
Project: Influencio Protocol
Platform: Binance Smart Chain
Language: Solidity
Date: January 26th, 2022

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 16

Audit Findings …………………………………………………………………………………… 17

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram …………………………………………………………………... 23

● Slither Results Log ……………………………………………………………………. 27

● Solidity static analysis ….…………………………………………………………….. 31

● Solhint Linter ………………………………………………………………….……….. 37

AntiHACK.me | www.antihack.me

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.2et92p0
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.3znysh7
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.tyjcwt
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf
https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.4d34og8

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

AntiHACK.me | www.antihack.me

Introduction
AntiHACK.me was contracted by the Influencio team to perform the Security audit of the
Influencio protocol smart contract code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on January 26th, 2022.

The purpose of this audit was to address the following:

- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
Influencio is a standard BEP20 token smart contract. This audit only considers Influencio

and ACT which are BEP20 tokens , Proxy admin and Transparent upgradable proxies.

Audit scope

Name Code Review and Security Analysis Report for
Influencio Protocol Smart Contracts

Platform BSC / Solidity

File 1 Acts.sol

File 1 MD5 Hash 24B64272B2D5319D8B172CD935090A60

File 2 INFLUENCIO.sol

File 2 MD5 Hash 24B64272B2D5319D8B172CD935090A60

File 3 ProxyAdmin.sol

File 3 MD5 Hash AA29F22D4DB8537A99F1265A4C6426C8

File 4 TransparentUpgradeableProxy.sol

File 4 MD5 Hash 24B64272B2D5319D8B172CD935090A60

Audit Date January 26th,2022

AntiHACK.me | www.antihack.me

https://bscscan.com/address/0x644d10EdCa40c47aC9bF2879447b84BB06C8b107#code
https://bscscan.com/address/0xdcaDbB5c92441cFF773463be98FDA882eF91F2D6#code
https://bscscan.com/address/0x1F5Ad8c2c60D25c9579c3aFE978b7832253fb965#code
https://bscscan.com/address/0xa2EcDA20fe3b4E9dde5220632c524c0e624FE251#code

Claimed Smart Contracts Features

Claimed Feature Detail Our Observation

File 1 Acts.sol

● Name: Acts

● Decimals: 18

● Symbol: ACTS

● The owner can access functions like: mint,

burn.

YES, This is valid.

File 2 INFLUENCIO.sol

● Name: Influencio

● Decimals: 18

● Symbol: INFLUENCE

● The owner can access functions like: mint,

burn.

YES, This is valid.

File 3 ProxyAdmin.sol

● The ProxyAdmin can return the current

implementation of `proxy`, the current admin

of `proxy` etc.

YES, This is valid.

File 4 TransparentUpgradeableProxy.sol

● The TransparentUpgradeableProxy can

access functions like: admin, implementation,

changeAdmin,etc.

YES, This is valid.

AntiHACK.me | www.antihack.me

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. These contracts also have owner functions (described in the centralization
section below), which does not make everything 100% decentralized. Thus, the owner
must execute those smart contract functions as per the business plan.

You are here

We used various tools like MythX, Slither and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in the AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 2 medium and 0 low and some very low-level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

AntiHACK.me | www.antihack.me

Technical Quick Stats

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version too old Moderated

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Features claimed Passed

Other programming issues Moderated

Code
Specification

Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Unnecessary code Passed

Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed

High consumption ‘storage’ storage Passed

Assert() misuse Passed

Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed

“Double Spend” Attack Passed

Overall Audit Result: PASSED

AntiHACK.me | www.antihack.me

Code Quality
This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Influencio Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Influencio Protocol.

The Influencio Protocol team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an Influencio Protocol smart contract code in the form of a BSCScan web

link. The details of that code are mentioned above in the table.

As mentioned above, code parts are Not well commented. So, it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well-known industry standard open-source projects. And their core code blocks

are written well.

Apart from libraries, its functions are not used in external smart contract calls.

AntiHACK.me | www.antihack.me

AS-IS overview

Acts.sol
(1) Interface

(a) IBEP20

(2) Inherited contracts

(a) TokenStorage

(b) Initializable

(c) Context

(d) Ownable

(e) BEP20

(3) Events

(a) event OwnershipTransferred(address indexed previousOwner, address indexed

newOwner);

(4) Functions

Sl. Functions Type Observation Conclusion

1 constructor read Passed No Issue

2 init write Passed No Issue

3 mint write Unlimited token minting Refer Audit
Findings

4 burn write Owner can burn anyone’s
token

Refer Audit
Findings

5 getOwner external Passed No Issue

6 name read Passed No Issue

7 decimals read Passed No Issue

8 symbol read Passed No Issue

9 totalSupply read Passed No Issue

10 balanceOf read Passed No Issue

AntiHACK.me | www.antihack.me

11 transfer write Passed No Issue

12 allowance read Passed No Issue

13 approve write Passed No Issue

14 transferFrom write Passed No Issue

15 increaseAllowance write Passed No Issue

16 decreaseAllowance write Passed No Issue

17 _transfer internal Passed No Issue

18 _mint internal Passed No Issue

19 _burn internal Passed No Issue

20 _approve internal Passed No Issue

21 _burnFrom internal Passed No Issue

22 initializer modifier Passed No Issue

23 owner read Passed No Issue

24 onlyOwner modifier Passed No Issue

25 isOwner read Passed No Issue

26 renounceOwnership write access only Owner No Issue

27 transferOwnership write access only Owner No Issue

28 _transferOwnership internal Passed No Issue

INFLUENCIO.sol
(1) Interface

(a) IBEP20

(2) Inherited contracts

(a) TokenStorage

(b) Initializable

(c) Context

(d) Ownable

(e) BEP20

AntiHACK.me | www.antihack.me

(3) Events

(a) event DelegateChanged(address indexed delegator, address indexed

fromDelegate, address indexed toDelegate);

(b) event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint

newBalance);

(c) event OwnershipTransferred(address indexed previousOwner, address indexed

newOwner);

(4) Functions

Sl. Functions Type Observation Conclusion

1 constructor read Passed No Issue

2 initializer modifier Passed No Issue

3 onlyOwner modifier Passed No Issue

4 owner read Passed No Issue

5 isOwner read Passed No Issue

6 renounceOwnership write access only Owner No Issue

7 transferOwnership write access only Owner No Issue

8 _transferOwnership internal Passed No Issue

9 getOwner external Passed No Issue

10 name read Passed No Issue

11 decimals read Passed No Issue

12 symbol read Passed No Issue

13 totalSupply read Passed No Issue

14 supplyHardCap read Passed No Issue

15 totalMinted read Passed No Issue

16 balanceOf read Passed No Issue

17 transfer write Passed No Issue

18 allowance read Passed No Issue

19 approve write Passed No Issue

AntiHACK.me | www.antihack.me

20 transferFrom write Passed No Issue

21 increaseAllowance write Passed No Issue

22 decreaseAllowance write Passed No Issue

23 _transfer internal Passed No Issue

24 _mint internal Passed No Issue

25 _burn internal Passed No Issue

26 _approve internal Passed No Issue

27 _burnFrom internal Passed No Issue

28 init write Passed No Issue

29 mint write access only Owner No Issue

30 burn write Owner can burn anyone’s
token

Refer Audit
Findings

31 delegates external Passed No Issue

32 delegate external Passed No Issue

33 delegateBySig external Passed No Issue

34 getCurrentVotes external Passed No Issue

35 getPriorVotes external Passed No Issue

36 _delegate internal Passed No Issue

37 _moveDelegates internal Passed No Issue

38 _writeCheckpoint internal Passed No Issue

39 safe32 internal Passed No Issue

40 getChainId internal Passed No Issue

ProxyAdmin.sol
(1) Inherited contracts

(a) Context

(b) Ownable

(c) Proxy

(d) ProxyAdmin

AntiHACK.me | www.antihack.me

(e) UpgradeableProxy

(f) TransparentUpgradeableProxy

(2) Events

(a) event OwnershipTransferred(address indexed previousOwner, address indexed

newOwner);

(b) event Upgraded(address indexed implementation);

(c) event AdminChanged(address previousAdmin, address newAdmin);

(3) Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 owner read Passed No Issue

3 onlyOwner modifier Passed No Issue

4 isOwner read Passed No Issue

5 renounceOwnership write access only Owner No Issue

6 transferOwnership write access only Owner No Issue

7 _transferOwnership internal Passed No Issue

8 _delegate internal Passed No Issue

9 _implementation internal Passed No Issue

10 _fallback internal Passed No Issue

11 _beforeFallback internal Passed No Issue

12 getProxyImplementatio
n

read Passed No Issue

13 getProxyAdmin read Passed No Issue

14 changeProxyAdmin write access only Owner No Issue

15 upgrade write access only Owner No Issue

16 upgradeAndCall write access only Owner No Issue

17 _implementation internal Passed No Issue

18 _upgradeTo internal Passed No Issue

AntiHACK.me | www.antihack.me

19 _setImplementation write Passed No Issue

20 ifAdmin modifier Passed No Issue

21 admin external access by ifAdmin No Issue

22 implementation external access by ifAdmin No Issue

23 changeAdmin external access by ifAdmin No Issue

24 upgradeTo external access by ifAdmin No Issue

25 upgradeToAndCall external access by ifAdmin No Issue

26 _admin internal Passed No Issue

27 _setAdmin write Passed No Issue

28 _beforeFallback internal Passed No Issue

TransparentUpgradeableProxy.sol
(1) Inherited contracts

(a) Proxy

(b) UpgradeableProxy

(2) Events

(a) event Upgraded(address indexed implementation);

(b) event AdminChanged(address previousAdmin, address newAdmin);

(3) Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue

2 _delegate internal Passed No Issue

3 _implementation internal Passed No Issue

4 _fallback internal Passed No Issue

5 _beforeFallback internal Passed No Issue

6 _implementation internal Passed No Issue

7 _upgradeTo internal Passed No Issue

AntiHACK.me | www.antihack.me

8 _setImplementation write Passed No Issue

9 ifAdmin modifier Passed No Issue

10 admin external access by ifAdmin No Issue

11 implementation external access by ifAdmin No Issue

12 changeAdmin external access by ifAdmin No Issue

13 upgradeTo external access by ifAdmin No Issue

14 upgradeToAndCall external access by ifAdmin No Issue

15 _admin internal Passed No Issue

16 _setAdmin write Passed No Issue

17 _beforeFallback internal Passed No Issue

AntiHACK.me | www.antihack.me

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

AntiHACK.me | www.antihack.me

Audit Findings

Critical

No Critical severity vulnerabilities were found.

High

No High severity vulnerabilities were found.

Medium

(1) Unlimited token minting: Acts.sol

Token minting without any maximum limit is considered inappropriate for tokenomics.

Resolution: We recommend placing some limit on token minting to mitigate this issue. If

this is a part of the plan then disregard this issue.

Status: Acknowledged

(2) Owner can burn anyone’s token: Acts.sol, INFLUENCIO.sol

Owner can burn any users’ tokens.

Resolution: We suggest changing the code so only token holders can burn their own

tokens and not anyone else. Not even a contract creator.

Low

No Low severity vulnerabilities were found.

AntiHACK.me | www.antihack.me

Very Low / Discussion / Best practices:

(1) Use latest solidity version: TransparentUpgradeableProxy.sol, Acts.sol,

INFLUENCIO.sol, ProxyAdmin.sol

Using the latest solidity will prevent any compiler level bugs.

Resolution: We suggest using version > 0.8.0.

Centralization
These smart contracts have some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● mint: The Acts owner can create a `_amount` token to `_to`.

● burn: The Acts owner can burn an amount from the account.

● changeProxyAdmin: The ProxyAdmin owner can change the admin of `proxy` to

`New Admin`.

● upgrade: The ProxyAdmin owner can upgrade `proxy` to `implementation`.

● upgradeAndCall: The ProxyAdmin owner can upgrade `proxy` to `implementation`

and call a function for the new implementation.

● admin: The TransparentUpgradeableProxy admin can return the current admin.

● implementation: The TransparentUpgradeableProxy admin can return the current

implementation.

● changeAdmin: The TransparentUpgradeableProxy admin can change the admin of

the proxy.

● upgradeTo: The TransparentUpgradeableProxy admin can upgrade the

implementation of the proxy.

● upgradeToAndCall:The TransparentUpgradeableProxy admin can upgrade the

implementation of the proxy, and then call a function from the new implementation

as specified by `data`, which should be an encoded function call. This is useful to

initialize new storage variables in the proxied contract.

● mint: The INFLUENCIO owner can create a `_amount` token to `_to`.

● burn: The INFLUENCIO owner can burn an amount from the address.

AntiHACK.me | www.antihack.me

Conclusion

We were given all contract codes in the form of BSCscan links. And we have used all

possible tests based on given objects as files. We observed some issues, but they are not

critical. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

AntiHACK.me | www.antihack.me

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

AntiHACK.me | www.antihack.me

Documenting Results:

We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

AntiHACK.me | www.antihack.me

Disclaimers
AntiHACK.me Disclaimer

AntiHACK.me team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Because the total number of test cases are unlimited, the audit makes no statements or
warranties on security of the code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or any other statements of the
contract. While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only. We also suggest
conducting a bug bounty program to confirm the high level of security of this smart
contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

AntiHACK.me | www.antihack.me

Appendix

Code Flow Diagram - Influencio Protocol

Acts Diagram

AntiHACK.me | www.antihack.me

INFLUENCIO Diagram

AntiHACK.me | www.antihack.me

ProxyAdmin Diagram

AntiHACK.me | www.antihack.me

TransparentUpgradeableProxy Diagram

AntiHACK.me | www.antihack.me

Slither Results Log

Slither log >> Acts.sol

AntiHACK.me | www.antihack.me

Slither log >> INFLUENCIO.sol

AntiHACK.me | www.antihack.me

Slither log >> ProxyAdmin.sol

AntiHACK.me | www.antihack.me

Slither log >> TransparentUpgradeableProxy.sol

AntiHACK.me | www.antihack.me

Solidity Static Analysis

Acts.sol

AntiHACK.me | www.antihack.me

INFLUENCIO.sol

AntiHACK.me | www.antihack.me

ProxyAdmin.sol

AntiHACK.me | www.antihack.me

AntiHACK.me | www.antihack.me

TransparentUpgradeableProxy.sol

AntiHACK.me | www.antihack.me

AntiHACK.me | www.antihack.me

Solhint Linter

Acts.sol

Acts.sol:1:1: Error: Compiler version ^0.5.5 does not satisfy the r
semver requirement
Acts.sol:64:28: Error: Avoid using low level calls.
Acts.sol:385:28: Error: Code contains empty blocks

INFLUENCIO.sol

INFLUENCIO.sol:1:1: Error: Compiler version ^0.5.5 does not satisfy
the r semver requirement
INFLUENCIO.sol:64:28: Error: Avoid using low level calls.
INFLUENCIO.sol:429:28: Error: Code contains empty blocks
INFLUENCIO.sol:870:17: Error: Avoid to make time-based decisions in
your business logic

ProxyAdmin.sol

ProxyAdmin.sol:2:1: Error: Compiler version ^0.5.0 does not satisfy
the r semver requirement
ProxyAdmin.sol:64:28: Error: Avoid using low level calls.
ProxyAdmin.sol:157:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
ProxyAdmin.sol:211:41: Error: Code contains empty blocks

TransparentUpgradeableProxy.sol

TransparentUpgradeableProxy.sol:1:1: Error: Compiler version ^0.5.5
does not satisfy the r semver requirement
TransparentUpgradeableProxy.sol:64:28: Error: Avoid to use low level
calls.
TransparentUpgradeableProxy.sol:75:9: Error: Avoid to use inline
assembly. It is acceptable only in rare cases
TransparentUpgradeableProxy.sol:129:41: Error: Code contains empty
blocks

AntiHACK.me | www.antihack.me

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

AntiHACK.me | www.antihack.me

AntiHACK.me | www.antihack.me

