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Figure 1. Stable Video Diffusion samples. Top: Text-to-Video generation. Middle: (Text-to-)Image-to-Video generation. Bottom: Multi-
view synthesis via Image-to-Video finetuning.

Abstract
We present Stable Video Diffusion — a latent video diffu-

sion model for high-resolution, state-of-the-art text-to-video
and image-to-video generation. Recently, latent diffusion
models trained for 2D image synthesis have been turned
into generative video models by inserting temporal layers
and finetuning them on small, high-quality video datasets.
However, training methods in the literature vary widely,
and the field has yet to agree on a unified strategy for cu-

* Equal contributions.

rating video data. In this paper, we identify and evalu-
ate three different stages for successful training of video
LDMs: text-to-image pretraining, video pretraining, and
high-quality video finetuning. Furthermore, we demon-
strate the necessity of a well-curated pretraining dataset
for generating high-quality videos and present a system-
atic curation process to train a strong base model, includ-
ing captioning and filtering strategies. We then explore
the impact of finetuning our base model on high-quality
data and train a text-to-video model that is competitive with
closed-source video generation. We also show that our base
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model provides a powerful motion representation for down-
stream tasks such as image-to-video generation and adapt-
ability to camera motion-specific LoRA modules. Finally,
we demonstrate that our model provides a strong multi-view
3D-prior and can serve as a base to finetune a multi-view
diffusion model that jointly generates multiple views of ob-
jects in a feedforward fashion, outperforming image-based
methods at a fraction of their compute budget. We release
code and model weights at https://github.com/
Stability-AI/generative-models.

1. Introduction
Driven by advances in generative image modeling with
diffusion models [36, 64, 67, 72], there has been signifi-
cant recent progress on generative video models both in re-
search [8, 40, 78, 91] and real-world applications [51, 70]
Broadly, these models are either trained from scratch [39]
or finetuned (partially or fully) from pretrained image mod-
els with additional temporal layers inserted [8, 30, 41, 78].
Training is often carried out on a mix of image and video
datasets [39].

While research around improvements in video modeling
has primarily focused on the exact arrangement of the spa-
tial and temporal layers [8, 39, 41, 78], none of the afore-
mentioned works investigate the influence of data selection.
This is surprising, especially since the significant impact of
the training data distribution on generative models is undis-
puted [12, 100]. Moreover, for generative image modeling,
it is known that pretraining on a large and diverse dataset
and finetuning on a smaller but higher quality dataset sig-
nificantly improves the performance [12, 67]. Since many
previous approaches to video modeling have successfully
drawn on techniques from the image domain [8, 40, 41], it
is noteworthy that the effect of data and training strategies,
i.e., the separation of video pretraining at lower resolutions
and high-quality finetuning, has yet to be studied. This work
directly addresses these previously uncharted territories.

We believe that the significant contribution of data selec-
tion is heavily underrepresented in today’s video research
landscape despite being well-recognized among practition-
ers when training video models at scale. Thus, in contrast
to previous works, we draw on simple latent video diffu-
sion baselines [8] for which we fix architecture and training
scheme and assess the effect of data curation. To this end,
we first identify three different video training stages that
we find crucial for good performance: text-to-image pre-
training, video pretraining on a large dataset at low resolu-
tion, and high-resolution video finetuning on a much smaller
dataset with higher-quality videos. Borrowing from large-
scale image model training [12, 60, 62], we introduce a sys-
tematic approach to curate video data at scale and present an
empirical study on the effect of data curation during video

pretraining. Our main findings imply that pretraining on
well-curated datasets leads to significant performance im-
provements that persist after high-quality finetuning.

A general motion and multi-view prior Drawing on
these findings, we apply our proposed curation scheme to
a large video dataset comprising roughly 600 million sam-
ples and train a strong pretrained text-to-video base model,
which provides a general motion representation. We exploit
this and finetune the base model on a smaller, high-quality
dataset for high-resolution downstream tasks such as text-
to-video (see Figure 1, top row) and image-to-video, where
we predict a sequence of frames from a single conditioning
image (see Figure 1, mid rows). Human preference studies
reveal that the resulting model outperforms state-of-the-art
image-to-video models.

Furthermore, we also demonstrate that our model pro-
vides a strong multi-view prior and can serve as a base to
finetune a multi-view diffusion model that generates mul-
tiple consistent views of an object in a feedforward man-
ner and outperforms specialized novel view synthesis meth-
ods such as Zero123XL [13, 54] and SyncDreamer [55].
Finally, we demonstrate that our model allows for ex-
plicit motion control by specifically prompting the tempo-
ral layers with motion cues and also via training LoRA-
modules [30, 43] on datasets resembling specific motions
only, which can be efficiently plugged into the model.
To summarize, our core contributions are threefold: (i) We
present a systematic data curation workflow to turn a large
uncurated video collection into a quality dataset for gener-
ative video modeling. Using this workflow, we (ii) train
state-of-the-art text-to-video and image-to-video models,
outperforming all prior models. Finally, we (iii) probe the
strong prior of motion and 3D understanding in our models
by conducting domain-specific experiments. Specifically,
we provide evidence that pretrained video diffusion models
can be turned into strong multi-view generators, which may
help overcome the data scarcity typically observed in the
3D domain [13].

2. Background
Most recent works on video generation rely on diffusion
models [36, 80, 83] to jointly synthesize multiple con-
sistent frames from text- or image-conditioning. Diffu-
sion models implement an iterative refinement process by
learning to gradually denoise a sample from a normal
distribution and have been successfully applied to high-
resolution text-to-image [12, 60, 64, 67, 71] and video syn-
thesis [8, 27, 39, 78, 91].

In this work, we follow this paradigm and train a la-
tent [67, 88] video diffusion model [8, 21] on our video
dataset. We provide a brief overview of related works
which utilize latent video diffusion models (Video-LDMs)
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in the following paragraph; a full discussion that includes
approaches using GANs [9, 28] and autoregressive mod-
els [41] can be found in App. B.

Latent Video Diffusion Models Video-LDMs [8, 29, 30,
33, 93] train the main generative model in a latent space of
reduced computational complexity [20, 67]. Most related
works make use of a pretrained text-to-image model and in-
sert temporal mixing layers of various forms [1, 8, 27, 29,
30] into the pretrained architecture. Ge et al. [27] addition-
ally relies on temporally correlated noise to increase tempo-
ral consistency and ease the learning task. In this work, we
follow the architecture proposed in Blattmann et al. [8] and
insert temporal convolution and attention layers after every
spatial convolution and attention layer. In contrast to works
that only train temporal layers [8, 30] or are completely
training-free [49, 109], we finetune the full model. For text-
to-video synthesis in particular, most works directly condi-
tion the model on a text prompt [8, 93] or make use of an
additional text-to-image prior [21, 78].

In our work, we follow the former approach and show
that the resulting model is a strong general motion prior,
which can easily be finetuned into an image-to-video or
multi-view synthesis model. Additionally, we introduce
micro-conditioning [60] on frame rate. We also employ
the EDM-framework [48] and significantly shift the noise
schedule towards higher noise values, which we find to be
essential for high-resolution finetuning. See Section 4 for a
detailed discussion of the latter.

Data Curation Pretraining on large-scale datasets [76]
is an essential ingredient for powerful models in several
tasks such as discriminative text-image [62, 100] and lan-
guage [25, 59, 63] modeling. By leveraging efficient
language-image representations such as CLIP [45, 62, 100],
data curation has similarly been successfully applied for
generative image modeling [12, 60, 76]. However, dis-
cussions on such data curation strategies have largely been
missing in the video generation literature [39, 41, 78, 90],
and processing and filtering strategies have been intro-
duced in an ad-hoc manner. Among the publicly acces-
sible video datasets, WebVid-10M [6] dataset has been a
popular choice [8, 78, 110] despite being watermarked and
suboptimal in size. Additionally, WebVid-10M is often
used in combination with image data [76], to enable joint
image-video training. However, this amplifies the diffi-
culty of separating the effects of image and video data on
the final model. To address these shortcomings, this work
presents a systematic study of methods for video data cu-
ration and further introduces a general three-stage training
strategy for generative video models, producing a state-of-
the-art model.

3. Curating Data for HQ Video Synthesis
In this section, we introduce a general strategy to train a
state-of-the-art video diffusion model on large datasets of
videos. To this end, we (i) introduce data processing and cu-
ration methods, for which we systematically analyze the im-
pact on the quality of the final model in Section 3.3 and Sec-
tion 3.4, and (ii), identify three different training regimes
for generative video modeling. In particular, these regimes
consist of
• Stage I: image pretraining, i.e. a 2D text-to-image diffu-

sion model [12, 60, 67].
• Stage II: video pretraining, which trains on large amounts

of videos.
• Stage III: video finetuning, which refines the model on a

small subset of high-quality videos at higher resolution.
We study the importance of each regime separately in Sec-
tions 3.2 to 3.4.

3.1. Data Processing and Annotation
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Figure 2. Our initial dataset contains many static scenes and cuts
which hurts training of generative video models. Left: Average
number of clips per video before and after our processing, reveal-
ing that our pipeline detects lots of additional cuts. Right: We
show the distribution of average optical flow score for one of these
subsets before our processing, which contains many static clips.

We collect an initial dataset of long videos which forms the
base data for our video pretraining stage. To avoid cuts and
fades leaking into synthesized videos, we apply a cut detec-
tion pipeline1 in a cascaded manner at three different FPS
levels. Figure 2, left, provides evidence for the need for cut
detection: After applying our cut-detection pipeline, we ob-
tain a significantly higher number (∼4×) of clips, indicat-
ing that many video clips in the unprocessed dataset contain
cuts beyond those obtained from metadata.

Next, we annotate each clip with three different syn-
thetic captioning methods: First, we use the image captioner
CoCa [103] to annotate the mid-frame of each clip and use

1https://github.com/Breakthrough/PySceneDetect
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Table 1. Comparison of our dataset before and after fitering with
publicly available research datasets.

LVD LVD-F LVD-10M LVD-10M-F WebVid InternVid

#Clips 577M 152M 9.8M 2.3M 10.7M 234M
Clip Duration (s) 11.58 10.53 12.11 10.99 18.0 11.7
Total Duration (y) 212.09 50.64 3.76 0.78 5.94 86.80
Mean #Frames 325 301 335 320 - -
Mean Clips/Video 11.09 4.76 1.2 1.1 1.0 32.96
Motion Annotations? ✓ ✓ ✓ ✓ ✗ ✗

V-BLIP [104] to obtain a video-based caption. Finally, we
generate a third description of the clip via an LLM-based
summarization of the first two captions.

The resulting initial dataset, which we dub Large Video
Dataset (LVD), consists of 580M annotated video clip pairs,
forming 212 years of content.

However, further investigation reveals that the resulting
dataset contains examples that can be expected to degrade
the performance of our final video model, such as clips with
less motion, excessive text presence, or generally low aes-
thetic value. We therefore additionally annotate our dataset
with dense optical flow [22, 46], which we calculate at 2
FPS and with which we filter out static scenes by removing
any videos whose average optical flow magnitude is below
a certain threshold. Indeed, when considering the motion
distribution of LVD (see Figure 2, right) via optical flow
scores, we identify a subset of close-to-static clips therein.

Moreover, we apply optical character recognition [4] to
weed out clips containing large amounts of written text.
Lastly, we annotate the first, middle, and last frames of
each clip with CLIP [62] embeddings from which we calcu-
late aesthetics scores [76] as well as text-image similarities.
Statistics of our dataset, including the total size and average
duration of clips, are provided in Tab. 1.

3.2. Stage I: Image Pretaining

We consider image pretraining as the first stage in our train-
ing pipeline. Thus, in line with concurrent work on video
models [8, 39, 78], we ground our initial model on a pre-
trained image diffusion model - namely Stable Diffusion
2.1 [67] - to equip it with a strong visual representation.

To analyze the effects of image pretraining, we train and
compare two identical video models as detailed in App. D
on a 10M subset of LVD; one with and one without pre-
trained spatial weights. We compare these models using
a human preference study (see App. E for details) in Fig-
ure 3a, which clearly shows that the image-pretrained model
is preferred in both quality and prompt-following.

3.3. Stage II: Curating a Video Pretraining Dataset

A systematic approach to video data curation. For mul-
timodal image modeling, data curation is a key element
of many powerful discriminative [62, 100] and genera-
tive [12, 38, 65] models. However, since there are no
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(b) Video data curation boosts per-
formance after video pretraining.

Figure 3. Effects of image-only pretraining and data curation on
video-pretraining on LVD-10M: A video model with spatial lay-
ers initialized from a pretrained image model clearly outperforms
a similar one with randomly initialized spatial weights as shown
in Figure 3a. Figure 3b emphasizes the importance of data cura-
tion for pretraining, since training on a curated subset of LVD-10M
with the filtering threshold proposed in Section 3.3 improves upon
training on the entire uncurated LVD-10M.

equally powerful off-the-shelf representations available in
the video domain to filter out unwanted examples, we rely
on human preferences as a signal to create a suitable pre-
training dataset. Specifically, we curate subsets of LVD us-
ing different methods described below and then consider the
human-preference-based ranking of latent video diffusion
models trained on these datasets.

More specifically, for each type of annotation introduced
in Section 3.1 (i.e., CLIP scores, aesthetic scores, OCR de-
tection rates, synthetic captions, optical flow scores), we
start from an unfiltered, randomly sampled 9.8M-sized sub-
set of LVD, LVD-10M, and systematically remove the bot-
tom 12.5, 25 and 50% of examples. Note that for the syn-
thetic captions, we cannot filter in this sense. Instead, we
assess Elo rankings [19] for the different captioning meth-
ods from Section 3.1. To keep the number of total subsets
tractable, we apply this scheme separately to each type of
annotation. We train models with the same training hyper-
parameters on each of these filtered subsets and compare
the results of all models within the same class of annotation
with an Elo ranking [19] for human preference votes. Based
on these votes, we consequently select the best-performing
filtering threshold for each annotation type. The details of
this study are presented and discussed in App. E. Applying
this filtering approach to LVD results in a final pretraining
dataset of 152M training examples, which we refer to as
LVD-F, cf . Tab. 1.

Curated training data improves performance. In this
section, we demonstrate that the data curation approach
described above improves the training of our video diffu-
sion models. To show this, we apply the filtering strat-
egy described above to LVD-10M and obtain a four times
smaller subset, LVD-10M-F. Next, we use it to train a base-
line model that follows our standard architecture and train-
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(a) User preference for LVD-
10M-F and WebVid [6].
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(b) User preference for LVD-
10M-F and InternVid [96].
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samples scales.
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10k steps 50k steps
0

20

40

60

80

100

120

El
o 

Im
pr

ov
m

en
t

0

89

127

0

70

103

From Image
Uncurated
Curated

(e) Relative ELO progression
over time during Stage III.

Figure 4. Summarized findings of Sections 3.3 and 3.4: Pretraining on curated datasets consistently boosts performance of generative
video models during video pretraining at small (Figures 4a and 4b) and larger scales (Figures 4c and 4d). Remarkably, this performance
improvement persists even after 50k steps of video finetuning on high quality data (Figure 4e).

ing schedule and evaluate the preference scores for visual
quality and prompt-video alignment compared to a model
trained on uncurated LVD-10M.

We visualize the results in Figure 3b, where we can
see the benefits of filtering: In both categories, the model
trained on the much smaller LVD-10M-F is preferred. To
further show the efficacy of our curation approach, we com-
pare the model trained on LVD-10M-F with similar video
models trained on WebVid-10M [6], which is the most rec-
ognized research licensed dataset, and InternVid-10M [96],
which is specifically filtered for high aesthetics. Although
LVD-10M-F is also four times smaller than these datasets,
the corresponding model is preferred by human evaluators
in both spatiotemporal quality and prompt alignment as
shown in Figure 4b.

Data curation helps at scale. To verify that our data cu-
ration strategy from above also works on larger, more prac-
tically relevant datasets, we repeat the experiment above
and train a video diffusion model on a filtered subset with
50M examples and a non-curated one of the same size. We
conduct a human preference study and summarize the re-
sults of this study in Figure 4c, where we can see that the
advantages of data curation also come into play with larger
amounts of data. Finally, we show that dataset size is also
a crucial factor when training on curated data in Figure 4d,
where a model trained on 50M curated samples is superior
to a model trained on LVD-10M-F for the same number of
steps.

3.4. Stage III: High-Quality Finetuning

In the previous section, we demonstrated the beneficial
effects of systematic data curation for video pretraining.
However, since we are primarily interested in optimizing
the performance after video finetuning, we now investigate
how these differences after Stage II translate to the final per-
formance after Stage III. Here, we draw on training tech-
niques from latent image diffusion modeling [12, 60] and
increase the resolution of the training examples. More-
over, we use a small finetuning dataset comprising 250K
pre-captioned video clips of high visual fidelity.

To analyze the influence of video pretraining on this last

stage, we finetune three identical models, which only dif-
fer in their initialization. We initialize the weights of the
first with a pretrained image model and skip video pretrain-
ing, a common choice among many recent video modeling
approaches [8, 78]. The remaining two models are initial-
ized with the weights of the latent video models from the
previous section, specifically, the ones trained on 50M cu-
rated and uncurated video clips. We finetune all models for
50K steps and assess human preference rankings early dur-
ing finetuning (10K steps) and at the end to measure how
performance differences progress in the course of finetun-
ing. We show the obtained results in Figure 4e, where we
plot the Elo improvements of user preference relative to the
model ranked last, which is the one initialized from an im-
age model. Moreover, the finetuning resumed from curated
pretrained weights ranks consistently higher than the one
initialized from video weights after uncurated training.

Given these results, we conclude that i) the separation of
video model training in video pretraining and video finetun-
ing is beneficial for the final model performance after fine-
tuning and that ii) video pretraining should ideally occur on
a large scale, curated dataset, since performance differences
after pretraining persist after finetuning.

4. Training Video Models at Scale

In this section, we borrow takeaways from Section 3 and
present results of training state-of-the-art video models at
scale. We first use the optimal data strategy inferred from
ablations to train a powerful base model at 320 × 576
in App. D.2. We then perform finetuning to yield several
strong state-of-the-art models for different tasks such as
text-to-video in Section 4.2, image-to-video in Section 4.3
and frame interpolation in Section 4.4. Finally, we demon-
strate that our video-pretraining can serve as a strong im-
plicit 3D prior, by tuning our image-to-video models on
multi-view generation in Section 4.5 and outperform con-
current work, in particular Zero123XL [13, 54] and Sync-
Dreamer [55] in terms of multi-view consistency.
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Figure 5. Samples at 576× 1024. Top: Image-to-video samples (conditioned on leftmost frame). Bottom: Text-to-video samples.

Table 2. UCF-101 zero-shot
text-to-video generation. Com-
paring our base model to base-
lines (numbers from literature).

Method FVD (↓)

CogVideo (ZH) [41] 751.34
CogVideo (EN) [41] 701.59
Make-A-Video [78] 367.23
Video LDM [8] 550.61
MagicVideo [110] 655.00
PYOCO [27] 355.20

SVD (ours) 242.02
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Figure 6. Our 25 frame Image-
to-Video model is preferred by
human voters over GEN-2 [70]
and PikaLabs [51].

4.1. Pretrained Base Model

As discussed in Section 3.2, our video model is based on
Stable Diffusion 2.1 [67] (SD 2.1). Recent works [42] show
that it is crucial to adopt the noise schedule when training
image diffusion models, shifting towards more noise for
higher-resolution images. As a first step, we finetune the
fixed discrete noise schedule from our image model towards
continuous noise [83] using the network preconditioning
proposed in Karras et al. [48] for images of size 256× 384.
After inserting temporal layers, we then train the model on
LVD-F on 14 frames at resolution 256 × 384. We use the

standard EDM noise schedule [48] for 150k iterations and
batch size 1536. Next, we finetune the model to generate 14
320 × 576 frames for 100k iterations using batch size 768.
We find that it is important to shift the noise schedule to-
wards more noise for this training stage, confirming results
by Hoogeboom et al. [42] for image models. For further
training details, see App. D. We refer to this model as our
base model which can be easily finetuned for a variety of
tasks as we show in the following sections. The base model
has learned a powerful motion representation, for example,
it significantly outperforms all baselines for zero-shot text-
to-video generation on UCF-101 [84] (Tab. 2). Evaluation
details can be found in App. E.

4.2. High-Resolution Text-to-Video Model

We finetune the base text-to-video model on a high-quality
video dataset of ∼ 1M samples. Samples in the dataset gen-
erally contain lots of object motion, steady camera motion,
and well-aligned captions, and are of high visual quality al-
together. We finetune our base model for 50k iterations at
resolution 576 × 1024 (again shifting the noise schedule
towards more noise) using batch size 768. Samples in Fig-
ure 5, more can be found in App. E.
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Figure 7. Applying three camera motion LoRAs (horizontal,
zooming, static) to the same conditioning frame (on the left).

4.3. High Resolution Image-to-Video Model

Besides text-to-video, we finetune our base model for
image-to-video generation, where the video model receives
a still input image as a conditioning. Accordingly, we re-
place text embeddings that are fed into the base model
with the CLIP image embedding of the conditioning. Ad-
ditionally, we concatenate a noise-augmented [37] version
of the conditioning frame channel-wise to the input of the
UNet [69]. We do not use any masking techniques and
simply copy the frame across the time axis. We finetune
two models, one predicting 14 frames and another one pre-
dicting 25 frames; implementation and training details can
be found in App. D. We occasionally found that standard
vanilla classifier-free guidance [34] can lead to artifacts:
too little guidance may result in inconsistency with the
conditioning frame while too much guidance can result in
oversaturation. Instead of using a constant guidance scale,
we found it helpful to linearly increase the guidance scale
across the frame axis (from small to high). Details can be
found in App. D. Samples in Figure 5, more can be found
in App. E.

In Section 4.5 we compare our model with state-of-the-
art, closed-source video generative models, in particular
GEN-2 [21, 70] and PikaLabs [51], and show that our model
is preferred in terms of visual quality by human voters. De-
tails on the experiment, as well as many more image-to-
video samples, can be found in App. E.

4.3.1 Camera Motion LoRA

To facilitate controlled camera motion in image-to-video
generation, we train a variety of camera motion LoRAs
within the temporal attention blocks of our model [30];
see App. D for exact implementation details. We train these
additional parameters on a small dataset with rich camera-
motion metadata. In particular, we use three subsets of the
data for which the camera motion is categorized as “hori-

Figure 8. Generated multi-view frames of a GSO test object us-
ing our SVD-MV model (i.e. SVD finetuned for Multi-View gen-
eration), SD2.1-MV [68], Scratch-MV, SyncDreamer [55], and
Zero123XL [13].

zontally moving”, “zooming”, and “static”. In Figure 7 we
show samples of the three models for identical conditioning
frames; more samples can be found in App. E.

4.4. Frame Interpolation

To obtain smooth videos at high frame rates, we finetune our
high-resolution text-to-video model into a frame interpola-
tion model. We follow Blattmann et al. [8] and concatenate
the left and right frames to the input of the UNet via mask-
ing. The model learns to predict three frames within the two
conditioning frames, effectively increasing the frame rate
by four. Surprisingly, we found that a very small number of
iterations (≈ 10k) suffices to get a good model. Details and
samples can be found in App. D and App. E, respectively.

4.5. Multi-View Generation

To obtain multiple novel views of an object simultaneously,
we finetune our image-to-video SVD model on multi-view
datasets [13, 14, 106].
Datasets. We finetuned our SVD model on two datasets,
where the SVD model takes a single image and outputs
a sequence of multi-view images: (i) A subset of Obja-
verse [14] consisting of 150K curated and CC-licensed syn-
thetic 3D objects from the original dataset [14]. For each
object, we rendered 360◦ orbital videos of 21 frames with

7



randomly sampled HDRI environment map and elevation
angles between [−5◦, 30◦]. We evaluate the resulting mod-
els on an unseen test dataset consisting of 50 sampled ob-
jects from Google Scanned Objects (GSO) dataset [18]. and
(ii) MVImgNet [106] consisting of casually captured multi-
view videos of general household objects. We split the
videos into ∼200K train and 900 test videos. We rotate the
frames captured in portrait mode to landscape orientation.

The Objaverse-trained model is additionally conditioned
on the elevation angle of the input image, and outputs or-
bital videos at that elevation angle. The MVImgNet-trained
models are not conditioned on pose and can choose an ar-
bitrary camera path in their generations. For details on the
pose conditioning mechanism, see App. E.

Models. We refer to our finetuned Multi-View model as
SVD-MV. We perform an ablation study on the impor-
tance of the video prior of SVD for multi-view genera-
tion. To this effect, we compare the results from SVD-
MV i.e. from a video prior to those finetuned from an
image prior i.e. the text-to-image model SD2.1 (SD2.1-
MV), and that trained without a prior i.e. from random
initialization (Scratch-MV). In addition, we compare with
the current state-of-the-art multiview generation models of
Zero123 [54], Zero123XL [13], and SyncDreamer [55].

Metrics. We use the standard metrics of Peak Signal-to-
Noise Ratio (PSNR), LPIPS [107], and CLIP [62] Simi-
larity scores (CLIP-S) between the corresponding pairs of
ground truth and generated frames on 50 GSO test objects.

Training. We train all our models for 12k steps (∼16 hours)
with 8 80GB A100 GPUs using a total batch size of 16, with
a learning rate of 1e-5.

Results. Figure 9(a) shows the average metrics on the GSO
test dataset. The higher performance of SVD-MV com-
pared to SD2.1-MV and Scratch-MV clearly demonstrates
the advantage of the learned video prior in the SVD model
for multi-view generation. In addition, as in the case of
other models finetuned from SVD, we found that a very
small number of iterations (≈ 12k) suffices to get a good
model. Moreover, SVD-MV is competitive w.r.t state-of-
the-art techniques with lesser training time (12k iterations
in 16 hours), whereas existing models are typically trained
for much longer (for example, SyncDreamer was trained
for four days specifically on Objaverse). Figure 9(b) shows
convergence of different finetuned models. After only 1k
iterations, SVD-MV has much better CLIP-S and PSNR
scores than its image-prior and no-prior counterparts.

Figure 8 shows a qualitative comparison of multi-view
generation results on a GSO test object and Figure 10 on
an MVImgNet test object. As can be seen, our generated
frames are multi-view consistent and realistic. More details
on the experiments, as well as more multi-view generation
samples, can be found in App. E.

Method LPIPS↓ PSNR↑ CLIP-S↑
SyncDreamer [55] 0.18 15.29 0.88
Zero123 [54] 0.18 14.87 0.87
Zero123XL [13] 0.20 14.51 0.87

Scratch-MV 0.22 14.20 0.76
SD2.1-MV [68] 0.18 15.06 0.83
SVD-MV (ours) 0.14 16.83 0.89

(a) (b)

Figure 9. (a) Multi-view generation metrics on Google Scanned
Objects (GSO) test dataset. SVD-MV outperforms image-prior
(SD2.1-MV) and no-prior (Scratch-MV) variants, as well other
state-of-the-art techniques. (b) Training progress of multi-view
generation models with CLIP-S (solid, left axis) and PSNR (dot-
ted, right axis) computed on GSO test dataset. SVD-MV shows
better metrics consistently from the start of finetuning.

Figure 10. Generated novel multi-view frames for MVImgNet
dataset using our SVD-MV model, SD2.1-MV [68], Scratch-MV.

5. Conclusion
We present Stable Video Diffusion (SVD), a latent video
diffusion model for high-resolution, state-of-the-art text-to-
video and image-to-video synthesis. To construct its pre-
training dataset, we conduct a systematic data selection and
scaling study, and propose a method to curate vast amounts
of video data and turn large and noisy video collection into
suitable datasets for generative video models. Furthermore,
we introduce three distinct stages of video model training
which we separately analyze to assess their impact on the
final model performance. Stable Video Diffusion provides
a powerful video representation from which we finetune
video models for state-of-the-art image-to-video synthesis
and other highly relevant applications such as LoRAs for
camera control. Finally we provide a pioneering study on
multi-view finetuning of video diffusion models and show
that SVD constitutes a strong 3D prior, which obtains state-
of-the-art results in multi-view synthesis while using only a
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fraction of the compute of previous methods.
We hope these findings will be broadly useful in the

generative video modeling literature. A discussion on
our work’s broader impact and limitations can be found
in App. A.
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Appendix

A. Broader Impact and Limitations

Broader Impact: Generative models for different modalities promise to revolutionize the landscape of media creation and
use. While exploring their creative applications, reducing the potential to use them for creating misinformation and harm
are crucial aspects before real-world deployment. Furthermore, risk analyses need to highlight and evaluate the differences
between the various existing model types, such as interpolation, text-to-video, animation and long-form generation. Before
these models are used in practice, a thorough investigation of the models themselves, their intended uses, safety aspects,
associated risks and potential biases is essential.
Limitations: While our approach excels at short video generation, it comes with some fundamental shortcomings w.r.t. long
video synthesis: Although a latent approach provides efficiency benefits, generating multiple key frames at once is expensive
both during training but also inference, and future work on long video synthesis should either try a cascade of very coarse
frame generation, or build dedicated tokenizers for video generation. Furthermore, videos generated with our approach
sometimes suffer from too little generated motion. Lastly, video diffusion models are typically slow to sample and have high
VRAM requirements, and our model is no exemption. Diffusion distillation methods [39, 58, 75] are promising candidates
for faster synthesis.

B. Related Work

Video Synthesis. Many approaches based on various models such as variational RNNs [3, 11, 15, 24, 52], normalizing
flows [7, 17], autoregressive transformers [26, 31, 41, 97–99, 102], and GANs [9, 23, 47, 57, 73, 74, 79, 86, 89, 92, 94, 105]
have tackled video synthesis. Most of these works, however have generated videos either on low-resolution [3, 7, 11, 15, 17,
24, 52, 57, 86, 89, 92, 105] or on comparably small and noisy datasets [10, 84, 101] which were originally proposed to train
discriminative models.

Driven by increasing amounts of available compute resources and datasets better suited for generative modeling such as
WebVid-10M [6], more competitive approaches have been proposed recently, mainly based on well-scalable, explicit likeli-
hood based approaches such as diffusion [39, 40, 78] and autoregressive models [90]. Motivated by a lack of available clean
video data, all these approaches are leveraging joint image-video training [8, 39, 78, 110] and most methods are grounding
their models on pretrained image models [8, 78, 110]. Another commonality between these and most subsequent approaches
to (text-to-)video synthesis [27, 93, 95] is the usage of dedicated expert models to generate the actual visual content at a coarse
frame rate and to temporally upscale this low-fps video to temporally smooth final outputs at 24-32 fps [8, 39, 78]. Similar
to the image domain, diffusion based approaches can be mainly separated in cascaded approaches [39] following [27, 37]
and latent diffusion models [8, 108, 110] translating the approach of Rombach et al. [67] to the video domain. While most
of these works aim at learning general motion representation and are consequently trained on large and diverse datasets,
another well-recognized branch of diffusion based video synthesis tackles personalized video generation based on finetuning
of pretrained text-to image models on more narrow datasets tailored to a specific domain [30] or application, partly including
non-deep motion priors [108]. Finally, many recent works tackle the task of image-to-video synthesis, where the start frame
is already given and the model has to generate the consecutive frames [30, 93, 108]. Importantly, as shown in our work
(see Figure 1) when combined with off-the-shelf text-to-image models, image-to-video models can be used to obtain a full
text-(to-image)-to-video pipeline.

Multi-View Generation Several recent works such as Zero-123 [54] and SyncDreamer [55] propose techniques to adapt
and finetune image generation models such as Stable Diffusion (SD) for multi-view generation, thereby leveraging image
priors from SD. One issue with Zero-123 [54] is that the generated multi-views can be inconsistent with respect to each other
as they are generated independently with pose-conditioning. Some follow-up works try to address this view-consistency
problem by jointly synthesizing the multi-view images. MVDream [77] proposes to jointly generate 4 views of an object
using a shared attention module across images. SyncDreamer [55] proposes to estimate a 3D voxel structure in parallel to the
multi-view image diffusion process to maintain consistency across the generated views.

Despite rapid progress in the multi-view generation research, these approaches rely on single image generation models
such as SD. We believe that our video generative model is a better candidate for the multi-view generation as multi-view
images form a specific form of videos where the camera is moving around an object. As a result, it is much easier to adapt a
video generative model for multi-view generation compared to adapting an image generative model. In addition, the temporal
attention layers in our video model naturally assists in the generation of consistent multi-views of an object without needing
any explicit 3D structures like in [55].
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C. Data Processing
In this section, we provide more details about our processing pipeline including their outputs on a few public video examples
for demonstration purposes.

Motivation We start from a large collection of raw video data which is not useful for generative text-video (pre)training [66,
96] because of the following adverse properties: First, in contrast to discriminative approaches to video modeling, generative
video models are sensitive to motion inconsistencies such as cuts of which usually many are contained in raw and unprocessed
video data, cf . Figure 2, left. Moreover our initial data collection is biased towards still videos as indicated by the peak at zero
motion in Figure 2, right. Since generative models trained on this data would obviously learn to generate videos containing
cuts and still scenes, this emphasizes the need for cut detection and motion annotations to ensure temporal quality. Another
critical ingredient for training generative text-video models are captions - ideally more than one per video [81] - which are
well-aligned with the video content. The last important component for generative video training which we are considering
here is a high visual quality of the training examples.

The design of our processing pipeline addresses the above points. Thus, to ensure temporal quality, we detect cuts with a
cascaded approach directly after download, clip the videos accordingly and estimate optical flow for each resulting video clip.
After that we apply three synthetic captioners to every clip and further extract frame-level CLIP similarities to all of these
text prompts to be able to filter out outlayers. Finally visual quality at frame-level is assessed by using a CLIP-embeddings
based aesthetics score [76]. We describe each step in more detail in what follows.

Source Video
Cut Detected?

w/o cascade w/ cascade (ours)

✓ ✓

✓ ✓

✗ ✓

✗ ✓

Figure 11. Comparing a common cut detector with our cascaded approach, shows the benefits of our cascaded method: While normal
single-fps cut detection can only detect sudden changes in scene, more continuous transitions tend to remain undetected, what is in contrast
with our approach which reliably also detects the latter transitions.

Cascaded Cut Detection. Similar to previous work [96] we use PySceneDetect 2 to detect cuts in our base video clips.
However, as qualitatively shown in Figure 11 we observe many fade-ins and fade-outs between consecutive scenes, which are
not detected when running the cut detector at a unique threshold and only native fps. Thus, in contrast to previous work, we
apply a cascade of 3 cut detectors which are operating at different frame rates and different thresholds to detect both sudden
changes and slow ones such as fades.

Keyframe-Aware Clipping. We clip the videos using FFMPEG [87] directly after cut detection by extracting the times-
tamps of the keyframes in the source videos and snapping detected cuts onto the closest keyframe timestamp which does not
cross the detected cut. This allows us to quickly extract clips without cuts via seeking and isn’t prohibitively slow at scale
like inserting new keyframes in each video.

2https://github.com/Breakthrough/PySceneDetect
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Source Video
Optical Flow

Score

0.043

Figure 12. Examples for a static video. Since such static scenes can have a negative impact on generative video-text (pre-)training, we
filter them out.

Optical Flow. As motivated in Section 3.1 and Figure 2 it is crucial to provide means for filtering out static scenes. To en-
able this, we extract dense optical flow maps at 2fps using the OpenCV [46] implementation of the Farnebäck algorithm [22].
To further keep storage size tractable we spatially downscale the flow maps such that the shortest side is at 16px resolution.
By averaging these maps over time and spatial coordinates we further obtain a global motion score for each clip, which
we use to filter out static scenes by using a threshold for the minimum required motion, which is chosen as detailed on
App. E.2.2. Since this only yields rough approximate, for the final Stage III finetuning, we compute more accurate dense
optical flow maps using RAFT [85] at 800× 450 resolution. The motion scores are then computed similarly. Since the high-
quality finetuning data is relatively much smaller than the pretraining dataset, this makes the RAFT-based flow computation
tractable.

Source Video
Caption

CoCa VBLIP LLM

there is a piece of
wood on the floor

next to a tape
measure .

a person is using a
ruler to measure a

piece of wood

A person is using a
ruler to measure a

piece of wood on the
floor next to a tape

measure.

two men sitting on a
rock near a river .

one is holding a stick
and the other is
holding a pole .

two people are
fishing in a river

Two men are fishing
in a river. One is

holding a stick and
the other is holding a

pole.

Figure 13. Comparison of various synthetic captioners. We observe that CoCa often captures good spatial details, whereas VBLIP tends
to capture temporal details. We use an LLM to combine these two, and experiment with all three types of synthetic captions.

Synthetic Captioning. At million-sample scale, it is not feasible to hand-annotate data points with prompts. Hence we re-
sort to synthetic captioning to extract captions. However in light of recent insights on the importance of caption diversity [81]
and taking potential failure cases of these synthetic captioning models into consideration, we extract three captions per clip
by using i) the image-only captioning model CoCa [61], which describes spatial aspects well, ii) - to also capture temporal
aspects - the video-captioner VideoBLIP [104] and iii) to combine these two captions and like that, overcome potential flaws
in each of them, a lightweight LLM. Examples for the resulting captions are shown in Figure 13.

Caption similarities and Aesthetics. Extracting CLIP [62] image and text representations has proven to be very helpful
for data curation in the image domain, since computing the cosine similarity between the two allows to assess text-image
alignment for a given example [76] and thus to filter out examples with erroneous captions. Moreover it is possible to extract
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scores for visual aesthetics [76]. Although CLIP is only able to process images, and this consequently is only possibly on
single frame level we opt to extract both CLIP-based i) text-image similarities and ii) aesthetics scores of the first, center and
last frames of each video clip. As shown in Section 3.3 and App. E.2.2, using training text-video models on data curated
by using these scores improves i) text following abilities and ii) visual quality of the generated samples compared to models
trained on unfiltered data.

Text Detection. In early experiments we noticed that models trained on early versions of LVD-F obtained a tendency to
generate videos with excessive amounts of written text depicted which is arguably not a desired feat for a text-to-video model.
To this end, we applied the off-the-shelf text-detector CRAFT [4] to annotate the start, middle and end frames of each clip
in our dataset with bounding box information on all written text. Using this information, we filtered out all clips with a total
area of detected detected bounding boxes larger than 7% to construct the final LVD-F.

Source Video Text Area Ratio

0.102

Figure 14. An example of a video with lots of unwanted text. We apply text-detection and annotate bounding boxes around text, and then
compute the ratio between the area of all the boxes and the size of the frame.

D. Model and Implementation Details
D.1. Diffusion Models

In this section, we give a concise summary of DMs. We make use of the continuous-time DM framework [48, 83]. Let
pdata(x0) denote the data distribution and let p(x;σ) be the distribution obtained by adding i.i.d. σ2-variance Gaussian noise
to the data. Note that or sufficiently large σmax, p(x;σmax2) ≈ N (0, σmax2). DM use this fact and, starting from high vari-
ance Gaussian noise xM ∼ N (0, σmax2), sequentially denoise towards σ0 = 0. In practice, this iterative refinement process
can be implemented through the numerical simulation of the Probability Flow ordinary differential equation (ODE) [83]

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt, (1)

where ∇x log p(x;σ) is the score function [44]. DM training reduces to learning a model sθ(x;σ) for the score function
∇x log p(x;σ). The model can, for example, be parameterized as ∇x log p(x;σ) ≈ sθ(x;σ) = (Dθ(x;σ) − x)/σ2 [48],
where Dθ is a learnable denoiser that tries to predict the clean x0. The denoiser Dθ is trained via denoising score match-
ing (DSM)

E(x0,c)∼pdata(x0,c),(σ,n)∼p(σ,n)

[
λσ∥Dθ(x0 + n;σ, c)− x0∥22

]
, (2)

where p(σ,n) = p(σ)N
(
n;0, σ2

)
, p(σ) is a distribution over noise levels σ, λσ : R+ → R+ is a weighting function, and

c is an arbitrary conditioning signal. In this work, we follow the EDM-preconditioning framework [48], parameterizing the
learnable denoiser Dθ as

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), (3)

where Fθ is the network to be trained.
Classifier-free guidance. Classifier-free guidance [35] is a method used to guide the iterative refinement process of a DM

towards a conditioning signal c. The main ideas is to mix the predictions of a conditional and an unconditional model

Dw(x;σ, c) = wD(x;σ, c)− (w − 1)D(x;σ), (4)
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where w ≥ 0 is the guidance strength. The unconditional model can be trained jointly alongside the conditional model in a
single network by randomly replacing the conditional signal c with a null embedding in Eq. (2), e.g., 10% of the time [35].
In this work, we use classifier free guidance, for example, to guide video generation towards text conditioning.

D.2. Base Model Training and Architecture

As discussed in , we start the publicly available Stable Diffusion 2.1 [67] (SD 2.1) model. In the EDM-framework [48], SD
2.1 has the following preconditioning functions:

cSD2.1
skip (σ) = 1, (5)

cSD2.1
out (σ) = −σ , (6)

cSD2.1
in (σ) =

1√
σ2 + 1

, (7)

cSD2.1
noise (σ) = argmin

j∈[1000]

(σ − σj) , (8)

(9)

where σj+1 > σj . The distribution over noise levels p(σ) used for the original SD 2.1. training is a uniform distribution over
the 1000 discrete noise levels {σj}j∈[1000]. One issue with the training of SD 2.1 (and in particular its noise distribution p(σ))
is that even for the maximum discrete noise level σ1000 the signal-to-noise ratio [50] is still relatively high which results in
issues when, for example, generating very dark images [32, 53]. Guttenberg and CrossLabs [32] proposed offset noise, a
modification of the training objective in Eq. (2) by making p(n | σ) non-isotropic Gaussian. In this work, we instead opt for
modifying the preconditioning functions and distribution over training noise levels altogether.

Image model finetuning. We replace the above preconditioning functions with

cskip(σ) =
(
σ2 + 1

)−1
, (10)

cout(σ) =
−σ√
σ2 + 1

, (11)

cin(σ) =
1√

σ2 + 1
, (12)

cnoise(σ) = 0.25 log σ, (13)
(14)

which can be recovered in the EDM framework [48] by setting σdata = 1); the preconditioning functions were originally
proposed in [75]. We also use the noise distribution and weighting function proposed in Karras et al. [48], namely log σ ∼
N (Pmean, P

2
std) and λ(σ) = (1+σ2)σ−2, with Pmean = −1.2 and Pstd = 1. We then finetune the neural network backbone

Fθ of SD2.1 for 31k iterations using this setup. For the first 1k iterations, we freeze all parameters of Fθ except for the
time-embedding layer and train on SD2.1’s original training resolution of 512 × 512. This allows the model to adapt to the
new preconditioning functions without unnecessarily modifying the internal representations of Fθ too much. Afterwards, we
train all layers of Fθ for another 30k iterations on images of size 256 × 384, which is the resolution used in the intial stage
of video pretraining.

Video pretraining. We use the resulting model as the image backbone of our video model. We then insert temporal
convolution and attention layers. In particular, we follow the exact setup from [8] inserting a total of 656M new parameters
into the UNet, bumping its total size (spatial and temporal layers) to 1521M parameters. We then train the resulting UNet
on 14 frames on resolution 256 × 384 for 150k iters using AdamW [56] with learning rate 10−4 and a batch size of 1536.
We train the model for classifier-free guidance [34] and drop out the text-conditioning 15% of the time. Afterwards, we
increasing the spatial resolution to 320 × 576 and train for an additional 100k iterations, using the same settings as for the
lower-resolution training except for a reduced batch size of 768 and a shift of the noise distribution towards more noise,
in particular we increase Pmean = 0. During training, the base model as well as the high-resolution Text/Image-to-Video
models are all conditioned on the frame rate and a motion score of the input video. This allows us to vary the amount of
motion in a generated video at inference time.
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D.3. High-Resolution Text-to-Video Model

We finetune our base model on a high quality dataset of ∼ 1M samples at resolution 576× 1024. We train for 50k iterations
at a batch size of 768, learning rate 3 × 10−5, and set Pmean = 0.5 and Pstd = 1.4. Additionally, we track an exponential
moving average of the weights at decay rate 0.9999. The final checkpoint is chosen using a combination of visual inspection
and human evaluation.

D.4. High-Resolution Image-to-Video Model

We can finetune our base text-to-video model for the image-to-video task. In particular, during training, we use one additional
frame which the model is conditioned on. We do not use any text-conditioning but rather replace text embeddings that are
fed into the base model with the CLIP image embedding of the conditioning frame. Additionally, we concatenate a noise-
augmented [37] version of the conditioning frame channel-wise to the input of the UNet [69]. In particular, we add a small
amount of noise of strength log σ ∼ N (−3.0, 0.52) to the conditioning frame, and then feed it through the standard SD
2.1 encoder. The mean of the encoder distribution is then concatenated to the input of the UNet (copied across the time
axis). Initially, we finetune our base model for the image-to-video task on the base resolution (320× 576) for 50k iterations
using a batch size of 768 and learning rate 3 × 10−5. Since the conditioning signal is very strong, we again shift the noise
distribution towards more noise, i.e., Pmean = 0.7 and Pstd = 1.6. Afterwards, we fintune the base image-to-video model
on a high quality dataset of ∼ 1M samples at resolution 576 × 1024. We train two versions: one to generate 14 frames and
one to generate 25 frames. We train both models for 50k iterations at a batch size of 768, learning rate 3 × 10−5, and set
Pmean = 1.0 and Pstd = 1.6. Additionally, we track an exponential moving average of the weights at decay rate 0.9999. The
final checkpoints are chosen using a combination of visual inspection and human evaluation.

D.4.1 Linearly Increasing Guidance

We occasionally found that standard vanilla classifier-free guidance [34] (see Eq. (4)) can lead to artifacts: too little guidance
may result in inconsistency with the conditioning frame while too much guidance can result in oversaturation. Instead of
using a constant guidance scale, we found it helpful to linearly increase the guidance scale across the frame axis (from small
to high). A PyTorch implementation of this novel technique can be found in Figure 15.

D.4.2 Camera Motion LoRA

To facilitate controlled camera motion in image-to-video generation, we train a variety of camera motion LoRAs within the
temporal attention blocks of our model [30]. In particular we train low rank matrices of rank 16 for 5k iterations. Additional
samples can be found in Figure 20.

D.5. Interpolation Model Details

Similar to the text-to-video and image-to-video models, we finetune our interpolation model starting from the the base text-
to-video model, cf . App. D.2. To enable interpolation, we reduce the number of output frames from 14 to 5 of which
we use the first and last as conditioning frames which we feed to the UNet [69] backbone of our model via the concat-
conditioning-mechanism [67]. To this end, we embed these frames into the latent space of our autoencoder, resulting in two
image encodings zs, ze ∈ Rc×h×w , where c = 4, h = 52, w = 128. To form a latent frame sequence which is of the
same shape than the noise input of the UNet, i.e. R5×c×h×w, we use a learned mask embedding zm ∈ Rc×h×w and form
a latent sequence z = {zs, zm, zm, zm, ze} ∈ R5×c×h×w. We concatenate this sequence channel-wise with the noise input
and additionally with a binary mask where 1 indicates the presence of a conditioning frame and 0 that of a mask embedding.
The final input for the UNet is thus of shape (5, 9, 52, 128). In line with previous work [8, 39, 78] we use noise augmentation
for the two conditioning frames, which we apply in the latent space. Moreover we replace the CLIP text representation for
the crossattention conditioning with the corresponding CLIP image representation of the start frame and end frame, which
we concatenate to form conditioning sequence of length 2.

We train the model on our high-quality dataet at spatial resolution 576 × 1024 using AdamW [56] with a learning rate
of 10−4 in combination with exponential moving averaging at decay rate 0.9999, and use a shifted noise schedule with
Pmean = 1 and Pstd = 1.2. Surprisingly, we find this model, which we train with a comparably small batch size of 256, to
converge extremely fast and to yield consistent and smooth outputs after only 10k iterations. We take this as another evidence
of the usefuleness of the learned motion representation our base text-to-video model has learned.
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1 import torch
2 from einops import rearrange, repeat
3

4

5 def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
6 """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
7 dims_to_append = target_dims - x.ndim
8 if dims_to_append < 0:
9 raise ValueError(

10 f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
11 )
12 return x[(...,) + (None,) * dims_to_append]
13

14

15 class LinearPredictionGuider:
16 def __init__(
17 self,
18 max_scale: float,
19 num_frames: int,
20 min_scale: float = 1.0,
21 ):
22 self.min_scale = min_scale
23 self.max_scale = max_scale
24 self.num_frames = num_frames
25 self.scale = torch.linspace(min_scale, max_scale, num_frames).unsqueeze(0)
26

27 def __call__(self, x: torch.Tensor, sigma: float) -> torch.Tensor:
28 x_u, x_c = x.chunk(2)
29

30 x_u = rearrange(x_u, "(b t) ... -> b t ...", t=self.num_frames)
31 x_c = rearrange(x_c, "(b t) ... -> b t ...", t=self.num_frames)
32 scale = repeat(self.scale, "1 t -> b t", b=x_u.shape[0])
33 scale = append_dims(scale, x_u.ndim).to(x_u.device)
34

35 return rearrange(x_u + scale * (x_c - x_u), "b t ... -> (b t) ...")

Figure 15. PyTorch code for our novel linearly increasing guidance technique.

D.6. Multi-view generation

We finetune the high-Resolution Image-to-Video Model on our specific rendering of the Objaverse dataset. We render 21
frames per orbit of an object in the dataset at 576 × 576 resolution, and finetune the 25-frame Image-to-Video model to
generate these 21 frames. We feed one view of the object as the image condition. In addition, we feed the elevation of the
camera as conditioning to the model. We first pass the evelation through a timestep embedding layer that embeds the sine and
cosine of the elevation angle at various frequences, and contatenates them into a vector. This vector is finally concatenated
to the overall vector condition to the UNet.

We trained for 12k iterations with a total batch size of 16 across 8 A100 GPUs of 80GB VRAM, at a learning rate of
1× 10−5.

E. Experiment Details
E.1. Details on Human Preference Assessment

For a majority of the evaluation conducted in this paper, we employ human evaluation as we observed it to contain the most
reliable signal. For text-to-video tasks and all ablations conducted for the base model, we generate video samples from a list
of 64 test prompts. We then employ human annotators to collect preference data on two axes: i) visual quality, and ii) prompt
following. More details on how the study was conducted App. E.1.1 and the rankings computed App. E.1.2 are listed below.

E.1.1 Experimental Setup

Given all models in one ablation axis (e.g. four models of varying aesthetic or motion scores), we compare each prompt for
each pair of models (1v1). For every such comparison, we collect on average three votes per task from different annotators,
i.e., three each for visual quality and prompt following, respectively. Performing a complete assessment between all pair-
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wise comparisons gives us robust and reliable signals on model performance trends and the effect of varying thresholds.
Sample interfaces that the annotators interact with are shown in Figure 16. The order of prompts and the order between
models are fully randomized. Frequent attention checks are in place to ensure data quality.

(a) Sample instructions for evaluating visual quality of videos. (b) Sample instructions for evaluating the prompt following of videos.

Figure 16. Our human evaluation framework, as seen by the annotators. The prompt & task order and model choices are fully randomized.

E.1.2 Elo Score Calculation

To calculate rankings when comparing more than two models based on 1v1 comparisons as outlined in App. E.1.1, we use Elo
Scores (higher-is-better) [19] which were originally proposed as a scoring method for chess players but have more recently
also been applied to compare instruction-tuned generative LLMs [2, 5]. For a set of competing players with initial ratings
Rinit participating in a series of zero-sum games the Elo rating system updates the ratings of the two players involved in a
particular game based on the expected and and actual outcome of that game. Before the game with two players with ratings
R1 and R2, the expected outcome for the two players are calculated as

E1 =
1

1 + 10
R2−R1

400

, (15)

E2 =
1

1 + 10
R1−R2

400

. (16)

After observing the result of the game, the ratings Ri are updated via the rule

R
′

i = Ri +K · (Si − Ei) , i ∈ {1, 2} (17)

where Si indicates the outcome of the match for player i. In our case we have Si = 1 if player i wins and Si = 0 if player i
looses. The constant K can be see as weight putting emphasis on more recent games. We choose K = 1 and bootstrap the
final Elo ranking for a given series of comparisons based on 1000 individual Elo ranking calculations with randomly shuffled
order. Before comparing the models we choose the start rating for every model as Rinit = 1000.

E.2. Details on Experiments from Section 3

E.2.1 Architectural Details

Architecturally, all models trained for the presented analysis in Section 3 are identical. To insert create a temporal UNet [69]
based on an existing spatial models, we follow Blattmann et al. [8] and add temporal convolution and (cross-)attention layers
after each corresponding spatial layer. As a base 2D-UNet we use the architecture from Stable Diffusion 2.1, whose weights
we further use to initialize the spatial layers for all runs but the second one presented in Figure 3a, where we intentionally
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Figure 17. Results of the dedicated experiments conducted to identify most useful filtering thresholds for each ablation axis. For of these
ablation studies we train four identical models using the architecture detailed in App. E.2.2 on different subset of LVD-10M, which we
create by systematically increasing the thresholds which corresponds to filter out more and more examples.

skip this initialization to create a baseline for demonstrating the effect of image-pretraining. As opposed to Blattmann et al.
[8] we train all layers including the spatial ones and do not freeze the spatial layers after initialization. All models are trained
with the AdamW [56] optimizer with a learning rate of 1.e− 4 and a batch size of 256. Moreover, in contrast to our models
from Section 4, we do not translate the noise process to continuous time but use the standard linear schedule used in Stable
Diffusion 2.1, including offset noise [32], in combination with the v-parameterization [35]. We omit the text-conditioning in
10% of the cases to enable classifier-free guidance [35] during inference. To generate samples for the evaluations, we use 50
steps of the deterministic DDIM sampler [82] with a classifier guidance scale of 12 for all models.

E.2.2 Calibrating Filtering Thresholds

Here we present the outcomes of our study on filtering thresholds presented in Section 3.3. As stated there, we conduct
experiment for the optimal filtering threshold for each type of annotation while not filtering for any other types. The only
difference here is our assessment of the most suitable captioning method, where we simply compare all used captioning
methods. We train each model on videos consisting of 8 frames at resolution 256 × 256 for exactly 40k steps with a batch
size of 256, which hence roughly corresponds to 10M training examples seen during training. For evaluation, we create
samples based on 64 pre-selected prompts for each model and conduct a human preference study as detailed in App. E.1.
Figure 17 shows the ranking results results of these human preference studies for each annotation axis for spatio-temporal
sample quality and prompt following. Additionally we show an averaged ’aggregated’ score.

For captioning, we see that - surprisingly - the captions generated by the simple clip-based image captioning method CoCa
of Yu et al. [103] clearly have the most beneficial influence on the model. However, since recent research recommends to
use more than one caption per training example, we sample one of the three distinct captions during training. We nonetheless
reflect the outcome of this experiment by shifting the captioning sampling distribution towards CoCa captions by using
pCoCa = 0.5; pV-BLIP = 0.25; pLLM = 0.25; .

For motion filtering, we choose to filter out 25% of the most static examples, although the aggregated preference score
of the model trained with this filtering method is not ranking as high in human preference as the non-filtered score. The
rationale behind this is the fact that non-filtered ranks best mostly because it ranks best in the category ’prompt following’
which is less important than the ’quality’ category when assessing the effect of motion filtering. Thus, we choose the 25%
threshold as mentioned above, since it achieves both competitive performance in ’prompt following’ and ’quality’.

For aesthetics filtering, where, as for motion thresholding, the ’quality’ category is more important than the ’prompt
following’-category, we choose to filter out the 25 % with the lowest aesthetics score, while for CLIP-score thresholding we
omit even 50%, since the model trained with the corresponding threshold is clearly performing best. Finally, for we filter out
the 25% of samples with the largest text area covering the videos, since it ranks highest both in the ’quality’ category and on
average.

Using these filtering methods we reduce the size of LVD by more than factor of 3, cf . Tab. 1, but obtain a much cleaner
dataset as shown in Section 3. For the remaining experiments in Section 3.3 we use the identical architecture and hyperpa-
rameters as stated above. We only vary the dataset as detailed in Section 3.3.

E.2.3 Finetuning Experiments

For the finetuning experiments shown in Section 3.4, we again follow the architecture, training hyperparameters and sampling
procesdure stated at the beginning of this section. The only notable differences are the exchange of the dataset and increase
the resolution from the pretraining resolution 256 × 256 to 512 × 512, while still generating videos consisting of 8 frames.
We train all models presented in this section for 50k steps.
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E.3. Human Eval vs SOTA

For comparison of our image-to-video model with state-of-the-art models like Gen-2 [70] and Pika [51], we randomly choose
64 conditioning images generated from a 1024×576 finetune of SDXL [60]. We employ the same framework as in App. E.1.1
to evaluate and compare the visual quality generated samples with other models.

For Gen-2, we sample the image-to-video model from the web UI. We fixed the same seed of 23, used the default motion
value of 5 (on a scale of 10), and turned on the “Interpolate” and “Remove watermark” features. This results in 4-second
samples at 1408×768. We then resize the shorter side to yield 1056×576 and perform a center-crop to match our resolution
of 1024× 576. For our model, we sample our 25-frame image-to-video finetune to give 28 frames and also interpolate using
our interpolation model to yield samples of 3.89 seconds at 28 FPS. We crop the Gen-2 samples to 3.89 seconds to avoid
biasing the annotators.

For Pika, we sample the image-to-video model from the Discord bot. We fixed the same seed of 23, used the motion value
of 2 (on a scale of 0-4), and specified a 16:9 aspect ratio. This results in 3-second samples at 1024× 576, which matches our
resolution. For our model, we sample our 25-frame image-to-video finetune to give 28 frames and also interpolate using our
interpolation model to yield samples of 3.89 seconds at 28 FPS. We then crop our samples to 3 seconds to match Pika and
avoid biasing the annotators. Since Pika samples have a small “Pika Labs” watermark in the bottom right, we pad that region
with black pixels for both Pika and our samples to also avoid bias.

E.4. UCF101 FVD

In this section, we describe the zero-shot UCF101 FVD computation of our base text-to-video model. The UCF101
dataset [84] consist of 13,320 video clips, which are classified into 101 action categories. All videos are of frame rate 25 FPS
and resolution 240 × 320. To compute FVD, we generate 13,320 videos (16 frames at 25 FPS, classifier-free guidance with
scale w = 7) using the same distribution of action categories, that is, for example, 140 videos of “TableTennisShot”, 105
video of “PlayingPiano”, etc. We condition the model directly on the action category (“TableTennisShot”, “PlayingPiano”,
etc.) and do not use any text modification. Our samples are generated at our model’s native resolution 320× 576 (16 frames)
and we downsample to 240× 432 using bilinear interpolation with antialiasing, followed by a center crop to 240× 320. We
extract features using a pretrained I3D action classification model [10], in particular we are using a torchscript3 provided
by Brooks et al. [9].

E.5. Additional Samples

Here we show additional samples for the models introduced in App. D.2 and Secs. 4.2, 4.3 and 4.5.

E.5.1 Additional Text-to-Video Samples

In Figure 18 we show additional samples from our text-to-video model introduced in Section 4.2.

E.5.2 Additional Image-to-Video Samples

In Figure 19 we show additional samples from our image-to-video model introduced in Section 4.3.

E.5.3 Additional Camera Motion LoRA Samples

In Figure 20 we show additional samples for our motion LoRA’s tuned for camera control as presented in Section 4.3.1.

E.5.4 Temporal Prompting via Temporal Cross-Attention Layers

Our architecture follows Blattmann et al. [8], who introduced dedicated temporal cross-attention layers, which are used
interleaved with the spatial cross-attention layers of the standard 2D-UNet [16, 36]. During probing our Text-to-Video model
from Section 4.2, we noticed that it is possible to independently prompt the model spatially and temporally by using different
text-prompts as inputs for the spatial and temporal cross-attention conditionings, see Figure 21. To achieve this, we use a
dedicated spatial prompt to describe the general content of the scene to be depicted while the motion of that scene is fed to
the model via a separate temporal prompt which is the input to the temporal cross-attention layers. We provide an example

3https : / / www . dropbox . com / s / ge9e5ujwgetktms / i3d _ torchscript . pt with keyword arguments rescale=True,
resize=True, return features=True.
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Figure 18. Additional Text-to-Video samples. Captions from top to bottom: “A hiker is reaching the summit of a mountain, taking in
the breathtaking panoramic view of nature.”, “A unicorn in a magical grove, extremely detailed.”, “Shoveling snow”, “A beautiful fluffy
domestic hen sitting on white eggs in a brown nest, eggs are under the hen.”, and “A boat sailing leisurely along the Seine River with the
Eiffel Tower in background by Vincent van Gogh”.

of these first experiments indicating this implicit disentanglement of motion and content, in Figure 21, where we show that
varying the temporal prompt while fixing random seed and spatial prompt, leads to spatially similar scene which obtain global
motion properties following the temporal prompt.

E.5.5 Additional Samples on Multi-View Synthesis

In Figures 22 to 24 we show additional visual examples for SVD-MV, trained on MVImageNet.
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Figure 19. Additional Image-to-Video samples. Leftmost frame is use for conditioning.
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Figure 20. Additional Image-to-Video samples with camera motion LoRAs (conditioned on leftmost frame). The first, second, and thirs
rows correspond to horizontal, static, zooming, respectively.
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Figure 21. Text-to-video samples using the prompt “Flowers in a pot in front of a mountainside” (for spatial cross-attention). We adjust
the camera control by replacing the prompt in the temporal attention using “”, “panning”, “rotating”, and “zooming” (from top to bottom).
While not being trained for this inference task, the model performs surprisingly well.
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Figure 22. Additional multi-view generation samples from GSO test dataset, and comparison with other methods.
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Figure 23. Additional multi-view generation samples from GSO test dataset

Figure 24. Additional multi-view generation samples from MVI dataset, and comparison with other methods. Top row is ground truth
frames, second row is sample frames from SVD-MV (ours), third row is from SD2.1-MV, bottom row is from Scratch-MV
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