Oncology treatment hasn’t just evolved – it has reimagined itself completely.

The numbers speak volumes. Innovation in oncology is taking place at a significant pace.

New oncology treatments are taking medical science to new heights and offering real hope to patients.

Dr. Parneet Cheema on how real-world evidence accelerates access to life-saving medications.
CANCER IN CANADA

50%

Nearly 1 in 2 Canadians will get a cancer diagnosis at some point in life, and about half of those diagnosed will die of the disease. These figures make cancer the leading cause of death in Canada.1

225,880

Number of new cancer cases that were anticipated in 2020 – about 617 per day.2

48%

Proportion of all new cancers attributed to the “big four”: breast cancer (25% of new cancer cases in women), prostate cancer (20% of all new cancer cases in men), lung cancer (14%), and colorectal cancer (12%).2

20%

Decrease in the number of cancer surgeries performed in Canada from March to June 2020 compared to the same period in the previous year – a collateral effect of the COVID-19 pandemic.3

NONSTOP INNOVATION

35%

Oncology’s share of the global 2020 medication pipeline (at all phases of clinical trials).4

15

Cancer drugs approved by Health Canada in 2020 (out of a total of 84 approved medications)5-10

3

Precision oncology drugs approved by Health Canada in 2020: alpelisib, entrectinib, and tucatinib.5,10

62

New cancer drugs launched in the US between 2015 and 2020, jointly covering 130 indications across 24 different tumour types.6

37%

Share of oncology drug spend in Canada devoted to high-cost medicines (28-day treatment cost > $10,000) in 2019, up from just 7% in 2010.10

RISING COSTS

$164B

Global spending on oncology drugs in 2020, a figure expected to grow to $269 billion by 2025.6

$46.9B

Value of the global oncology precision medicine market alone in 2019, expected to triple (to $148.7 billion) by 2030.7

$3.9B

Sales of oncology drugs in Canada in 2019 – almost triple the $1.4 billion figure of 2010.4

IMPROVED OUTCOMES

48%

Reduction in mortality from breast cancer since the peak rate in 1986.11

11 weeks

Extra progression-free survival (with no increased costs) attributed to precision medicine in an analysis of patients with advanced cancer.12

30 days

Reduction in time from referral to treatment for lung cancer patients at a leading institute in Quebec (26 days, down from the provincial average of 56 days), thanks to an optimized approach to diagnosis and molecular testing.13

63%

Proportion of Canadians expected to survive for at least 5 years after a cancer diagnosis, up from 55% in the early 1990s.2

The 20Sense Report

October 2021 Issue 18

By the Numbers

Cancer is as common as it is devastating. As the population ages, cancer will enter more and more people’s lives, sending them and their loved ones on an increasingly complex treatment pathway. Fortunately, these new treatments hold more promise than anything that came before – if they get to the right patients at the right time.
Cancer. We still haven’t cured it, and the disease continues to devastate individuals and families. But cancer is not what it used to be. Today’s new treatments take medical science to new heights and offer real hope to patients previously considered terminal.

In Canada, four types of cancer continue to dominate: lung, breast (in women), prostate (in men), and colorectal, collectively accounting for about half of all cancer cases.2 Although we still don’t have the final tally for 2020, researchers estimated that 225,800 Canadians would be diagnosed with cancer during that year and that 83,400 would die of the disease.2 This translates to a daily total of 617 cancer diagnoses and 228 cancer deaths. While the number of new cancer cases continues to grow14 — an effect of the country’s increasing and aging population — we can take heart in knowing that survival rates have gone up significantly. At least 63% of Canadians diagnosed with cancer are expected to survive for 5 years or more after a cancer diagnosis, up from 55% in the early 1990s and just 25% in 1940.2

Same diagnosis, different treatment

Traditionally, we have thought of cancer as a war, with a beginning and an end. We fight it. If we’re lucky, we beat it, and if we’re unlucky, it beats us. New treatments are pushing this model to the sidelines, making cancer more of a chronic, manageable condition than a fatal one. Some patients previously considered untreatable go on to live cancer-free for years, perhaps having to fend off a flare-up now and again. In this sense, the new treatments serve more as peacekeepers than as combat soldiers: they prevent the invader from launching a full-blown attack rather than pushing back enemy troops already on the field. Of course, these medicines can’t work their magic unless they reach the right patients at the right time. And this is where it gets complicated — and costly. Identifying the right patients for a particular treatment often requires sophisticated screening and laboratory tests, including genetic and tumour tests. The treatments themselves don’t come cheap — a reflection of the enormous R&D investment required to bring them to market. And if cancer is indeed becoming a chronic disease, managed with medications, testing and drug costs will keep rising.

ON TARGET

While an obvious concern to policymakers, the spectre of rising costs is hardly slowing cancer treatment research down. No longer content with the scattershot results of traditional chemotherapy — effective in some, less so in others — researchers and clinicians are increasingly focusing on targeted therapies, which target specific genes and proteins involved in the growth of cancer cells and generally cause fewer side effects.15

At the same time, the cancer pie is breaking up into smaller and smaller pieces. There is no such thing as “treatment for lung cancer” anymore. Current treatments target specific subtypes of the disease based on the characteristics of the cancer cells and the gene mutations driving a particular tumour type. This increasing segmentation has effectively turned some cancers into rare diseases (affecting fewer than 5 in 10,000 Canadians16) or rare conditions. For example, adenosquamous carcinoma, a rare subtype of lung cancer, falls into this category.

ADVANCED CANCER DIAGNOSTICS AND TREATMENT: THE LINGO

The new cancer treatment ecosystem has its own language. Here are some of its key terms.17,18,19

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision medicine</td>
<td>A treatment approach focused on delivering the right drug to the right patient at the right time, based on biological information (e.g. genes or proteins) to identify patients.</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>A molecule or alteration (e.g. protein, mutated gene) that reveals pathogenic processes or predicts response to a treatment. Common cancer biomarkers include HER2 (breast cancer), AFP (liver cancer), and EGFR (non-small cell lung cancer).</td>
</tr>
<tr>
<td>Companion diagnostics</td>
<td>Tests for biomarkers to identify patients who are candidates for precision medicines.</td>
</tr>
<tr>
<td>Genetic testing</td>
<td>Medical test that identifies mutations in specific genes. For example, the test for the BRCA1 and BRCA2 genes can help predict the risk of breast or ovarian cancer.</td>
</tr>
<tr>
<td>Genomic profiling</td>
<td>Next-generation sequencing techniques enabling rapid characterization of a tumour’s genome to help predict its behaviour.</td>
</tr>
</tbody>
</table>

Tumour-agnostic therapy: A drug or other therapy that treats cancer based on the disease’s genetic and molecular features, without regard to the tumour’s location in the body.
Guided by genes

We have grown accustomed to grouping cancers according to tumour site – breast, lung, colon, and so on – but this tradition is giving way to a classification based on a tumour’s genomic characteristics. The advent of next-generation sequencing (NGS) technologies, which can identify a variety of mutations across many cancer types, has driven this shift.20 To date, researchers have identified four major genomic alterations involved in cancer development.15 They have also discovered that tumours with a similar genomic makeup, regardless of their location in the body, may have more in common than genotypically different tumours in the same body site.

This scientific insight has spurred the development of so-called tumour-agnostic therapies – therapies that target tumours with similar genomic profiles, irrespective of location. These pioneering therapies are now entering the market – drugs like Vitrakvi and Ryzodeg, both approved in 2019 by Health Canada for patients with solid tumours with an NTRK gene fusion mutation.21 Such mutations, which can cause two genes to fuse together and produce altered proteins that promote uncontrolled growth of cancer cells, have been identified in breast, colorectal, gynaecological, non-small cell lung, and pancreatic cancer, among others.22

The vast majority of patients with solid tumours do not carry this mutation. But for the small proportion who do, drugs like Vitrakvi can make the difference between well, life and death.

Take Ted Taylor, a patient in B.C. who developed glioblas-toma multiforme (GBM) in 2018 and had emergency brain surgery six days after his diagnosis. The prognosis with standard of care – 14 months to live – did not sit well with the single father of three, who immediately began researching his options.

After hearing about Vitrakvi on television, he asked his oncologist about the medication – which was so new the oncologist hadn’t heard about it yet. A second oncologist arranged for Taylor to get preliminary testing done locally. Against all odds, he had the mutation. The oncologist applied to Health Canada to give Taylor special access to the drug, which was shipped from the UK to Vancouver with a stop in Germany. “My dad and I were waiting with the pharmacist at her location,” Taylor recalls. “It came in a special package.”

Taylor began taking Vitrakvi twice a day in the spring of 2019, initially under Health Canada’s special access program. After two years of treatment, “there’s only a small cavity where the tumour used to be,” he said in a recent Canadian Cancer Survivor Network (CCSN) presentation. “This drug has saved my life, I can unequivocally tell you.”

Not all candidates for precision medicines respond as well as Taylor, of course. Fortunately, today’s sophisticated genetic tests allow clinicians to identify additional mutations that predict resistance to a therapy, thus sparing the patient from challenging and costly treatment with other potentially less effective therapies.23

Uneven terrain

Triumphant outcomes such as Taylor’s depend on a well-functioning diagnostic and treatment infrastructure, which not all patients can count on. In Canada, responsibility for most biomarker testing falls to hospitals and third-party laboratories.24 Those without the capacity to conduct genetic testing may need to forward samples to other locations, often sending them in batches to reduce costs. All the steps involved in obtaining results – preparing biopsies, pathologist review, delivery to testing site (which could be out of the country), booking the patient to discuss results – take time and resources, and can delay a patient’s access to therapy.

The current system also suffers from a lack of coordination between the decision-makers responsible for companion diagnostics and for drug therapies.25 “Essentially, it’s the postal code that dictates what therapy a patient receives,” says Dr. Calvin Law, chief of the Odette Cancer Centre at Toronto’s Sunnybrook Hospital. “There should be a national plan.”26

For the time being, no such plan exists. A test may be available. Or not. Or the public purse doesn’t cover it. Even after a drug gets Health Canada approval, public funds don’t necessarily cover the corresponding biomarker test. In such cases, the patient may have to take on the cost of the test – or figure out a way to get coverage from private payers or pharmaceutical companies.27

Amid these uncertainties, each province is deploying its own initiatives to improve access to testing. Albertans can count on Alberta Precision Laboratories, a subsidiary of Alberta Health Services, to deliver high-quality diagnostic lab services,28 and the organization’s recent collaboration with Oncology Outcomes (O2) will facilitate the collection of population-level biomarker data.29 The lucky patients recruited to B.C.’s Personalized Oncodiagnosticis (PODi) program have access to genomic sequencing that can help inform treatment decisions.20 Quebec’s INESSS has a written process enabling drug companies to include companion diagnostics in their submissions. According to INESSS director Sylvie Bouchard, this bundled review process ensures “that the recommendation to the minister will not delay access to patients who require the test.”

Cancer Care Ontario (CCO), meanwhile, is filling in some testing gaps with the launch of a comprehensive program for cancer testing at diagnosis.30 Factors guiding the process include tumour type, availability of a biomarker test, and availability of testing facilities. As it happens, the program can test for lung cancers targeted by the world’s first KRAS inhibitor, Lomakim, approved by Health Canada in September 2021. While an encouraging development for Ontarians, it raises questions about equitable access throughout the country. In addition, the CCO’s program only covers NTRK testing for limited cancer types, attesting to the patchwork coverage available at the moment.

Physicians, for their part, face the challenges of navigating this patchwork testing landscape and explaining the tests to patients with different levels of health literacy. Recent Canadian consensus guidelines on biomarker testing and treatment may help doctors treating pancreatic patients with NTRK fusion cancer,30 but significant gaps still exist. This leaves many patients shouldering a large portion of the access load, forcing some to resort to private options to finance their tests.

A natural fit for patient support programs

Patient support programs (PSPs) originated to fill gaps in the care of patients on specialty pharmaceuticals. As such, they have a built-in flexibility that could be harnessed to facilitate companion diagnostics for cancer.

Some pharma companies are moving in this direction. Bayer Canada’s Fast TKR program provides centralized NTRK gene fusion testing to patients, free of charge, in partnership with LifeLabs and Kingston Health Sciences.31 In a similar...
in the future, one can envision an open-access PSP, receive assistance with reimbursement navigation. Projecting into the future, one can envision an open-access PSP, receive assistance with reimbursement navigation. Projecting into the future, one can envision an open-access PSP, receive assistance with reimbursement navigation. Projecting into the future, one can envision an open-access PSP, receive assistance with reimbursement navigation. Projecting into the future, one can envision an open-access PSP, receive assistance with reimbursement navigation. Projecting into the future, one can envision an open-access PSP, receive assistance with reimbursement navigation.
As Medical Director of Oncology at William Osler Health System, Dr. Cheema leads the first-of-its-kind Immune-therapy program at the institution. A medical oncologist with a worldwide reputation, Dr. Cheema is also an assistant professor at the University of Toronto’s Faculty of Medicine. Dr. Cheema and her team are currently recruiting subjects for the Pan-Canadian Lung Cancer Observational Study (PALEOS), a multicentre observational study that will collect data on patients with specific subtypes of lung cancer in Canada. Here, Dr. Cheema explains how we can use real-world evidence (RWE) to greater advantage.

Can you give us an example in which RWE and OBAs might have helped obtain a listing?

There is a targeted therapy for a form of NSCLC called BRAF V600E. It’s a combination of two medications, dabrafenib and trametinib. The pCODR expert review committee (pERC) initially recommended against listing it because of the limited evidence from clinical trials. But it’s impossible to conduct a large trial for such a small slice of the NSCLC pie – there simply aren’t enough patients. As it was, it took 14 months to enroll 59 patients from 9 countries in a phase 2 trial, which did show a benefit. pCODR also maintained there were other treatment options for NSCLC patients, essentially lumping this subtype together with several others. At the time, this decision was a big step back for precision medicine. The drug did eventually get a positive recommendation, but the lag time between NDC and listing exceeded three years. That’s a long time for patients to wait.

To flip the question around, has RWE ever actually helped expedite a listing of a lung cancer treatment?

Yes. There is a medication called crizotinib that targets a lung cancer subtype called ROS1 positive NSCLC. It’s a rare subtype, with only 250 cases per year in Canada. A small phase 2 trial showed a clinical benefit. In this case, pERC considered not only the trial results but input from a group of clinicians. I was part of this group and we submitted our observations that the medication had a durable response and improved patients’ quality of life. pERC went on to recommend a listing. Which begs the question: what constitutes good RWE? What can we actually submit? We still don’t have clarity on these questions.

You do a lot of work in lung cancer. Can you tell us how the medical understanding of this form of cancer has evolved?

We used to think of lung cancer as one disease, but we know about numerous subtypes. So we’re looking at many different diseases, some of them with orphan-type status, all under the non-small-cell lung cancer (NSCLC) umbrella.

What is standing in the way of value-based or outcomes-based agreements (OBAs) for lung cancer medications?

Historically, the evidence collected from databases hasn’t consistently panned out in clinical trials, which has led to a bit of skepticism about RWE. So first and foremost, we need to create the infrastructure to generate high-quality RWE that can supplement clinical trial data rather than just generate hypotheses.

As I mentioned earlier, lung cancer has so many subtypes that we can’t get enough patients to conduct clinical trials with sufficient power. PALEOS is designed to fill this gap by generating real-world data on natural history, treatment patterns, and outcomes in relation to lung cancer subtypes, using both retrospective and prospective methods. To reflect the diversity of Canadian patients, we are recruiting from both academic and community cancer settings. We have funding for clinical coordinators and data analysis support. We will provide centralized education to ensure all sites are entering prospective data the same way, so we can generate standardized variables that can be used by health technology assessment.

How can we get moving on using RWE to support OBAs? We clinicians can’t produce RWE unless our patients can access the medication being evaluated. Industry can help with this, with the understanding that we provide RWE in return. From a regulatory perspective, it would make sense for pharma companies to include an RWE generation plan with their pCODR submission. The plan should address clinical uncertainty about a drug, so the data is strong enough to support an OBA. And we should always keep sight of what we’re trying to accomplish with OBAs: facilitating patients’ access to life-saving drugs.

Tell us more about PALEOS. What type of data will the study collect?

PALEOS is designed to fill this gap by generating real-world data on natural history, treatment patterns, and outcomes in relation to lung cancer subtypes, using both retrospective and prospective methods. To reflect the diversity of Canadian patients, we are recruiting from both academic and community cancer settings. We have funding for clinical coordinators and data analysis support. We will provide centralized education to ensure all sites are entering prospective data the same way, so we can generate standardized variables that can be used by health technology assessment.

What can we do to help patients get on board? We may need campaigns to communicate the value of participating in registries and databases and to address concerns about privacy. We need to make it easy for patients to provide consent and to include patients from all socioeconomic groups. In Ontario, we’re getting a jump on this with PALEOS.

What are some of the challenges?”

We should always keep sight of what we’re trying to accomplish: facilitating patients’ access to life-saving drugs.”
The 20Sense Report is a quarterly publication that strives to elevate the conversation surrounding the Canadian specialty pharmaceutical industry through the sharing of innovative ideas, best practices, challenges, and opportunities.

Thank you to our sponsors for supporting independent journalism that offers insight and transparency within Canada’s specialty pharmaceutical industry. Funding is provided by organizations who share in The 20Sense Report’s mandate to support education via independent journalism.

The 20Sense Report does not publish advertising or sponsored content. Past issues can be found at 20sense.ca/the-20sense-report.

20Sense helps pharmaceutical manufacturers and specialty service providers more effectively enter and compete in Canada’s complex specialty pharmaceuticals market by optimizing data, insights and programs that deliver better outcomes for patients and value for payers.

Inquiries may be directed to info@20Sense.ca www.20Sense.ca