
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Figure 1: Illustration of the timeline within a period: The joint state st := (Xt, θ) is realized
at the beginning of the period. The Sender (Alice) observes Xt but not θ, on which she
maintains a prior belief bt ∈ ∆(Θ). Given Xt and bt, Alice chooses an information filter
(At,Ft). Bob observes (At,Ft) as well as θ, but not Xt, on which he maintains a prior belief
µ ∈ ∆(X ). Bob’s action at is realized from the distribution P ∗

t he chooses given θ,At,Ft,
and µ. Upon observing at, Alice forms posterior belief bt+1; Bob’s prior belief µ is stationary.

information costs,

U v
α(X, θ,A,F;µ) :=

∑
a∈A

P ∗(a|AXFT ; θ,A,F, µ)Rv
α(a,X, θ,A,F;µ). (5)

Timing The timing in each period t ∈ {0, . . . ,∞} is as follows:

1. Alice observes the realization of Xt ∼ µ, but not θ (instead maintaining a prior belief
bt ∈ ∆(Θ), with b0 = τ).

2. Given Xt and bt, Alice chooses At and Ft.

3. Bob observes θ, At, and Ft, but not Xt (instead maintaining a prior belief µ ∈ ∆(X )).

4. Bob chooses P ∗
t (·|Yt; θ,At,Ft, µ).

5. at ∼ P ∗
t (·|Yt; θ,At,Ft, µ) is realized.

Bob receives utility Ru
0(at,Xt, θ,At,Ft;µ) = uθ(at,AXt)−Kθ(P

∗;At,Ft, µ).
Alice observes at, forms posterior belief bt+1(θ|a0, . . . , at), and receives utility∫

Θ

bt+1(θ|a0, . . . , at)Rv
α(at,Xt, θ,At,Ft;µ)dθ.
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3 Example

This section illustrates the model’s solution for the special case of two actions (ã and b̃) and
two attributes (1 and 2). To build intuition we further assume (1) a single time period, (2)
aligned utilities (v = u), (3) that θ is known to Alice (i.e., τ is degenerate), and (4) that
A = I2 is the identity matrix so that both actions are available to Bob, whose utility is
given by uθ(a,X) = w1xã1 + w2xã2. In this section, we assume that the prior µ is a matrix
Gaussian distribution

X ∼ MN 2×2

(
M =

[
0 0

0 0

]
,U =

[
ν c

c ν

]
,V =

[
1 ρ

ρ 1

])
.

where M is the mean, U the action-covariance matrix, and V the attribute-covariance ma-
trix, with ν the variance of both actions, c the covariance across actions, and ρ the covariance
across attributes. Most results in this section should extend, for the case of two actions, to
more general priors, but the matrix Gaussian distribution’s parametrization will facilitate
interpretation. Alice chooses among the following three information designs

F1 =
[
1 0

]
F2 =

[
0 1

]
F12 =

[
1 0

0 1

]

which correspond to revealing the first attribute only, the second attribute only, and revealing
both attributes, respectively. In order to study Alice’s problem, we first have to understand
Bob’s solution.

Bob’s Choice Behavior Bob’s optimal conditional choice probabilities, as we will show
in section 4, can be obtained as

P ∗ (ã ∣∣Y; θ,F1, µ
)

=

[
1 + exp

(
−w1 + ρw2

κ
(Yã1 − Yb̃1)

)]−1

P ∗ (ã ∣∣Y; θ,F2, µ
)

=

[
1 + exp

(
−ρw1 + w2

κ
(Yã2 − Yb̃2)

)]−1

P ∗ (ã ∣∣Y; θ,F12, µ
)

=
[
1 + exp

(
−w1

κ
(Yã1 − Yb̃1)−

w2

κ
(Yã2 − Yb̃2)

)]−1

.

This solution parsimoniously captures a number of intuitive characteristics. First, Bob’s
probability of choosing action ã depends on how it differs from action b̃ in terms of the
attributes that are accessible to him, weighted by his preference weights. Second, Bob
makes an inference based on the observable attribute about any potentially unobservable
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ones, relying on the attribute covariance ρ. Third, the accuracy of his choices depends on
the ratio between the utility difference across actions and the information costs κ.

Bob’s log-odds of choosing ã are a function of dX =

[
dX1

dX2

]
=

[
Xã1 −Xb̃1

Xã2 −Xb̃2

]
, given by

∆F(dX; θ, µ) ≡ ln
P ∗ (ã ∣∣XFT ; θ,F, µ

)
P ∗
(
b̃
∣∣XFT ; θ,F, µ

) =


w1+ρw2

κ
dX1 if F = F1

ρw1+w2

κ
dX2 if F = F2

w1

κ
dX1 +

w2

κ
dX2 if F = F12

Welfare-Maximizing Information Policy These log-odds are also a sufficient statistic
for maximizing Bob’s gross welfare

Uu
1 (X, θ,F;µ) =

w1(Xã1 −Xb̃1) + w2(Xã2 −Xb̃2)

1 + exp (−∆F(dX))
+ w1Xb̃1 + w2Xb̃2,

which is increasing in ∆F(dX) if and only if wTdX ≥ 0, so that

Uu
1

(
X, θ,F1;µ

)
≥ Uu

1

(
X, θ,F12;µ

)
⇔ sgn(wTdX)

[
ρ

−1

]T
dX ≥ 0

Uu
1

(
X, θ,F2;µ

)
≥ Uu

1

(
X, θ,F12;µ

)
⇔ sgn(wTdX)

[
−1

ρ

]T
dX ≥ 0

Uu
1

(
X, θ,F1;µ

)
≥ Uu

1

(
X, θ,F2;µ

)
⇔ sgn(wTdX)

[
w1 + ρw2

−(ρw1 + w2)

]T
dX ≥ 0

The gross-welfare-maximizing information policy F is thus determined by three hyperplanes
that partition the space of possible dX, in a manner that depends on Bob’s preference
weights w and the attribute covariance ρ under his prior belief. Figure 2 shows the gross
welfare under the three information policies as a function of the state, for a number of
different parameters. The last column illustrates how the hyperplanes determine the optimal
policy as a function of the underlying parameters. Figure 7 in the appendix shows the same
information as a function of preference weights w, for a number of different state realizations.
Note that the gross-welfare-maximizing information policy is independent of the scale of
preference weights; only their sign and ratio matters. This also means that the level of
information costs κ > 0 is irrelevant for the gross-welfare-maximizing policy.

Interpreting the Welfare-Maximizing Information Policy One feature of the gross-
welfare-maximizing information policy is particularly salient: The set of states for which
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Figure 2: The plots in the first three columns show the gross welfare Uu
1 (X, θ,F;µ) for the

three different information policies F, as a function of Xã1 − Xb̃1 and Xã2 − Xb̃2. The last
column shows which of the information policies maximize gross welfare for any given X, with
the color bar associating colors with the three information policies. Each row corresponds
to a set of parameters including Bob’s preference type and the attribute correlation ρ under
his prior belief (ν = 1 and c = 0 in all rows).
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Choice Attribute 1 Attribute 2 w1 w2 ρ
coffee shops taste friendliness 1 1 0

hotels rating beach proximity 1 1 0.5
flights duration price −1 −1 −0.5
wines quality price 1 −1 0.75

Table 1: Summary of the examples described in the text, as illustrated in Figure 2.

occluding information is optimal is determined by the attribute covariance ρ. In order to
better understand the optimal policy, we will illustrate each row of Figure 2 with a brief
example.

Uncorrelated, Positive Attributes First, consider a customer Bob choosing between
two coffee shops whose coffee’s taste (w1 = 1) and barista’s friendliness (w2 = 1), which for
the sake of this example are uncorrelated, he values equally. This is the case covered by
the top row of Figure 2. If both attributes are better at one coffee shop, then the welfare-
maximizing information policy gives Bob access to both attributes. If the attributes are
conflicting, however, then the optimal information policy only gives Bob access to the more
“decisive” attribute for which the difference across coffee shops is larger. The intuition is
that Bob attends and is responsive to all available attributes, which improves his decision
when both attributes align, but harms it when they are in conflict.

Positively Correlated, Positive Attributes The second row can be interpreted as
modelling the choice between two hotels by a consumer who values both their rating (w1 = 1)
and their proximity to the beach (w2 = 1), which happen to be positively correlated. Here,
Alice should only make the more decisive attribute accessible, unless both attributes favor
one hotel by a similar margin. In a scenario in which one hotel has a somewhat larger
rating than the other but is also significantly closer to the beach, occluding the hotel ratings
increases the hotel guest’s welfare (in contrast to the coffee consumer). The reason is that
the hotel guest will attend more to beach proximity in absence of a hotel rating than in its
presence, because the correlation allows them to substitute acquiring information on beach
proximity for information on hotel ratings. In states in which beach proximity differs by a
sufficiently larger margin, this will increase their overall welfare.

Negatively Correlated, Negative Attributes Next, consider an airline customer
choosing between two flights who incurs disutility from their duration (w1 = −1) as well as
their price (w2 = −1), which are negatively correlated. Here, the Receiver’s utility is greatest
when both attributes are accessible, unless the attributes favour different flights but by a
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similar margin. In a scenario in which one flight is somewhat shorter but significantly pricier,
occluding the duration would harm the airline customer (in contrast to the coffee consumer
and hotel guest). The reason is that the absence of duration information decreases the
benefit of attending to the price – even though they are correlated – because the difference
in expected utility across flights is small conditional on the price (while the difference in
expected utility across hotels is large conditional on beach proximity).

Positively Correlated, Opposite Attributes A similar intuition holds in the sce-
nario of Alice selling wine to Bob whose utility is increasing in quality (w1 = 1) but decreasing
in price (w2 = −1), which are positively correlated. A (benevolent) Alice should make the
wine quality accessible to Bob by way of a tasting, unless the difference in the wines’ quality
is very close to their price difference. Again, occluding wine quality will harm Bob even if a
wine of moderately higher quality is also much more expensive, for example.

Elasticity of Demand with Respect to Attribute Values This intuition is also re-
flected in the elasticity of the probability of choosing option a with respect to the value of
its attribute f , which is given by

∂P ∗(a|XFT ; θ,F, µ)

∂Xaf

Xaf

P ∗(a|XFT ; θ,F, µ)
=

exp(−∆F(dX))

1 + exp(−∆F(dX))

∂∆F(dX)

∂Xaf

Xaf .

Bob’s price-elasticity of demand at dX1 = dX2 = 0 in the presence of information on quality
(w2

2κ
Xã2) is more negative (larger in magnitude) than in its absence (ρw1+w2

2κ
Xã2) if and only

if ρw1 > 0, as is indeed the case in the wine example. The hotel guest’s demand elasticity
with respect to beach proximity is less positive (smaller in magnitude) in the presence of a
hotel rating than in its absence.

The difference between these scenarios is a feature inherent to endogenous information
acquisition that would not arise under exogenous signals. The wine consumer’s utility dif-
ference across wines, w1dX1 +w2dX2, is more likely to be small than the hotel guest’s. This
implies that the wine (and airline!) customers have an overall lower incentive to acquire
information than the hotel guest, even when the absolute correlation is the same. This
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becomes apparent from the distribution of ∆F(dX) induced by the prior µ(X),

∆F1(dX) ∼ N

(
0, 2(ν − c)

(
w1 + ρw2

κ

)2
)

∆F2(dX) ∼ N

(
0, 2(ν − c)

(
ρw1 + w2

κ

)2
)

∆F12(dX) ∼ N
(
0, 2(ν − c)

w2
1 + 2ρw1w2 + w2

2

κ2

)
The distribution of ∆F turns out to be a sufficient statistic for the amount of information
Bob acquires. In the wine example, the variance of ∆F2 captures Bob’s incentive to learn
about the price attribute in absence of information on quality. The incentive to learn about
the price in the presence of information on quality is reflected correspondingly in the variance
of the distribution of ∆F12 conditional on dX1,

∆F12(dX)| dX1 ∼ N
((w1

κ
+ ρ

w2

κ

)
dX1, 2(ν − c)(1− ρ2)

(w2

κ

)2)
.

The incentive to attend to the price is thus larger in presence of quality information than in
its absence whenever

2ρw1w2 < −ρ2(w2
1 + w2

2)

which is indeed the case in the wine example, but not in the hotel example. This explains the
difference in interaction: Conditioning on hotel ratings would decrease the dispersion in ∆

and thus lower his learning incentive, so that acquiring information on ratings is a substitute
for acquiring information on beach proximity. Conditioning on wine quality, on the other
hand, increases the dispersion in ∆ and hence raises learning incentives, so that acquiring
information on wine quality is a complement for acquiring information on the price.

Information Costs and Net Welfare The distribution of ∆F is thus also a sufficient
statistic for the information costs of the optimal strategy, which are given by

Kθ (P
∗;F, µ) = κE∆F

[
∆F exp(∆F)

1 + exp(∆F)
+ ln

(
2

1 + exp(∆F)

)]
.

The term in the expectation is the Kullback-Leibler divergence from a Bernoulli random
variable with log-odds 0 to a Bernoulli random variable with log-odds ∆F, which is symmetric
around 0 and strictly increasing in |∆F|. Given the centered Gaussian distribution of ∆F,
the information costs are thus increasing in (and pinned down by) the variance Var(∆F).
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Figure 3: The plots in the first three columns show the net welfare Uu
0 (θ,X,F;µ) for the

three different information policies F, as a function of Xã1 − Xb̃1 and Xã2 − Xb̃2. The last
column shows which of the information policies maximize gross welfare for any given X, with
the color bar associating colors with information policies. Each row corresponds to a set of
parameters.
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The resulting expected utility for a Sender internalizing a fraction (1−α) of information
costs is given by

Uu
α (X, θ,F;µ) =

∆F(dX)

1 + exp (−∆F(dX))
− (1− α)κE∆F

[
∆F

1 + exp(−∆F)
+ ln

(
2

1 + exp(∆F)

)]
+ w1Xb̃1 + w2Xb̃2.

Figure 3 illustrates the net utility (α = 0) along with the net-welfare-maximizing information
policy: Alice should only give Bob access to the one attribute that is more decisive, unless
information costs are sufficiently low (high |w|/κ) that having access to both attributes is
better. The net-welfare-maximizing information policy thus does depend on the level of
w/κ, in contrast to the gross-welfare-maximizing policy.

4 Receiver Problem

This section discusses the solution to Bob’s (static) problem

U
u

0(θ,A,F;µ) = max
P

EX∼µ

 ∑
a∈A(A)

P (a|AXFT ; θ,A,F, µ)Ru
0(a,X, θ,A,F;µ)


We will first consider how Bob updates his prior belief when observing the realization of a
signal on part of the state. We will then provide a solution to Bob’s problem in the general
case. Next, we will provide some intuition by discussing the solution in the special case of a
Gaussian prior belief. Lastly, we will provide a formula for the welfare resulting under Bob’s
optimal strategy.

4.1 Conditional Beliefs

As outlined in section 2, Bob can acquire costly information on the filtered state Y only.
The set of states consistent with a given filtered state Y is defined as

χ(Y;A,F) ≡
{
X ∈ X : AXFT = Y

}
.

A filter (A,F) is thus a deterministic signal structure pooling states, i.e. partitioning X into
{χ(Y;A,F)}Y. The sets of pooled states are characterized by the following fact from linear
algebra.
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Lemma 1. Let H = A⊗ F and H+ = HT (HHT )−1 its (right) pseudo-inverse. Then

X ∈ χ(Y;A,F) ⇔ vec(XT ) ∈
{
H+vec(YT ) + (Im·n −H+H)z : z ∈ Rm·n} .

Conditional on a filtered state Y, Bob’s conditional belief over the set of states X will
then be given by

µX|Y(X|Y,A,F) =


µ(X)

µY(Y|A,F)
if X ∈ χ(Y;A,F)

0 otherwise
(6)

where
µY(Y|A,F) ≡

∫
χ(Y;A,F)

dµ(X). (7)

In deciding what information to acquire, Bob will consider this conditional updating in
evaluating the benefit of acquiring information. In solving Bob’s problem, it will be helpful
that the prior’s row-exchangeability is preserved under any permissible information filter, as
is established by the following Lemma.

Lemma 2. Given any k×k permutation matrix Pk, let PPk
m := A+PkA+ Im−A+A where

A+ := AT (AAT )−1. If µ(X) is row-exchangeable, then for any k × k permutation matrix
Pk and any (A,F), it is the case that

µY(PkY|A,F) = µY(Y|A,F) ∀Y ∈ Y (8)

and
µX|Y(P

Pk
m X|PkY,A,F) = µX|Y(X|Y,A,F) ∀Y ∈ Y ,X ∈ χ(Y;A,F). (9)

4.2 Optimal Stochastic Choice Strategy

With these results in place, we can now state the solution to Bob’s problem.

Theorem 1. Given a row-exchangeable prior µ, the receiver problem (eq. 3) has a solution

P ∗(a|Y; θ,A,F, µ) =
zθ(a,Y;A,F, µ)∑

c∈A(A) zθ(c,Y;A,F, µ)
∀a ∈ A(A) (10)

and P ∗(a|Y; θ,A,F, µ) = 0 for all a /∈ A(A), where

zθ(a,Y;A,F, µ) = exp

(
1

κ

∫
X
uθ(a,AX)dµX|Y(X|Y,A,F)

)
.
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This theorem states that Bob’s problem with the row-exchangeable prior of Definition 1 is
solved by conditional choice probabilities of the (unbiased) multinomial logit form. According
to this solution, the probability of choosing an action is proportional to its expected utility
relative to the marginal cost of information κ.

This result provides an analytical solution to a rational inattention problem that is non-
standard in that it features a partially observable matrix state. It generalizes the result of
Bucher and Caplin (2021) to identify a condition on the prior belief (which here is a matrix
distribution) under which conditional choice probabilities of the unbiased multinomial logit
form are not just necessary (Matejka and McKay, 2015), but also satisfy the sufficient con-
ditions for a solution (Caplin et al., 2019). For general prior beliefs, the unconditional choice
probabilities in the solution of Matejka and McKay (2015) have to be pinned down numeri-
cally using the Blahut-Arimoto algorithm, and corner solutions may give rise to endogenous
consideration sets (Caplin et al., 2019). The row-exchangeable prior beliefs of Definition 1
guarantee that uniform unconditional choice probabilities are optimal.

The fact that Bob can acquire information only on a subset of the state has implications
for his information acquisition, because his incentive to acquire information depends on the
conditional distribution µX|Y. The example of section 3 has demonstrated, for instance,
that correlated attributes may increase the incentive to acquire information on observable
attributes in order to infer something about hidden ones.

4.3 Special Case: Matrix Gaussian Prior and Linear Preferences

This subsection discusses a special case to build better intuition for the solution of Theorem
1: We assume that Bob’s utility is linear in attributes, with preference weights w ∈ Rn,

uθ(a,AX) = eT
aAXw ∀a ∈ A(A), (11)

where ea is the k-dimensional standard basis vector representing the chosen action a ∈ A(A).

Lemma 3. The linear utility function uθ(a,AX) = eT
aAXw is invariant under permutation.

We further assume that Bob’s prior belief µ about X is a matrix Gaussian distribution

X ∼ MNm×n(M,U,V) (12)

with a mean M = 1m ⊗ mT ∈ Rm×n consisting of identical rows m ∈ Rn, a so-called
“completely symmetric” action covariance matrix U = c1m1

T
m + (ν − c)Im ∈ Rm×m, and an

arbitrary attribute covariance matrix V ∈ Rn×n. These assumptions are sufficient for the
matrix Gaussian distribution to be row-exchangeable.
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Lemma 4. The matrix Gaussian distribution of equation 12 is row-exchangeable (Def. 1) if
M = 1m ⊗mT and U = c1m1

T
m + (ν − c)Im.

Given the matrix Gaussian prior, the (marginal) distribution µY(Y|A,F) of the filtered
state is given by

Y ≡ AXFT ∼ MN k×l(AMFT ,AUAT ,FVFT ).

With linear preferences, only the mean of the conditional distribution µX|Y will appear
in the solution to be stated in the Corollary below. To state the conditional mean, it will
be helpful to define the matrix F as the “complement” of F, in the sense that it consists of
the non-zero rows of matrix In − diag(1T

nF) (if any; otherwise F = 0) and hence collects all
attributes that are not accessible under F.

Corollary 1. Given the matrix Gaussian prior of equation 12, the receiver problem (eq. 3)
has a solution

P (a|Y; θ,A,F, µ) =
exp

(
1
κ
eT
aAEµX|Y [X|Y,A,F]w

)
∑

c∈A(A) exp
(

1
κ
eT
c AEµX|Y [X|Y,A,F]w

) ∀a ∈ A(A)

where

EµX|Y [AX|Y,A,F] = YF+
(
AMF

T
+ (Y −AMFT )(FVFT )−1FVF

T
)
F.

Note that with linear preferences, the probability of choosing an action notably de-
pends on the conditional mean of its attribute values under the prior belief, weighted by
the preference weights w. The mean conditions on the observable part Y of the state X,
as determined by the filter (A,F). To interpret the conditional expectation, note that the
left term YF ∈ Rk×n simply projects the observable state Y back into the original attribute
space. The hidden attributes will be missing, but can be imputed by the term in paren-
theses as follows: Their unconditional expectation is given by the first summand AMF

T .
The second summand in parentheses captures what the observable attributes imply about
the unobservable ones: The deviation of Y from its expectation AMFT allows an inference
about how the unobservable attributes deviate from their expectation AMF

T , to an extent
that depends on the “ratio” of the covariances of unobservable and observable attributes.
Both summands are then projected back to the original attribute space by right-multiplying
with F before adding them to the observable attributes YF.

Note in particular that the inference and hence solution depend on the attribute co-
variance V, but not on the action covariance U. This implies that Bob’s belief about the
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correlation among the exchangeable choice options is irrelevant to Alice. The solution’s
dependence on the filter (A,F) makes explicit how Alice is able to affect Bob’s choices.

4.4 Welfare

Based on Bob’s optimal stochastic choice strategy as given by Theorem 1, we can obtain its
resulting expected welfare.

Proposition 1. The expected welfare, as defined in equation 5, of Bob’s optimal stochastic
choice strategy P ∗, evaluated under a utility function v, is given by

U v
α(X, θ,A,F;µ) =∑

a∈A(A)

[
zθ(a,AXFT )v(a,AX, θ)∑

c∈A(A) zθ(c,AXFT )
− (1− α)

∫
Y∈Y

zθ(a,Y)EµX|Y [uθ(a,AX)|Y]∑
c∈A(A) zθ(c,Y)

dµY(Y|A,F)

]
(13)

+ (1− α)κ

∫
Y∈Y

ln

(∑
c∈A(A) zθ(c,Y)

|A(A)|

)
dµY(Y|A,F) (14)

where
EµX|Y [uθ(a,AX)|Y,A,F] =

∫
X∈X

uθ(a,AX)dµX|Y(X|Y,A,F)

and
zθ(a,Y;A,F, µ) = exp

(
1

κ
EµX|Y [uθ(a,AX)|Y,A,F]

)
.

This result explicitly states the welfare resulting from Bob’s solution to his rational
inattention problem. Setting α = 1 yields the gross welfare

U v
1 (X, θ,A,F;µ) =

∑
a∈A(A)

zθ(a,AXFT )v(a,AX, θ)∑
c∈A(A) zθ(c,AXFT )

,

which takes a particularly elementary form, considering the intricacies of Bob’s problem. On
the other end of the spectrum, Bob’s net welfare (α = 0) – for the case in which rank(A) = m

and rank(F) = n so that µX|Y is degenerate – reduces to

Uu
0 (X, θ,A,F;µ) = κ ln

(∑
c∈A(A) zθ(c,AXFT )

|A(A)|

)
.
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5 Sender Problem

In the example of section 3, Alice was assumed to observe Bob’s type before choosing an
information filter (A,F). In this section, we now turn to solving Alice’s general problem, as
specified in section 2, where this is not the case. Alice’s problem is dynamic, with a temporal
discount factor γ. Recall that at the beginning of each period t, Alice observes Xt but not
θt. Upon choosing a filter (At,Ft), Alice observes Bob’s choice at ∼ P ∗(·|AXFT ; θ,A,F, µ).

5.1 Partially Observable Markov Decision Process

Alice’s problem can be formulated as a partially observable Markov decision process (POMDP;
Kaelbling et al., 1998) defined as the tuple ⟨S,H, T , Rv

α,A, O, γ⟩ consisting of the (latent)
state space S = X ×Θ, Alice’s set of filter choices H = A×F , the state transition kernel

T (X′, θ′|X, θ,A,F) = µ(X′)τ(θ′|θ),

where τ(θ′|θ) = 1{θ}(θ
′), Alice’s reward Rv

α(a,X, θ,A,F;µ), Alice’s set of observations con-
sisting of the set A of Bob’s choices, and their distribution

O(a|X, θ,A,F;µ) = P ∗(a|AXFT ; θ,A,F, µ),

as well as Alice’s discount factor γ.5

Since Alice maintains a belief bt ∈ ∆(Θ), with b0 = τ , this gives rise to the following
belief MDP (Markov decision process). Let Vt(Xt, bt, µt) be the value at the beginning of
period t of the problem of the sender who has observed Xt, holds beliefs bt ∈ ∆(Θ) and
µt ∈ ∆(X ), and who is about to choose an information filter At,Ft. Alice’s problem is thus
to find a policy π(A,F|X, b, µ) that satisfies the Bellman optimality equation

V π∗(X, b, µ) = max
A,F

Eθ∼b

[∑
a∈A

P ∗(a|AXFT ; θ,A,F, µ) (Rv
α(a,X, θ,A,F;µ) + γEX′∼µ[V

π∗(X′, b′(a), µ)])

]
(15)

where the posterior belief b′ is obtained as

b′(θ′|a;X, b,A,F, µ) =

∑
θ∈Θ P ∗(a|AXFT ; θ,A,F, µ)τ(θ′|θ)b(θ)∑

θ∈Θ P ∗(a|AXFT ; θ,A,F, µ)
∑

θ̃∈Θ τ(θ̃|θ)b(θ)
. (16)

Note that this Bayesian belief update is similar in spirit to the sharp revealed preference
5The transition kernel T could in principle be unknown to Alice.
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Figure 4: Cumulative mean regret ϱπt (as defined in equation 17) under Alice’s policy as well
as the full-information policy F = I.

results of Caplin and Martin (2021) and Caplin et al. (2022) characterizing a set of Θ

consistent with observed behavior, which could be interpreted as the support of b′(θ′).

5.2 Numerical Solution

Solving the dynamic program of equation 15 is not possible analytically, so we find an
approximate numerical solution using partially observable Monte Carlo planning (POMCP;
Silver and Veness, 2010), the state-of-the-art algorithm for solving POMDPs. POMCP relies
on Monte-Carlo tree search (MCTS) in combination with a particle filter to perform the belief
update corresponding to equation 16. Our implementation relies on the POMDPs.jl package
(Egorov et al., 2017).

5.3 Simulation Results

The resulting simulations demonstrate that Alice succeeds in learning an information policy
that outperforms the benchmark of a naïve information policy. Here, we present the result
of a simulation experiment making the same assumptions as the example of section 3, except
that there are now T = 250 time periods, and Alice’s initial belief b0 is non-degenerate: We
assume that b0 is uniform over w = (2

3
, 1
3
) and w = (1

3
, 2
3
), while κ = 1 is known by Alice.

We still consider aligned utilities (v = u) with Alice maximizing Bob’s gross welfare (α = 1).
Focusing on Alice’s choice of F, we again assume that A = I2. Figure 4 plots the cumulative
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Figure 5: Evolution of Alice’s belief bt(θ) (top) and filter choices Ft (bottom; moving av-
erage over 25 time periods). The bottom plot also displays the frequency of filter choices
maximizing the instantaneous expected utility (“accuracy”).
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expected regret (cf. Loomes and Sugden, 1982)

ϱπt ({Xτ ,Aτ ,Fτ}tτ=0, θ;µ) =
t∑

τ=0

[
max
A,F

U v
α(Xτ , θ,A,F;µ)− U v

α(Xτ , θ,Aτ ,Fτ ;µ)

]
(17)

as a function of time. It demonstrates how Alice’s policy outperforms the full-information
policy in that its regret is lower. Under Alice’s policy, there is a point at which regret stops
accumulating, indicating that Alice has succeeded in learning the optimal policy. Under the
full-information policy, on the other hand, regret continues to accumulate.

In order to better understand how Alice learns the optimal policy, Figure 5 shows the
corresponding evolution of Alice’s belief bt(θ) and the filter choices Ft. Alice’s initial belief
is uniform over Bob’s two possible types, but evolves as Alice observes Bob’s actions, and
eventually converges to Bob’s true type. Alice’s filter choices, shown in the bottom panel
of Figure 5, respond both to the changing Xt and the evolving belief bt. The fraction of
filter choices maximizing instantaneous expected utility reflects Alice’s evolving belief: As
Alice’s belief tends towards the wrong type temporarily, she starts increasingly revealing both
attributes. As her belief converges to the correct type, the proportion of reward-maximizing
filter choices also converges to 100%. Which of the filters is optimal depends on the state
Xt, of course, so Alice uses all three filters under the optimal policy.

6 Conclusion

In this paper, we have studied the information design problem of a sender who filters the
information accessible to a boundedly rational receiver, in order to nudge or persuade them.
We have introduced a rational inattention model of multi-attribute choice and provided an
analytical solution (Theorem 1) whose conditional choice probabilities parsimoniously reflect
the benefit and cost of acquiring information. We have formulated the dynamic problem of
the sender as a partially observable Markov decision process (POMDP) and solved it numer-
ically using partially observable Monte Carlo planning (POMCP). Simulations demonstrate
that the sender succeeds in learning an information policy that is effective in inducing desir-
able receiver choices.

Our findings have implications beyond economics and marketing, for example for the
design of recommender systems: The sender’s choice of an action selection matrix At can be
viewed as a recommender system determining the subset of available options (and the order
in which they are presented). The feature selection of Ft amounts to information design.

There are numerous avenues for future research. First, it could be insightful to extend
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our model to allow for a strategically sophisticated receiver taking into account the sender’s
motives in choosing an information filter. Second, considering alternative information cost
functions for the receiver would be important in several respects: This could include cost
functions that rationalize heuristic strategies attending to a subset of attributes only, for
example, but also cost functions that are sensitive to the order in which options and attributes
are presented. Lastly, relaxing the assumption of free disposal of information would open
many more possibilities for the sender to help the receiver make better choices.
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A Notation

Notation Description Definition

a receiver action/option a ∈ A
A grand set of receiver actions

A(A) receiver’s choice set A(A) := {a ∈ A :
∑

iAia > 0} ⊆ A
A action selection matrix A ∈ A (non-zero rows of Â)
Â full action selection matrix Â ∈ {0, 1}m×m : 1TmÂ ≤ 1m, Â1m ≤ 1Tm

A set of action selection matrices {A ∈ {0, 1}k×m : 1 ≤ k ≤ m,1TkA ≤ 1m,A1m = 1Tk }
b sender belief b ∈ ∆(Θ)

ea standard basis vector e ∈ {0, 1}k, ea = 1,
∑

i ei = 1

f attribute/feature f ∈ F
F set of attributes/features
F feature selection matrix F ∈ F (non-zero rows of F̂)
F̂ full feature selection matrix F̂ ∈ {0, 1}n×n : 1Tn F̂ ≤ 1n, F̂1n ≤ 1Tn

F set of feature selection matrices {F ∈ {0, 1}l×n : 1 ≤ l ≤ n,1Tl F ≤ 1n,F1n = 1Tl }
(A,F) information filter (A,F) ∈ H
H set of information filters H := A×F
k number of options in slate k = rank(A)

Kθ(P ;A,F, µ) information cost function K : P ×Θ×H×∆(X ) → R̄
l number of attributes shown l = rank(F)

m number of actions m = |A|
n number of attributes/features n = |F|

O(a|X, θ,A,F;µ) sender observations O : X ×Θ×H×∆(X ) → ∆(A(A))

P (a|Y; θ,A,F, µ) receiver choice model P : Y ×Θ×H×∆(X ) → ∆(A)

P(A, µ) receiver strategy set {P : P (a|AXFT ; θ,A,F, µ) = 0 ∀a /∈ A(A)}
Q(X, b,A,F, µ) sender’s state-action value

Rv
α(a,X, θ,A,F;µ) sender’s reward function, eq. 4

S sender’s state space S = X ×Θ

t time period t ∈ {0, . . . ,∞}
T (X′, θ′|X, θ,A,F) state transition function T : X ×Θ×H → ∆(X ×Θ)

uθ(a,Z) receiver utility u : A× ζk×n ×Θ → R
Uv
α(X, θ,A,F;µ) conditional welfare, eq. 5 Uv

α : X ×Θ×H×∆(X ) → R
v(a,Z, θ) sender’s (physical) utility v : A× ζk×n ×Θ → R
V π(X, b, µ) value function of sender problem V π : X ×∆(Θ)×∆(X ) → R

w receiver’s preference weights w ∈ Rn

X state/payoff matrix X ∈ X = ζA×F

xa,f value of attribute f of action a xa,f ∈ ζ

31



x state vector (row-major repres. of X) x = vec(XT ) ∈ ζm·n

Y filtered state matrix Y = AXFT ∈ Y = ζk×l

y row-major repres. of filtered state y = vec(YT ) = (A⊗ F)x ∈ ζk·l

α sender’s discount factor on info. costs α ∈ [0, 1]

β receiver’s effective preference weights β := w/κ

γ sender’s temporal discount factor γ ∈ [0, 1)

ζ set of elementary prizes
θ = (w, κ) receiver type θ ∈ Θ

κ marginal cost per bit of information κ ∈ R+
0

µ(X) receiver’s prior belief µ ∈ ∆(X )

π(A,F|X, b, µ) sender policy π : X ×∆(Θ)×∆(X ) → ∆(H)

τ(θ′|θ) receiver type distribution τ : Θ → ∆(Θ)

B Proofs

B.1 Proof of Lemma 1

Let x ≡ vec(XT ) be the (row-major) vectorization of matrix X.6 It follows from vec(ABC) =

(CT ⊗A)vec(B) that

y := vec(YT ) = vec(FXTAT ) = (A⊗ F)XT =: Hx

where H := A⊗F. Let H+ = HT (HHT )−1 be the (right) Moore-Penrose inverse of (full row-rank)
matrix H. It is a standard result in linear algebra (e.g. James, 1978) that if the linear system of
equations y = Hx has any solutions (which is the case if and only if H+Hy = y), then they are all
given by the set of vectors x

{H+y + (Im·n −H+H)z : z ∈ Rm·n}

spanned by any z ∈ Rm·n. The result follows immediately.

B.2 Pseudoinverse of A

Note that any A ∈ A has full row-rank and is semi-orthogonal (AAT = I) so that

A+ := AT (AAT )−1 = AT

6We adopt the common convention that vec(X) denotes the column-major vectorization, so that vec(XT )
is the row-major vectorization of X.
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is its right (Moore-Penrose) pseudoinverse: AA+ = Ik.

Lemma 5. Given any k× k permutation matrix Pk, let PPk
m := A+PkA+ Im −A+A. Then PPk

m

is a m×m permutation matrix.7 Further, it is the case that

APPk
m = PkA (18)

and thus A(PPk
m X)FT = Pk(AXFT ).

Proof. Note that

APPk
m = AA+PkA+AIm −AA+A = IkPkA+AIm − IkA = PkA.

B.3 Proof of Lemma 2

For any k × k permutation matrix Pk and all Y ∈ Y, it is the case that

µY(PkY|A,F) =

∫
{Z:AZFT=PkY}

dµ(Z)

=

∫
{X:AP

Pk
m XFT=PkY}

dµ(PPk
m X)

=

∫
{X:PkAXFT=PkY}

dµ(PPk
m X)

=

∫
{X:AXFT=Y}

dµ(PPk
m X)

=

∫
{X:AXFT=Y}

dµ(X)

= µY(Y|A,F) (8)

where the first equality follows by the definition of equation 7, the second equality from substituting
Z = PPk

m X, the third equality from equation 18, the fourth equality from Pk being a permutation
matrix and hence invertible, the fifth equality by Definition 1 from the fact that PPk

m is a permutation
matrix, and the last equality again from equation 7.

Moreover, for any k × k permutation matrix Pk, all Y ∈ Y and all X ∈ χ(Y;A,F),

µX|Y(PPk
m X|PkY,A,F) =

µX(PPk
m X)

µY(PkY|A,F)
=

µX(PPk
m X)

µY(Y|A,F)
=

µX(X)

µY(Y|A,F)
= µX|Y(X|Y,A,F)

(9)
where the first equality follows from equation 6, the second equality from equation 8, the third

7A permutation matrix is a square binary matrix with exactly one entry of 1 in each row and each column.
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equality by Definition 1 from the fact that PPk
m is an m × m permutation matrix, and the last

equality again from equation 6.

B.4 Proof of Theorem 1

Suppressing all time subscripts in this proof, the expected utility conditional on Y is given by

ũθ(a,Y;A,F, µ) :=

∫
X
uθ(a,AX)dµX|Y(X|Y,A,F) =

∫
χ(Y;A,F) uθ(a,AX)dµ(X)∫

χ(Y;A,F) dµ(X)
(19)

where the second equality follows from equation 6. The problem of the receiver (eq. 3) is thus
equivalent to

max
P

∫
Y

∑
a∈A(A)

P (a|Y; θ,A,F, µ)ũθ(a,Y;A,F, µ)dµY(Y|A,F)− κIP (a; vec(Y)) (20)

because ∫
Y
P (a|Y; θ,A,F, µ)

∫
X
uθ(a,AX)dµX|Y(X|Y,A,F)dµY(Y|A,F)

=

∫
X
P (a|AXFT ; θ,A,F, µ)uθ(a,AX)dµ(X).

The transformed problem of equation 20 is a standard rational inattention problem in the state Y,
which we can solve by adapting the solution of Bucher and Caplin (2021) to the case of a matrix
state with a row-exchangeable prior distribution.

To do so, fixing A and F, define a partition supp(µY) = ∪i∈IYi with Y,Y′ ∈ Yi for some i if
and only if there exist a permutation ϱ : A(A) → A(A) and associated k × k permutation matrix
Pϱ

k such that (i) Y′ = Pϱ
kY and (ii) Pϱ

k is consistent with ϱ (eϱ(a) = Pϱ
kea).

We prove two auxiliary Lemmas before proceeding to the main proof.

B.4.1 Auxiliary Lemma 6

Lemma 6. Given any A,F, any row-exchangeable µ, and any i ∈ I,∑
c∈A(A)

zθ(c,Y;A,F, µ) =
∑

c∈A(A)

zθ(c,Y
′;A,F, µ) ∀Y,Y′ ∈ Yi.
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Proof. We have, for any Y,Y′ ∈ Yi and any c ∈ A(A), that

ũθ(ϱ(c),Y
′;A,F, µ) =

∫
X
uθ(ϱ(c),AX′)dµX|Y(X′|Y′,A,F)

=

∫
X
uθ(ϱ(c),AX′)dµX|Y(X′|Pϱ

kY,A,F)

=

∫
X
uθ(ϱ(c),AP

Pϱ
k

m X)dµX|Y(P
Pϱ

k
m X|Pϱ

kY,A,F)

=

∫
X
uθ(ϱ(c),P

ϱ
kAX)dµX|Y(P

Pϱ
k

m X|Pϱ
kY,A,F)

=

∫
X
uθ(c,AX)dµX|Y(X|Y,A,F)

= ũθ(c,Y;A,F, µ) (21)

where the first equality holds by equation 19, the second equality follows from the existence of a
Pϱ

k such that Y′ = Pϱ
kY, the third equality from a change of variable (with the range remaining

unchanged because supp(µX|Y) is closed under permutation, by its row-exchangeability (eq. 9)),
the fourth equality follows from equation 18, and the fifth equality from equations 2 and 9. The
result then follows from∑
c∈A(A)

zθ(c,Y;A,F, µ) =
∑

c∈A(A)

exp

(
1

κ
ũθ(c,Y;A,F, µ)

)
=

∑
c∈A(A)

exp

(
1

κ
ũθ(ϱ(c),Y

′;A,F, µ)

)

=
∑

c∈A(A)

exp

(
1

κ
ũθ(c,Y

′;A,F, µ)

)
=

∑
c∈A(A)

zθ(c,Y
′;A,F, µ)

where the second equality follows from eq. 21 and the third equality from summing over the entire
domain of permutation ϱ.

B.4.2 Auxiliary Lemma 7

Lemma 7. Given any A,F, any row-exchangeable µ, and any i ∈ I,∫
Yi

zθ(a,Y;A,F, µ)dY =

∫
Yi

zθ(b,Y;A,F, µ)dY ∀a, b ∈ A(A).

Proof. Fix any permutation ϱ : A(A) → A(A) with b = ϱ(a) and define σϱ : Y → Y for any Y ∈ Y
as σϱ(Y) = Pϱ

kY. We now show that σϱ is a permutation on supp(µY). To see this, first note that
σ−1
ϱ (Y′) = Pϱ

k
T
Y′. Because the row-exchangeability of µY (eq. 8) implies that supp(µY) is closed

under permutation with any Pk, it follows that σ−1
ϱ (Y′) ∈ supp(µY) for any Y′ ∈ supp(µY), so σϱ

is surjective. Since σ−1
ϱ (Y′) is unique, σϱ is also injective and hence bijective and a permutation.

Because the definition of the partition {Yi} implies that the image of σϱ satisfies σϱ[Yi] ⊆ Yi for
any i ∈ I, the restriction of σϱ to Yi is in fact a permutation σϱ|Yi

: Yi → Yi on Yi.
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It then follows that, for all a, b ∈ A(A),∫
Yi

zθ(a,Y;A,F, µ)dY =

∫
Yi

exp

(
1

κ
ũθ(a,Y;A,F, µ)

)
dY

=

∫
Yi

exp

(
1

κ
ũθ(ϱ(a), σϱ|Yi

(Y);A,F, µ)

)
dY

=

∫
Yi

exp

(
1

κ
ũθ(ϱ(a),Y;A,F, µ)

)
dY

=

∫
Yi

zθ(b,Y;A,F, µ)dY

where the second equality follows from equation 21, the third equality from summing over the whole
domain of permutation σϱ|Yi

, and the last equality from b = ϱ(a).

B.4.3 Proof of Theorem 1

We now proceed to the proof of Theorem 1, suppressing the latter arguments of zθ(a,Y;A,F, µ)

for brevity. Lemma 6 implies that

Zθ(Y) :=
∑

c∈A(A)

zθ(c,Y) =
∑

c∈A(A)

zθ(c,Y
′) = Zθ(Y

′) =: Zi ∀Y,Y′ ∈ Yi (22)

and equation 8 implies that µY(Y|A,F) = µY(Y′|A,F) =: µi for all Y,Y′ ∈ Yi. It follows, given
some i ∈ I, that, for all a, b ∈ A(A),∫

Yi

µY(Y)
zθ(a,Y)

Zθ(Y)
dY =

µi

Zi

∫
Yi

zθ(a,Y)dY =
µi

Zi

∫
Yi

zθ(b,Y)dY =

∫
Yi

µY(Y)
zθ(b,Y)

Zθ(Y)
dY (23)

where the second equality follows from Lemma 7. This implies, for any a, b ∈ A(A), that∫
Y

zθ(a,Y)

Zθ(Y)
dµY(Y) =

∫
I

∫
Yi

zθ(a,Y)

Zθ(Y)
dµY(Y)di =

∫
I

∫
Yi

zθ(b,Y)

Zθ(Y)
dµY(Y)di =

∫
Y

zθ(b,Y)

Zθ(Y)
µY(Y)dY

(24)
so that ∫

Y

zθ(a,Y)

Zθ(Y)
dµY(Y) = 1/|A(A)| ∀a ∈ A(A). (25)

Any symmetric strategy P , i.e. that satisifes
∫
Y P (c,Y)dY = 1/|A(A)| for all c ∈ A(A), therefore

satisfies∫
Y

zθ(a,Y)µY(Y)∑
c∈A(A) zθ(c,Y)

∫
Y P (c,Y)dY

dY = |A(A)|
∫
Y

zθ(a,Y)

Zθ(Y)
dµY(Y) = 1 ∀a ∈ A(A) (26)

where the first equality follows from the fact that for a symmetric strategy
∫
Y P (c,Y)dY = 1/|A(A)|

for all c ∈ A(A) by definition. The necessary and sufficient conditions for optimality (Caplin et al.,
2019, Proposition 1) then imply that a symmetric strategy is a solution if and only if the state-
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dependent choice probabilities satisfy the necessary conditions of Matejka and McKay (2015), which
in this case reduce to equation 10.

B.5 Proof of Lemma 3

For any A and any k × k permutation matrix Pϱ
k with associated permutation ϱ : A(A) → A, it is

the case, for all a ∈ A(A) and all X ∈ X , that

uθ(ϱ(a),P
ϱ
kAX) = eTϱ(a)P

ϱ
kAXw = eTaAXw = uθ(a,AX) (2)

where the first equality follows by the definition of linear utility (eq. 11) and the second equality
from eTϱ(a)P

ϱ
k = ((Pϱ

k)
Teϱ(a))

T = ((Pϱ
k)

−1eϱ(a))
T = eTa .

B.6 Proof of Lemma 4

To see that M = 1m⊗mT ∈ Rm×n and U = c1m1Tm+(ν− c)Im ∈ Rm×m are sufficient for a matrix
Gaussian distribution to be row-exchangeable, note that

µ(PmX|M,U,V) =
exp

(
−1

2 tr[V
−1(PmX−M)TU−1(PmX−M)]

)
(2π)mn/2|V|m/2|U|n/2

=
exp

(
−1

2 tr[V
−1(X−M)TPT

mU−1Pm(X−M)]
)

(2π)mn/2|V|m/2|U|n/2

=
exp

(
−1

2 tr[V
−1(X−M)TU−1(X−M)]

)
(2π)mn/2|V|m/2|U|n/2

= µ(X|M,U,V)

where the first equality is the probability density function of a matrix Gaussian distribution, the
second equality follows from M consisting of identical rows so that PmM = M, and the third
equality from PT

mU−1Pm = U−1 which holds because U−1 = 1
ν−c(Im− c

ν+(m−1)c1m1Tm) (Henderson,
1981), which is a completely symmetric matrix.

B.7 Auxiliary Lemma

Lemma 8. Let Y = AXF
T where F consists of the non-zero rows of matrix In−diag(1TnF) (if any;

otherwise F = 0), collecting all features of AX not present in Y. The Gaussian prior of equation
12 implies the conditional distribution

vec(Y)|vec(Y) ∼ N (my|y,Σy|y)
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with conditional mean

my|y = vec
(
AMF

T
+ (Y −AMFT )(FVFT )−1FVF

T
)
.

Proof. Letting F̃T =
(
FT F

T
)
, we have

AXF̃T ∼ MNm×n

(
AMF̃T ,AUAT , F̃VF̃T

)
which implies that8

vec
(
AXF̃T

)
=

(
(F⊗A)vec(X)

(F⊗A)vec(X)

)
=

(
vec(AXFT )

vec(AXF
T
)

)
∼ N

(
mỹ,ΣỸ

)
with

mỹ = vec
(
AMF̃T

)
=

(
vec(AMFT )

vec(AMF
T
)

)
and

ΣỸ =
(
F̃VF̃T

)
⊗
(
AUAT

)
=

(
(FVFT )⊗ (AUAT ) (FVF

T
)⊗ (AUAT )

(FVFT )⊗ (AUAT ) (FVF
T
)⊗ (AUAT )

)
.

It follows that9

my|y ≡ E[vec(AXF
T
)|vec(Y)]

= vec(AMF
T
) +

(
(FVFT )⊗ (AUAT )

) (
(FVFT )⊗ (AUAT )

)−1
(vec(Y)− vec(AMFT ))

= vec(AMF
T
) +

(
(FVFT )(FVFT )−1

)
⊗
(
(AUAT )(AUAT )−1

)
(vec(Y −AMFT ))

= vec(AMF
T
) +

(
(FVFT )(FVFT )−1 ⊗ Im

)
(vec(Y −AMFT ))

= vec(AMF
T
) + vec((Y −AMFT )((FVFT )(FVFT )−1)T )

= vec
(
AMF

T
+ (Y −AMFT )(FVFT )−1FVF

T
)

B.8 Proof of Corollary 1

With the linear preferences of equation 11,∫
X
uθ(a,AX)dµX|Y(X|Y,A,F) =

∫
X
eTaAXwdµX|Y(X|Y,A,F) = eTaAEµX|Y [X|Y,A,F]w.

8Note that we are using column-major vectorization here, unlike in the rest of the paper, because we want
features to be adjacent in the resulting vector.

9Note that if F is square (i.e. l = rank(F) = n), then (FVFT )−1(FVF
T
) = (FF−1)T and the conditional

expectation reduces to vec(Y(F−1)T ), reflecting the fact that if all features are present then Y contains all
information on X.
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The result then follows immediately from Theorem 1 along with the fact that the expected utility
conditional on Y is

ũθ(a,Y;A,F, µ)

= EµX|Y [uθ(a,AX)|Y]

= EµX|Y [vec(e
T
aAXw)|vec(Y)]

= EµX|Y [vec(e
T
a (AXFTF+AXF

T
F)w)|vec(Y)]

= (wT ⊗ ea)EµX|Y [(F
T ⊗ Im)vec(AXFT ) + (F

T ⊗ Im)vec(AXF
T
)|vec(Y)]

= (wT ⊗ ea)
(
(FT ⊗ Im)vec(Y) + (F

T ⊗ Im)EµX|Y [vec(AXF
T
)|vec(Y)]

)
= (wT ⊗ ea)

(
(FT ⊗ Im)vec(Y) + (F

T ⊗ Im)vec
(
AMF

T
+ (Y −AMFT )(FVFT )−1FVF

T
))

= vec
(
eTa

[
YF+

(
AMF

T
+ (Y −AMFT )(FVFT )−1FVF

T
)
F
]
w
)

= eTa

[
YF+

(
AMF

T
+ (Y −AMFT )(FVFT )−1FVF

T
)
F
]
w

where the sixth equality follows by Lemma 8.

B.9 Proof of Proposition 1

Note that

Kθ(P
∗;A,F, µ)

= κIP (a;Y)

= κ

∫
Y∈Y

∑
a∈A(A)

P (a|Y) ln

(
P (a|Y)

P (a)

)
dµY(Y|A,F)

= κ

∫
Y∈Y

∑
a∈A(A)

zθ(a,Y)∑
c∈A(A) zθ(c,Y)

ln

(
zθ(a,Y)∑

c∈A(A) zθ(c,Y)

|A(A)|
1

)
dµY(Y|A,F)

=

∫
Y∈Y

∑
a∈A(A)

zθ(a,Y)∑
c∈A(A) zθ(c,Y)

[
κ ln (zθ(a,Y))− κ ln

(∑
c∈A(A) zθ(c,Y)

|A(A)|

)]
dµY(Y|A,F)

=

∫
Y∈Y

 ∑
a∈A(A)

zθ(a,Y)EµX|Y [uθ(a,AX)|Y,A,F]∑
c∈A(A) zθ(c,Y)

− κ ln

(∑
c∈A(A) zθ(c,Y)

|A(A)|

) dµY(Y|A,F)

where the second equality follows from the definition of mutual information as the expected KL
divergence and the third equality from plugging in the optimal choice probabilities of equation 10.
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The result follows from the definition of equation 5

Uv
α(X, θ,A,F;µ)

=
∑
a∈A

P ∗(a|Y; θ,A,F, µ)Rv
α(a,X, θ,A,F;µ)

=
∑
a∈A

P ∗(a|Y; θ,A,F, µ)v(a,AX, θ)− (1− α)Kθ(P
∗;A,F, µ)

=
∑

a∈A(A)

zθ(a,Y)uθ(a,X)∑
c∈A(A) zθ(c,Y)

− (1− α)

∫
Y∈Y

 ∑
a∈A(A)

zθ(a,Y)EµX|Y [uθ(a,AX)|Y,A,F]∑
c∈A(A) zθ(c,Y)

− κ ln

(∑
c∈A(A) zθ(c,Y)

|A(A)|

) dµY(Y|A,F)

=
∑

a∈A(A)

[
zθ(a,Y)uθ(a,AX)∑

c∈A(A) zθ(c,Y)
− (1− α)

∫
Y∈Y

zθ(a,Y)EµX|Y [uθ(a,AX)|Y,A,F]∑
c∈A(A) zθ(c,Y)

dµY(Y|A,F)

]

+ (1− α)κ

∫
Y∈Y

ln

 1

|A(A)|
∑

c∈A(A)

zθ(c,Y)

 dµY(Y|A,F) (14)

C Appendix: Further Results for the Gaussian Case

C.1 Distribution of Vectorized Matrix Gaussian State

It may be helpful for better intuition to note that with the matrix Gaussian distribution of equation
12, the corresponding vectorized state is distributed according to

vec(XT ) ∼ N (vec(MT ),U⊗V) = N



m
...
m

 ,


νV cV cV

cV
. . . cV

cV cV νV


 .

The vectorized filtered state is distributed according to

vec(YT ) = vec(FXTAT ) ∼ N (vec(FMTAT ),AUAT ⊗ FVFT ).

C.2 Joint Distribution of Linear Valuations of Options

Given the matrix Gaussian distribution of equation 12, the joint distribution of all options’ values
under linear utility is given by

Xw ∼ N
(
Mw,UwTVw

)
. (27)
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C.3 Options’ Joint Distribution of Attribute Values

Given diagonal U = νI, the joint distribution of each option’s attribute values is, for all a identically
and independently, given by

eTaX ∼ N
(
m, eTaUeaV

)
= N (m, νV) .

D Appendix of Section 3

Applying these general equations to the example of section 3, we obtain the distribution of the
attributes’ difference across choice options,[

Xã1 −Xb̃1

Xã2 −Xb̃2

]
∼ N

(
0, 2(ν − c)

[
1 ρ

ρ 1

])

as well as, by equation 27, the distribution of both choice options’ linear valuations[
w1Xã1 + w2Xã2

w1Xb̃1 + w2Xb̃2

]
∼ N

(
0, (w2

1 + 2ρw1w2 + w2
2)

[
ν c

c ν

])
,

both of which are plotted in Figure 6.
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Figure 6: The plots in the left column show the joint distribution of (Xã1 −Xb̃1, Xã2 −Xb̃2)
under the prior, each row for a different set of covariance parameters. The plots in the right
three columns show the joint distribution of (w1Xã1 +w2Xã2, w1Xb̃1 +w2Xb̃2), each column
for a different w. The figure’s left-most column illustrates how the attribute covariance ρ
rotates the distribution, while the action covariance c affects the distribution’s dispersion.
The remaining columns illustrate how the joint distribution of the two option’s utility has
a dispersion that depends on the interplay of preference weights w and attribute covariance
ρ, while the covariance is determined by the action covariance c.
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Figure 7: Gross welfare Uu
1 (X, θ,A = I,F;µ) for the three different information policies F,

now shown as a function of the preference weights w = (w1, w2). Each row corresponds to a
given state X and covariance ρ.
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