CHLAMYDIA PNEUMONIAE AS A RESPIRATORY PATHOGEN

David L. Hahn¹, Anthony A. Azenabor², Wandy L. Beatty³ and Gerald I. Byrne³

¹Arcand Park Clinic, Dean Medical Center, Madison WI 53704, ²Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison. WI 53706, ³Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, WI

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Biology and Life Cycle
4. Host Immune Response and Pathogenesis
5. Epidemiology
6. Clinical Manifestations
 6.1. Acute respiratory illness
 6.2. Chronic respiratory illnesses
7. Diagnosis
8. Treatment
9. Conclusion
10. References

1. ABSTRACT

Chlamydia pneumoniae is a recently recognized human respiratory pathogen with a unique biphasic life cycle characterized by an obligate intracellular (replicative) and an extracellular (infectious) form of the organism. C. pneumoniae is widely distributed and, via the respiratory route, infects the majority of the world’s population. The majority (70%) of acute human C. pneumoniae respiratory tract infections are asymptomatic or only mildly symptomatic but a minority (30%) cause more severe respiratory illnesses including community-acquired pneumonia, bronchitis and a variety of upper airway illnesses. After acute infection the C. pneumoniae intracellular life cycle is characterized by the development of metabolically inert (and thus antibiotic resistant) atypical “persistent” inclusions; this biologic behavior correlates with a clinical course following acute symptomatic illness that is characterized by persistence of symptoms that are difficult to treat with antibiotics. A role for C. pneumoniae in chronic respiratory illness is currently under investigation: “persistent” intracellular inclusions contain increased quantities of chlamydial heat shock protein 60 (hsp 60), a highly immunogenic protein that has been implicated in the pathogenesis of established chronic inflammatory chlamydial diseases (blinding trachoma, pelvic inflammatory disease and tubal infertility). An emerging body of evidence, including host immune response to chlamydial hsp 60, links C. pneumoniae infection with a spectrum of chronic inflammatory lung diseases of currently unknown etiology (asthma, chronic bronchitis and chronic obstructive pulmonary disease (COPD)). Further laboratory developments, including reliable and practical diagnostic methods and antibiotics effective against persistent infection, will be required to recognize and treat acute C. pneumoniae infection, and to advance our knowledge and understanding of the role of chronic infection in asthma, chronic bronchitis and COPD.

2. INTRODUCTION

Chlamydia pneumoniae was first isolated in 1965 from the eye of a child during a trachoma vaccine study in Taiwan (1) and was designated TW-183. A second isolate from the respiratory tract (AR-39) was obtained in 1983 from a University of Washington student (2). The original strain name TWAR was obtained from the laboratory designation for these first two isolates. In 1989, the TWAR organism was designated as a new species, Chlamydia pneumoniae, on the basis of distinct morphology, DNA sequence and clinical disease spectrum (3). More recently, C. pneumoniae was placed into a new genus called Chlamydophila (4). According to this scheme, the genus Chlamydia would comprise members of the classic C. trachomatis biovars and the genus Chlamydophila would be composed of most veterinary chlamydiae and C. pneumoniae. On the one hand it is clear that existing taxonomic criteria for this group of organisms is inadequate, but it is also clear that there is little enthusiasm among the working research community for splitting human chlamydial pathogens into two genera. For this reason, the former, more widely recognized designation (Chlamydia pneumoniae) will be used in this review.

Despite its recent isolation, C. pneumoniae may not be a new organism, since it is possible that positive Chlamydia serology for past acute respiratory disease outbreaks and pneumonia epidemics could have been caused by C. pneumoniae but were wrongly diagnosed as Chlamydia psittaci infections. For example, studies on
C. pneumoniae as a respiratory pathogen

Figure 1. Transmission electron micrograph of Chlamydia pneumoniae associated with macrophages (RAW cells). A. Typical pear shaped EBs (arrows) are shown at the macrophage surface. B. Intracellular EBs display the typical pear shaped morphology and a large periplasmic space containing round electron-dense bodies (arrowheads). Scale bar = 0.5 µm.

Figure 2. Chlamydial life cycle. Chlamydiae adhere to the host cell and are endocytosed (A). The pathogen prevents phagosome-lysosome fusion (B), differentiates into the reticulate body (C), and begins replicating within the inclusion (D). Replicating reticulate bodies may re-differentiate back into elementary bodies (E, F) and lyse the host cell to begin a new round of infection. In addition, under conditions of immune stress, such as the presence of immune-regulated cytokines (e.g. IFN-gamma), the pathogen may enter a non-infectious, non-replicating persistent state (G); when the stress is removed, the pathogen can re-differentiate into infectious EB and begin a new cycle of replication. In certain host cells (e.g. alveolar macrophages, circulating monocytes, C. pneumoniae may be rendered permanently persistent, but still capable of pathogenic potential).

stored sera from military outbreaks in Finland and Denmark and from a boarding school in England using microimmunofluorescence (MIF) show that all were due to C. pneumoniae (5-7). C. pneumoniae was first associated with clinical illness during an epidemic of mild pneumonia caused by acute C. pneumoniae, persistent forms of intracellular chlamydiae may escape eradication and contribute to the presence of persistent infection. This article examines the biology and life cycle, host immune response and pathogenesis, epidemiology, clinical symptoms, diagnosis and treatment of C. pneumoniae as a respiratory pathogen.

3. BIOLOGY AND LIFE CYCLE

C. pneumoniae can show unique morphologic characteristics not seen in other Chlamydia species; the elementary bodies (EBs) are pear-shaped with periplasmic space and a loose outer membrane (Figure 1A) (14) and have closely associated periplasmic minibodies whose functional significance is unknown (Figure 1B) (15). On the basis of its unique genome, EB morphology, seroreactivity and clinical disease spectrum, C. pneumoniae has been designated as a new chlamydial species (3). Only one serovar or immunotype has been found; when isolates associated with atherosclerotic tissues were compared with respiratory isolates, no differences were found (16). Although all isolates of C. pneumoniae are closely related and distinct from C. trachomatis, the level of similarity for individual encoded proteins spans a wide spectrum (22-95% amino acid identity) with an average of 62% amino acid identity between orthologs from the two species (17). The C. pneumoniae genome is larger than that of C. trachomatis and contains 214 coding sequences not found in C. trachomatis. Perhaps C. pneumoniae invasion and survival within a broader host cell range than C. trachomatis may relate to these unique sequences (17) although clear links to differences in pathogenicity potential, the genome and the proteome are currently absent. Conversely, C. pneumoniae lacks some genes present in C. trachomatis and this difference may also relate to pathogenesis.

For instance, the tryptophan biosynthesis operon (trp A, trp B, trp R) identified in C. trachomatis are absent in C. pneumoniae (17). This specific deficiency renders C. pneumoniae totally dependent on host tryptophan and may account for the development of persistent infection in the host thus favoring the establishment of chronic disease, especially since immune regulated cytokine modulation of chlamydial host cells involves activation in ways that limit intracellular nutrient pools, including the availability of the essential amino acid tryptophan. Competition for essential nutrients between intracellular chlamydiae and their host cells has long been associated with a nonreplicating persistent stage of chlamydial development (18) that is inferred to be important in chronic disease development (see below).

The fundamental principles of chlamydial growth, development, interaction with the host and basic biology center on the developmental cycle depicted in Figure 2. The C. pneumoniae life cycle resembles that of other chlamydiae. The chlamydial life cycle is biphasic, consisting of two alternating functional and morphological forms. The elementary body (EB), measuring 0.1 to 0.2 microns, is the metabolically inert and infectious form that

C. pneumoniae as a respiratory pathogen

is capable of extracellular survival. The EB is devoid of peptidoglycan and maintains structural integrity via a network of disulfide cross linkages involving two cysteine-rich proteins and/or the major outer membrane protein (MOMP) (19). After binding to an undefined host membrane receptor, the EB undergoes endocytosis and is then detectable within a membrane-bound phagosome that incorporates host cell phospholipids (sphingolipids) in the inclusion membrane (20-22). Chlamydiae block host cell responses, such as phagolysosomal fusion, that could be detrimental to their survival. Within the phagosome, EBs transform into the replicative, noninfectious reticulate body (RB), which is larger than the EB, measuring 0.5 to 1.0 microns. The RB is capable of DNA, RNA, and protein synthesis and divides by binary fission. Transformation of EB to RB also results in loss of outer envelope cross-linked proteins and loss of genome condensation via histone-like proteins. The entire process of differentiation is defined by developmentally related gene transcription patterns that are just now being worked out. Chlamydiae have been thought of as energy parasites, but genomic data provide evidence that these organisms can produce at least modest levels of nucleoside triphosphates and reducing power via partially functional Embden-Meyerhoff-Parnas, pentose phosphate, and TCA pathways (23). RB multiplication results in the formation of an intracellular microcolony of chlamydiae that is referred to as the inclusion. Chlamydiae remain within the confines of the host cell vesicle, but modify this structure in several ways during the course of their intracellular existence. Chlamydiae (Inc category-proteins) are secreted and inserted into the inclusion membrane. Chlamydiae also code for genes that are capable of producing a functional type III secretion system (23). Current speculation suggests that both Inc proteins and proteins that are secreted through the inclusion membrane and into the host cell cytoplasm play important roles in chlamydiae-host interactions, including host cell functional changes, qualitative changes in the immune response to chlamydiae and possible effects on the pathogenesis of chlamydial disease patterns.

The interaction between chlamydiae and an individual host cell can lead to either a productive or a non-productive infection. In productive infections, RB multiplication slows down and eventually leads to a second round of differentiation where RB revert to EB whereupon EB are released to produce another round of host cell invasion and RB replication.

In non-productive infections, specific stimuli can initiate aberrant or persistent Chlamydia development, representing a variation from the normal developmental cycle (24, 25). Factors implicated in producing persistent or aberrant growth include cytokine production and the depletion of tryptophan (26). The immune-regulated cytokine interferon-gamma (IFN-gamma) has been shown to inhibit the growth of C. pneumoniae in cell culture and to induce the persistent state (27). The mechanism of action in cultured human cell lines has been elucidated and involves the induction of the host cell enzyme, indolamine 2,3-dioxygenase (IDO) that catalyzes oxidative decyclization of the essential amino acid tryptophan to N-formylkynurenine (25, 28). IFN-gamma-stimulated IDO production is common to many cell types, including fibroblasts, primary epithelial cells, peripheral blood mononuclear cells and human macrophages (29-31). Elevated levels of exogenous tryptophan in culture medium have been shown to reverse IFN-gamma inhibitory effects (30, 32, 33) thereby revealing that tryptophan is required for chlamydial growth in strains that lack the partial trp operon. Thus, IFN-gamma mediated IDO induction and subsequent tryptophan depletion is known to initiate persistent forms of chlamydiae (18) that are characterized by (a) aberrant morphology, (b) failure to recover infectious organisms (24, 34, 35), (c) expression of reduced amount of major outer membrane protein, a potential protective antigen (36) and (d) increased levels of the chlamydial 57-kDa heat shock protein that may contribute to disease pathogenesis (37). Since persistent chlamydiae are less metabolically active than rapidly dividing typical RB, the persistent form may not be susceptible to antimicrobial killing. The clinical implications of antibiotic resistance of persistent chlamydial forms are discussed below under Treatment.

Chlamydia pneumoniae is transmitted from person to person via aerosols and initiates infections by invading and growing in lung epithelial cells. The organism also infects alveolar macrophages (38), although it is probably incapable of establishing productive infections in these cells. In addition, it is now established that C. pneumoniae invades and persists in extrapulmonary body tissues, such as peripheral blood mononuclear cells (39) and vascular tissue (40). Chlamydia-infected monocytes and macrophages have been proposed as a reservoir for systemic dissemination in vivo (41). These cells, and perhaps monocytes recruited to the alveolar vascular areas, may act as vehicles to transport the organism to extrapulmonary sites (42, 43).

4. HOST IMMUNE RESPONSE AND PATHOGENESIS

Human chlamydial diseases are generally thought to arise from immunopathologic host responses to infection (44). Facts about immune mechanisms involved in human C. pneumoniae respiratory infections are scanty compared to what is known about diseases caused by C. trachomatis. The nature of responses in animal experiments of C. pneumoniae infection is dependent on the dose of inoculum: high infective doses (10^7 infectious units) in mice produced acute patchy pneumonia with PMN infiltration and alveolar and bronchiolar exudates (45, 46) while lower infective doses produced more chronic inflammation developing gradually with perivascular and peribronchial lymphocytic infiltration (47). In the mouse pneumonitis model, bronchial ciliated epithelial cells and interstitial macrophages were infected after intranasal inoculation, and early infection was accompanied by extensive deciliation (46). *C. pneumoniae* was difficult to detect four days after inoculation despite a persisting mononuclear infiltrate, suggesting an immunopathologic basis for the acute phase of disease (46). Also after intranasal inoculation, C. pneumoniae disseminated from
the lung to other organs and was found in systemic macrophages (48). After re-infection, an inflammatory reaction, consisting of peribronchial and perivascular lymphocytes and plasma cells, was profound and rapid despite the inability to isolate the organism (47). At this stage of infection, reactivation of C. pneumoniae lung infection occurs in mice after immunosuppression by cortisone (49).

Human host response to C. pneumoniae infection is characterized by T-cell proliferation, indicating that there is a role for cell mediated immunity (50). Humoral immune response occurs but may not be entirely protective. Presence of IgG antibody (either natural or administered) was associated with decreased organism recovery but no change in the severity of inflammation in a mouse model (51), suggesting that antibody may attack extracellular EBs but intracellular RBs may be protected from antibody neutralization. C. pneumoniae induces the secretion of IL-1-beta, IL-6, and TNF-alpha by human mononuclear cells. TNF-alpha is also induced in human peripheral mononuclear cells infected by C. pneumoniae (52, 53). Infection of airway epithelial cells by C. pneumoniae activates NF-kappaB pathways, stimulates production of adhesion molecules and IL-8, and enhances trans epithelial migration of polymorphonuclear leukocytes (54). Further details of the role of cytokines with regard to induction of cellular and humoral immune response in C. pneumoniae respiratory infections is not well understood. The observation that, in murine models, corticosteroid administration during secondary infection allows the recovery of previously non-cultivable organisms suggests that persistent infection in the lungs is possible following an acute phase of disease (49), thereby indicating that immune response to C. pneumoniae may only suppress the organism but not totally eliminate it.

6. CLINICAL MANIFESTATIONS

6.1. Acute respiratory illness

C. pneumoniae is an established cause of acute upper and lower respiratory tract illnesses that may present as acute or subacute infection with a biphasic onset consisting of upper airway symptoms (usually pharyngitis) that may be followed in 1 to 3 weeks by lower respiratory tract symptoms (62-64). Prolonged symptoms are common prior to seeking medical attention (65). These clinical manifestations are in keeping with what is known about the in vitro behavior and tendency to persistence. Generally, respiratory illnesses caused by acute C. pneumoniae infection are indistinguishable from illnesses caused by respiratory viruses and Mycoplasma pneumoniae.

Approximately 70% of serologically documented acute infections occur in individuals who do not seek medical attention (59). It is not known how many of these 70% remain completely asymptomatic, nor how many have minor symptoms for which they do not seek care, or for which they self-medicate. It is likely that many patients with mild upper and lower respiratory tract symptoms caused by C. pneumoniae infection do not seek medical attention. During an epidemic of acute C. pneumoniae infection that occurred in a Japanese middle school, Hagiwara et al. (66) reported that, in addition to patients with more severe lower respiratory tract symptoms, a substantial number of students reported rhinorrhea (69%), malaise (60%), sore throat (51%) and very slight eye discharge (14%), a syndrome they referred to as a “chlamydia cold.” On the other hand, endemic C. pneumoniae infections accounted for only 2% of common colds (67). Nevertheless, these data indicate that acute C. pneumoniae infection is capable of producing only minor symptoms that could often go unreported.

Data on C. pneumoniae as a specific cause for non-pneumonic respiratory illnesses show wide variation from study to study probably as a result of the heterogeneity of populations reported on (population-based, primary care, referral practices), age groups, geographical sites, time periods and diagnostic methods used. The proportion of pharyngitis, as a primary diagnosis, attributable to C. pneumoniae infection in non-referred populations ranges from 1-2% of university students (68) or military basic trainees (69) to 8% of Finnish outpatients (70). In patients referred to a Japanese ENT clinic, prevalence of C. pneumoniae infections in tonsillitis (19%) and in laryngitis (24%) was higher, perhaps reflecting the propensity of this organism to produce recalcitrant symptoms leading to specialty care. On the other hand, a study of 51 children and adults admitted to an Irish hospital with severe, acute tonsillitis failed to detect C. pneumoniae infection in any patient (71). C. pneumoniae has been reported to cause from 1% of bronchitis in general practice patients in Iceland (72) and University students in California (73) to 20-23% of bronchitis in U.S. emergency room patients (65), Japanese inpatients (74) and outpatients from an ENT clinic (75). However, most other studies have reported an average frequency of around 5% (2, 76-78).
C. pneumoniae as a respiratory pathogen

Table 1. Clinical manifestations of acute *Chlamydia pneumoniae* respiratory infection in selected patient populations

<table>
<thead>
<tr>
<th>Population</th>
<th>Pneumonia</th>
<th>Bronchitis</th>
<th>Otitis media</th>
<th>Pharyngitis/ Laryngitis/ Tonsillitis</th>
<th>Sinusitis</th>
<th>Other</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 adult student & community</td>
<td>40</td>
<td></td>
<td>47²</td>
<td>7 (30)</td>
<td>3 (17)</td>
<td>3</td>
<td>62</td>
</tr>
<tr>
<td>patients from Seattle, Washington</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69 young Finnish military</td>
<td>99</td>
<td></td>
<td></td>
<td>1 (20)</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>conscripts during 4 pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>epidemics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 Swedish patients with</td>
<td>61</td>
<td></td>
<td>30²</td>
<td></td>
<td>(18)</td>
<td>9</td>
<td>82</td>
</tr>
<tr>
<td>"ornithosis" later confirmed as</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. pneumoniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 adult outpatients from</td>
<td>16²</td>
<td></td>
<td>84²</td>
<td></td>
<td>(37)</td>
<td>(16)</td>
<td>76</td>
</tr>
<tr>
<td>Madison, Wisconsin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 patients at an ENT outpatient</td>
<td>34</td>
<td>15</td>
<td>46</td>
<td>5</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>clinic in Tokyo, Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 middle-aged and older</td>
<td>10²</td>
<td></td>
<td>57²</td>
<td></td>
<td>10</td>
<td>14</td>
<td>77</td>
</tr>
<tr>
<td>outpatients from Seattle,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 mainly adult Swedish outpatients</td>
<td>3</td>
<td>58</td>
<td></td>
<td>21</td>
<td>6</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>identified during an</td>
<td>4</td>
<td></td>
<td>32</td>
<td>3</td>
<td>25 (not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epidemic of respiratory illness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>specified)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Percent of documented infections that presented as a particular primary diagnosis (figures in parentheses refer to the percent of cases having a particular secondary diagnosis in addition to the primary diagnosis). ² Some patients also had wheezing

C. pneumoniae causes about 10% of all community-acquired pneumonia in adults. Most studies cite *C. pneumoniae* as the second or third most common cause of pneumonia with *S. pneumoniae* usually being the most common etiologic agent (63). Pneumonia due to *C. pneumoniae* may be severe and require hospitalization, but many cases are mild and/or go undetected (6, 8, 79). The first population-based study in immunocompetent adults drawn from general practice reported that *C. pneumoniae* was the most commonly identified pathogen in ambulatory patients diagnosed with pneumonia (80). However, this study used serologic methods and criteria that probably overestimated the prevalence of acute *C. pneumoniae* infection and underestimated that of *S. pneumoniae*. A more recent population-based study that used more specific serologic criteria and that also used comprehensive serodiagnostic testing for *S. pneumoniae* found that the latter organism was most prevalent (125 patients), with *C. pneumoniae* and *M. pneumoniae* next most common (30 patients each) (81). In this study the etiologic profiles for hospitalized and ambulatory patients were similar.

Table 1 illustrates the spectrum of acute upper and lower respiratory illnesses that can be caused by acute *C. pneumoniae* infection. Data in Table 1 are presented as the percentage of identified acute *C. pneumoniae* infections that presented with a particular primary respiratory diagnosis (pneumonia, bronchitis, etc.). Since *C. pneumoniae* often simultaneously affects multiple parts of the respiratory tract, secondary diagnoses are also noted. For most studies, pneumonia predominated and bronchitis was also common. Pharyngitis was a common secondary diagnosis that often accompanied manifestations of lower respiratory tract illness (LRTI), but was less common as a sole manifestation of acute infection. Laryngitis as a secondary diagnosis was also fairly common but tonsillitis was rare. A clinical diagnosis of sinusitis also accompanied *C. pneumoniae* LRTI but was not as common as pharyngitis. Otitis media was less commonly reported but did occur. As noted previously, up to 70% of infections are asymptomatic (59) and therefore are not included in the studies presented in Table 1.

6.2. Chronic respiratory illnesses

Because *C. pneumoniae* is known to produce persistent infection *in vitro* and chronic lung infection *in vivo* animal models, one must accept the possibility of a role in chronic human respiratory illnesses. Indeed, presence of chronic infection has been suggested in a spectrum of chronic respiratory conditions including adult-onset asthma (76), chronic bronchitis (85) and emphysema (86). A prospective serologic and microbiologic study found that some cases of acute wheezing illness caused by *C. pneumoniae* progressed to chronic asthma (87) that was successfully treated with prolonged courses of appropriate antibiotics (88). It is unknown what amount of asthma may be caused by *C. pneumoniae* infection but this line of investigation is important since the current worldwide asthma pandemic might be related to infection (89). In a recent study, species-specific staining for *C. pneumoniae*
C. pneumoniae as a respiratory pathogen

was reported in 100% of lung resection specimens and the organism burden was positively associated with COPD (90). Evidence that Chlamydia pneumoniae chronic infection increases the risk of bacterial colonization in chronic bronchitis has also been presented (85). C. pneumoniae serology and organism detection are associated with asthma and COPD (13) but it is unclear whether these associations are causal.

The laboratory characteristics of C. pneumoniae to produce (1) in vitro persistence (91) and (2) chronic lung infection in animal models (47, 49) support the human studies suggesting that persistent infection is associated with chronic lung diseases. C. pneumoniae infection of cultured human alveolar macrophages and bronchial epithelial cells can produce cytokines that are associated with the inflammation found in nonatopic asthma (54, 92, 93). In cultured human bronchial cells, C. pneumoniae infection produces basic fibroblast growth factor that could be involved in lung fibrosis and remodeling (94). In human endothelial cells, C. pneumoniae regulates metalloproteinase expression (95) that could play a role in lung remodeling in asthma and COPD if the same effects occur in lung cell types.

Established chronic inflammatory diseases caused by persistent C. trachomatis infection (trachoma, pelvic inflammatory disease and tubal infertility) are associated with seroreactivity to chlamydial heat shock protein (hsp) 60 that is thought to be pathogenic in producing chronic inflammatory damage in the diseased tissues (96). If adult-onset asthma were a chronic chlamydial disease then a similar specific association with chlamydial hsp 60 might be expected. The first studies to examine this question did find a significant positive association of C. pneumoniae-specific hsp 60 antibodies and asthma (97-99). C. pneumoniae IgG antibody has also been specifically associated with an accelerated decline in lung function in patients with nonatopic adult-onset asthma (100).

Asthma, chronic bronchitis and COPD are associated with morbidity and mortality from atherosclerotic cardiovascular disease (101) that is currently being investigated extensively in relationship to C. pneumoniae infection (12). Could chronic lung carriage of C. pneumoniae contribute to severity of atherosclerosis via continual seeding of the vascular bed by infected monocytes? The answer to this question may have relevance to treatment and even to prevention of heart disease (102). A preliminary study has found an association of C. pneumoniae-specific IgA antibodies with the severity of atherosclerotic cardiovascular heart disease (103). Since the source of the IgA antibodies could be the lung, this may be evidence for the proposed scenario. The concept that chronic obstructive lung diseases and atherosclerosis may be linked through chlamydial infection deserves further investigation.

7. DIAGNOSIS

Diagnosis of acute C. pneumoniae respiratory tract infection should involve multiple methods. A diagnostic method based solely on one technique is inadequate since even organism identification at a single time point cannot distinguish acute from chronic infection. Generally speaking, diagnosis involves organism identification and serological assays (104); organism identification in the absence of positive serology may indicate chronic infection or delay in acute antibody formation, a phenomenon that appears to be more common in children than in adults. Chronic infection, on the other hand, may occur in all age groups.

Organism identification usually involves cell culture, polymerase chain reaction (PCR) testing and immunofluorescent assays such as direct fluorescent antibody (DFA) and indirect fluorescent antibody (IFA) tests. The currently recommended (104) serologic assay is the microimmunofluorescence (MIF) technique (105, 106). Other serologic techniques include the complement fixation (CF) test, which may only be positive in acute primary C. pneumoniae infections, and several enzyme immunoassays, none of which have been sufficiently standardized for clinical use (104). It is generally agreed that a four-fold titer rise in MIF antibody in samples obtained 4 to 8 weeks apart is good evidence for acute infection (104). Presence of species-specific IgM MIF antibody also indicates acute infection. The presence of a high IgG titer (≥1:512) in a single specimen must be interpreted with caution, as this finding may be common in asymptomatic older patients, particularly those with COPD (104). Certain hospitals and commercial laboratories do provide serological testing that should be attempted to support the diagnosis, although caution in the interpretation of the results is required. Antigenic similarities between C. pneumoniae and C. trachomatis can affect interpretation, since serologic cross-reactivity between the two species may affect specificity of serologic testing. However, PCR testing can be entirely species-specific if appropriate primers are chosen. More widespread availability of organism identification testing, such as PCR, would be welcomed. Additionally, development of a rapid, automated, species-specific ELISA test with an objectively measured endpoint would be of significant benefit.

8. TREATMENT

Illnesses due to acute C. pneumoniae infection are often difficult to treat. For example, significant difficulty was encountered in the treatment of cases during a Finnish military epidemic (1057 in which 13 male conscripts who had proven C. pneumoniae pneumonia (primary infection shown serologically) required 23 courses of antibiotics (a tetracycline or macrolide) to control persistent and/or relapsing symptoms. In a University of Washington study of students with acute infections (bronchitis and pneumonia), additional courses of antibiotics were also frequently required to treat continuing symptoms of cough and malaise (2). Even after clinical cure, post treatment persistence of infection has been frequently documented in patients treated for bronchitis or pneumonia (108-110). Corresponding to difficulties encountered in symptomatic treatment, difficulties in eradication have also been reported after antibiotic
treatment of culture positive children with asthma (111). It appears that reliable eradication of this organism after acute respiratory infection awaits the development of new agents that are capable of eliminating persistent forms of *C. pneumoniae*.

9. CONCLUSION

Only about 30% of *C. pneumoniae* infections cause acute upper and lower respiratory tract illnesses severe enough to motivate medical care. Most of the infections (70%) are asymptomatic or produce minimal symptoms. Clinical illnesses are indistinguishable from those caused by respiratory viruses or other atypical organisms such as *Mycoplasma pneumoniae*. Therefore, prompt treatment depends on routine performance of an adequate laboratory differential diagnosis. Such testing is not yet available, nor can the acute infection be reliably eradicated using the traditional courses of antibiotics currently in use to treat respiratory infections. Another important issue requiring further investigation is whether chronic obstructive lung diseases such as asthma and COPD can be ameliorated or even prevented by prompt recognition and treatment of *C. pneumoniae* infection. Further applied laboratory research and antibiotic developments are needed to address these important questions.

10. REFERENCES

C. pneumoniae as a respiratory pathogen

C. pneumoniae as a respiratory pathogen

Key Words: *Chlamydia pneumoniae*, Acute Respiratory Illnesses, Bronchitis, Pneumonia, Chronic Respiratory Illnesses, Asthma, Chronic Obstructive Pulmonary Disease, Review

Send correspondence to: Dr Gerald I. Byrne, Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1300 University Avenue, Madison, WI 53706, Tel: 608-263-2494, Fax: 608-265-0683, E-mail: gibyrne@facstaff.wisc.edu