
Detecting Tweets Relating to Disasters Using Natural Language
Processing

Mert Iren
4 September, 2022

Abstract
While Twitter can be a great tool to access lots of information about many different topics at
once, it can be hard to parse through this data due to the nature of the vast platform; this is
especially problematic if people want to gain information about a topic quickly, such as about an
ongoing disaster. Using Kaggle’s “Natural Language Processing with Disaster Tweets”
competition, we can attempt to train models with the text data of a tweet to attempt to classify
disasters. Throughout this investigation, the baseline models that were built were a support
vector machine, a random forest, and a logistic regression model. Additionally, a transformer
model was built with BERTweet with an accuracy of 85%, precision of 84%, recall of 81%, and
an F1 score of 83%. Although the transformer model performed better than the baseline models,
the difference is not very significant, indicating that it’s hard to achieve much higher scores with
this dataset

Word Count: 1719

https://www.kaggle.com/competitions/nlp-getting-started/overview/description
https://www.kaggle.com/competitions/nlp-getting-started/overview/description


Introduction
In the modern day, social media allows us to access vast amounts of information shared by many
people. As a result, it can be a valuable tool to learn more about ongoing events, especially if this
knowledge may be crucial such as in an ongoing disaster. Not only can this information be used
by anyone wanting to gain insight or news on a recently-occured disaster to report on it, but this
information can also be used by first-responders, to know what to expect in a disaster situation
and since some tweets also contain location data. However, for the same reasons that make
Twitter such an accessible source for a wide variety of information, it is also extremely difficult
to parse through this information, especially if you don’t know what exactly you’re looking for.
Currently, people can use Twitter for this purpose by browsing through a single hashtag or
searching up key words relating to an event, yet not only would it take a long time to do this, but
people may not post tweets under the same hashtag, and search terms could vary especially when
the circumstances of an event are unknown.

By using natural language processing we can attempt to categorize tweets based on whether they
relate to a disaster (natural or otherwise) or not in order to significantly reduce the number of
tweets that people would have to parse through. As a result, it would be easier for these people to
gain information on this topic, resulting in more accurate news reports and more prepared
first-responders, allowing everyone to do their job more effectively. In this paper, I explore
patterns in the dataset used, methods for processing data and training models, and the results
obtained from the models. Therefore, I present this paper’s research question, RQ1.

RQ1:How Effectively Can a Model Predict Whether a Tweet Relates to a Disaster or Not?

Data
The data for our model is taken from Kaggle’s “Natural Language Processing with Disaster
Tweets” competition and contains the text data of a tweet, possible keywords, the location data
(if included), and a label stating whether or not the tweet relates to a disaster. However, for our
models, only the text data and the label will be used.

Exploratory data analysis was conducted in order to determine how the NLP models will be built

https://www.kaggle.com/competitions/nlp-getting-started/overview/description
https://www.kaggle.com/competitions/nlp-getting-started/overview/description


.
Figure 1: Disaster and Non-Disaster Tweets

By analyzing the number of both disaster and non-disaster tweets, it can be seen that both
categories seem to have an approximately balanced number of tweets within them, meaning that
there wouldn’t need to be many steps taken in order to ensure that the model isn’t heavily biased
towards predicting one or the other.

In order to determine whether stopwords should be removed or not from the data, the most
common words can be found in a copy of the data with and without stopwords for tweets that do
and don’t relate to disasters. With stopwords, the most common words are words such as “the”,
“I”, “a”, “and”, and “in”, which carry little to no semantic meaning for both datasets. Without
them, the most common words are shown below.

Figure 2: Common Words for Disasters



Figure 3: Common Words for Non-Disasters

So, for the models, stopwords will be removed since they may confuse our models without
providing any additional meaning to tweets.

Additionally, the character and word count for both disaster and non-disaster tweets was also
found as shown below.

Figures 4 & 5: Word and Character Count for Disaster Tweets



Figures 6 & 7: Word and Character Count for Non-Disaster Tweets

Figures 4-7 demonstrate to us that non-disaster tweets tend to contain both less words and
characters than disaster tweets. This information can also be used when building the model.

Splitting the Data
The data goes through a train-test split using the Sci-Kit Learn Python library. The test size is
20% of the entire dataset and the random state for the split is 1

Pre-processing the Data for Baseline Models
The data was pre-processed using Reg-Ex in order to remove all image links, and replace them
with the tag ‘[IMAGE]’, to remove all other URLS and replace them with the tag ‘[URL]’ and
all hashtag symbols were removed. Additionally, the words were stemmed using the nltk
library’s Porter Stemmer, so that the model can recognize words that come from the same stem.

Pre-processing the Data for Transformer Models
For the transformer models, the data was pre-processed simply by tokenizing the tweets with the
BERTweet tokenizer, then converting these encodings into a torch-compatible dataset.
Additionally, 20% of the training set was allocated to validation set, (or 16% of the entire data)

Baseline Models

Baseline models were built to see how effectively our data could be analyzed with a simple
model. Each model was evaluated using 5 fold cross validation, in order to see how they perform
in an independent dataset. To train the baseline models, they were given TF-IDF vectors of each
of the tweets as well as whether or not they were a disaster, represented by a 1 or 0.

Support Vector Machine:
The hyperparameters used for Support Vector Machine are available in table 1.



Table 1. Support Vector Machine Hyperparameters

Parameters Values

C 0.1, 1, 10, 100

Gamma 1, 0.1, 0.01, 0.001

Kernel RBF, Sigmoid, Poly

Degree (for poly kernel only) 1, 2, 3

Logistic Regression:
The hyperparameters used for Logistic Regression are available in table 2.

Table 2. Logistic Regression Hyperparameters

Parameters Values

C 0.1, 1, 10, 100

Penalty L2, None

Tolerance 0.00001, 0.0001, 0.001, 0.01, 1

Random Forest:
The hyperparameters used for Random Forest are available in table 3.

Table 3. Random ForestHyperparameters

Parameters Values

Number of Estimators 10, 100, 1000

Max Features Log2, Square-Root, None

XGBoost:
The hyperparameters used for XGBoost are available in table 4.

Table 4. XGBoost Hyperparameters

Parameters Values

Number of Estimators 100, 1000

Learning Rate 0.05, 0.1, 0.2

Max Depth 3, 6, 9



Transformer Models

The transformer models were given the BERTweet encodings as well as whether the tweet is a
disaster or not with the following parameters

The hyperparameters used for the transformer model are available in table 5.

Table 5. BERTweet Hyperparameters

Parameters Values

Epochs 3, 4, 5

Train Batch Size 16, 32

Weight Decay 0.01, 0.3

Learning Rate 2e-5, 3e-5, 5e-5

Results
The best* parameters and the results for each of the tested models are as follows:

Table 6. Transformer Results

Model Name Parameters Accuracy Precision Recall F1

Support Vector
Machine

C = 100
Gamma = 0.1
Kernel = Sigmoid

0.79 0.79 0.68 0.73

Logistic Regression C = 2
Penalty = l2

0.79 0.78 0.70 0.74

Random Forest Max Features = Square-Root
Number of Estimators = 1000

0.79 0.83 0.63 0.72

XGBoost Max Depth = 6
Learning Rate = 0.2
Number of Estimators = 1000

0.79 0.79 0.68 0.73

BERTweet Epochs = 3
Training Batch Size = 16
Weight Decay = 0.3
Learning Rate = 5e-05
Evaluation Batch Size = 8

0.85 0.84 0.81 0.83



*models are evaluated on their F1 score

It’s clear from our results that the BERTweet model functions the best out of all of the models
built, consistently doing better across all of the performance metrics defined above

Figure 8: BERTweet Model Confusion Matrix

Figure 9: ROC Curve

We can gather information about the effectiveness of the model at different thresholds using the
ROC curve. By finding the point with the greatest difference between the true positive rate and
the false positive rate, we can see that the threshold of 0.293 is the best. Additionally, the area
under the curve gives us an understanding of the overall performance of the model, which in this
case is 0.88.



Figure 10: Precision-Recall Curve

The precision-recall curve shown in Figure 10 also shows us the tradeoff between precision and
recall of the model at different thresholds. The average precision for the model is 0.88

Limitations
Despite the relatively high performance of the BERTweet model, there are still some limitations
to be considered. To begin with, the transformer has only been trained on English, meaning that
it is only likely to be useful in English-speaking countries whilst only approximately 32% of all
tweets are in English, leaving the majority of available tweets unable to be processed. In fact, the
model is not trained to recognize whether a tweet is in English so may be severely hindered if it
attempts processing tweets that are in another language.

Additionally, language evolves over time and as the English language slowly deviates from the
English spoken today, the model’s performance is expected to decrease, especially in a platform
like Twitter, where the language spoken tends to be informal and uses lots of slang. So, any
model attempting to achieve the same goal would need to be retrained every few years with new
tweets in order to be able to keep up with the gradual change of language.

Finally, due to the volatile and dangerous nature of the situation that the model is trying to
predict, it is not recommended to actively use a model such as this one unmoderated until higher
levels of performance are achieved.

Conclusion
Overall, as demonstrated by this paper, it is definitely possible to classify tweets depending on
whether they relate to a disaster or not, to an extent and many distinguishing features between
tweets relating to disasters and those not relating to disasters makes this possible, achieving an



F1 score of 83%. However, there are some limitations, such as the model only working on
English tweets, and that English itself evolves over time. It should be noted that the performance
of the transformer model is not significantly better than that of the baseline models, indicating
how difficult it may be to build a very high performing model on this dataset. It should also be
mentioned that a lot of the misclassified tweets were very ambiguous. A higher score may be
possible by training a model by giving it access to more than just the text data, such as the
location and the images attached as well. Additionally, models’ performance should also improve
as AI technology improves, possibly making a task like this viable and safe for governments.


