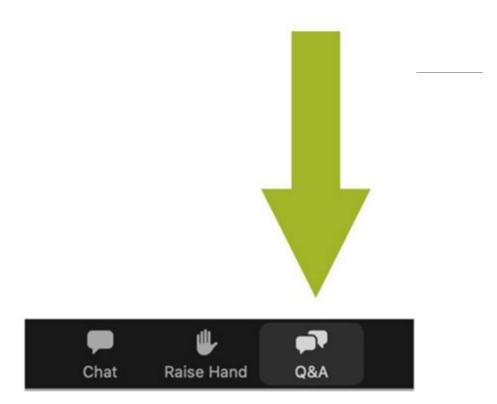


H5N1 (Avian Influenza) Situation Report Webinar

James Lawler, MD, MPH, FIDSA Shelly Schwedhelm, MSN, RN, NEA-BC

Today's Topics


➤The current H5N1 risk status.

➢ The growing concern from experts around the current H5N1 outbreak.

➢ How the UK and other nations have raised pandemic alert levels, and what U.S. hospitals and health systems should do to respond.

Zoom participants, please use the Q&A box on your screen

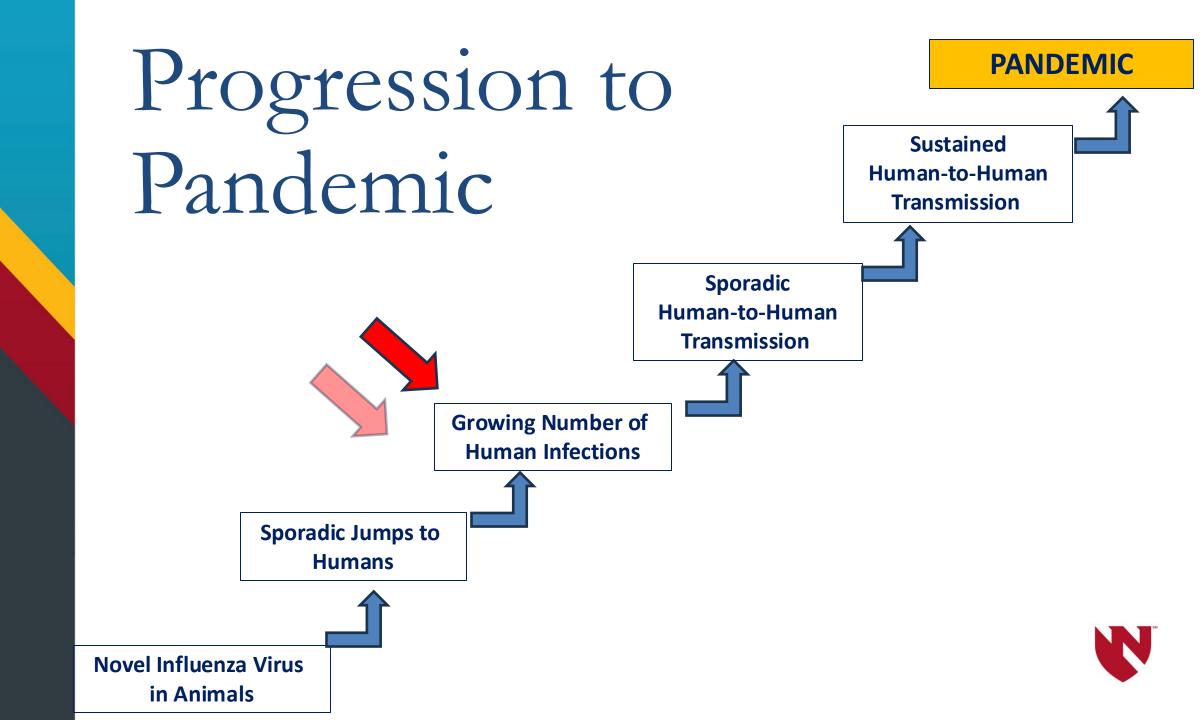
Today's Speakers

James Lawler, MD, MPH, FIDSA

Medical Director, R7DHRE

Shelly Schwedhelm, MSN, RN, NEA-BC

Executive Director, R7DHRE


Dr. Lawler is the Director of International Programs and Innovation at the Global Center for Health Security. In 2018, he came to the University of Nebraska Medical Center following a military career in which he served as a Navy Commander and was chief of clinical biodefense research at the Naval Medical Research Center, Fort Detrick, Maryland. He was an attending physician at Walter Reed National Military Medical Center and served White House assignments as Homeland Security Council and National Security Council staff, where he worked on biodefense, pandemic response, and health preparedness. Dr. Lawler has field experience treating Ebola patients in Sub-Saharan Africa, and he served as a subject matter expert in the training of Department of Defense medical personnel working with infectious diseases patients. He is board certified in infectious diseases.

Shelly Schwedhelm serves as the Executive Director of Emergency Management and Biopreparedness at Nebraska Medicine. In addition, she serves as the Associate Director for Clinical Operations and Emergency Management at the University of Nebraska Medical Center Global Center for Health Security (GCHS). Shelly has 40 years of healthcare leadership experience to include emergency, trauma, preparedness and accountability for biocontainment unit operations, and logistics during the care of repatriated Americans with Ebola virus disease in 2014-15, and leadership in collaboration with local, state and federal partners to support quarantine missions for repatriated Americans from Wuhan China and others returning from the Diamond Princess cruise ship from Japan who required care for COVID 19.

What's Up With Cow Field

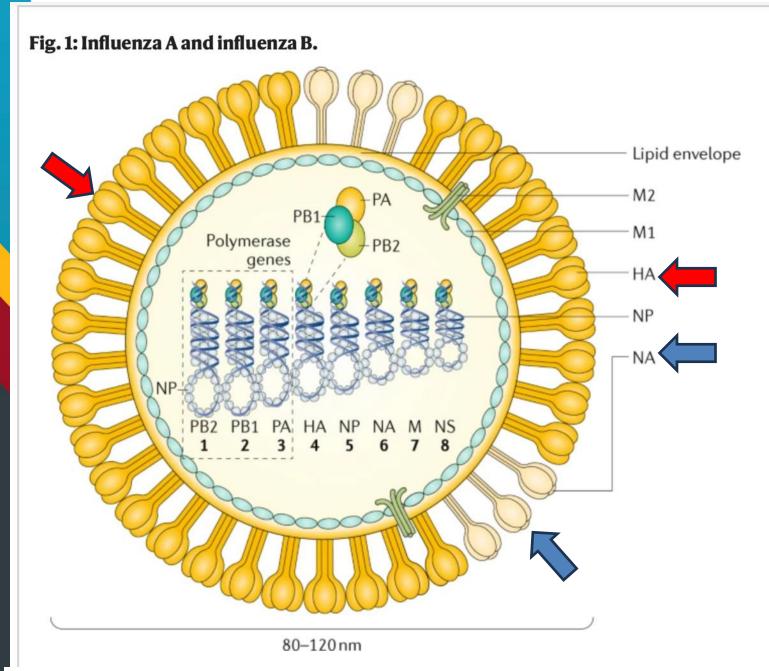
August 2024

James V. Lawler, MD MPH Global Center for Health Security University of Nebraska Medical Center

PANDEMIC INFLUENZA

IMPLEMENTATION PLAN

HOMELAND SECURITY COUNCIL


MAY 2006

PANDEMIC INFLUENZA

WHO Global Pandemic Phases and the Stages for Federal Government Response

	WHO Phases	Fed	eral Government Response Stages		
INTER-P	ANDEMIC PERIOD				
1	No new influenza virus subtypes have been detected in humans. An influenza virus subtype that has caused human infection may be present in animals. If present in animals, the risk of human disease is considered to be low.	0	New domestic animal outbreak in at-risk country		
2	No new influenza virus subtypes have been detected in humans. However, a circulating animal influenza virus subtype poses a substantial risk of human disease.		in at-tisk country		
♥ NDEM	IIC ALERT PERIOD				
3	Human infection(s) with a new subtype, but no human-to-human spread, or at most rare	0	New domestic animal outbreak in at-risk country		
5	instances of spread to a close contact.	1	Suspected human outbreak overseas		
4	Small cluster(s) with limited human-to-human transmission but spread is highly localized, suggesting that the virus is not well adapted to humans.				
5	Larger cluster(s) but human-to-human spread still localized, suggesting that the virus is becoming increasingly better adapted to humans, but may not yet be fully transmissible (substantial pandemic risk).	2	Confirmed human outbreak overseas		
PANDEM	IC PERIOD				
		3	Widespread human outbreaks in multiple locations overseas		
6	Pandemic phase: increased and sustained	4	First human case in North America		
	transmission in general population.	5	Spread throughout United States		
		6	Recovery and preparation for subsequent waves		

In avian/human flu viruses: 16 H options 9 N options

H5N1

Krammer, F., Smith, G.J.D., Fouchier, R.A.M. et al. Influenza. Nat Rev Dis Primers 4, 3 (2018). https://doi.org/10.1038/s41572-018-0002-y

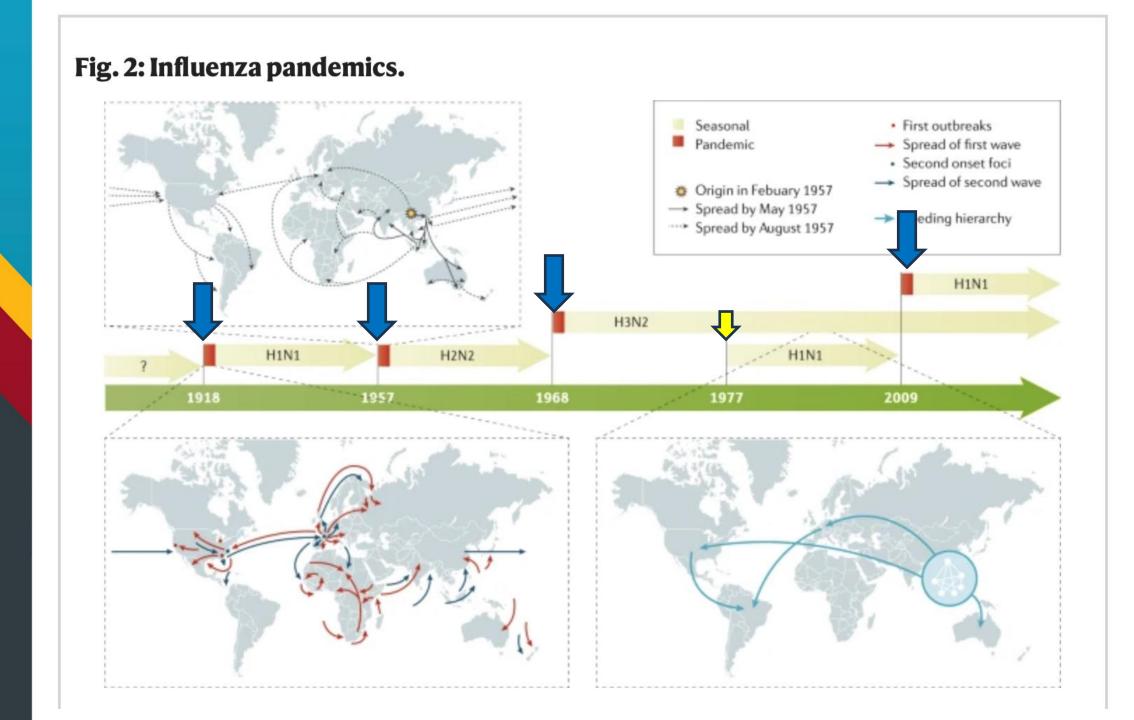
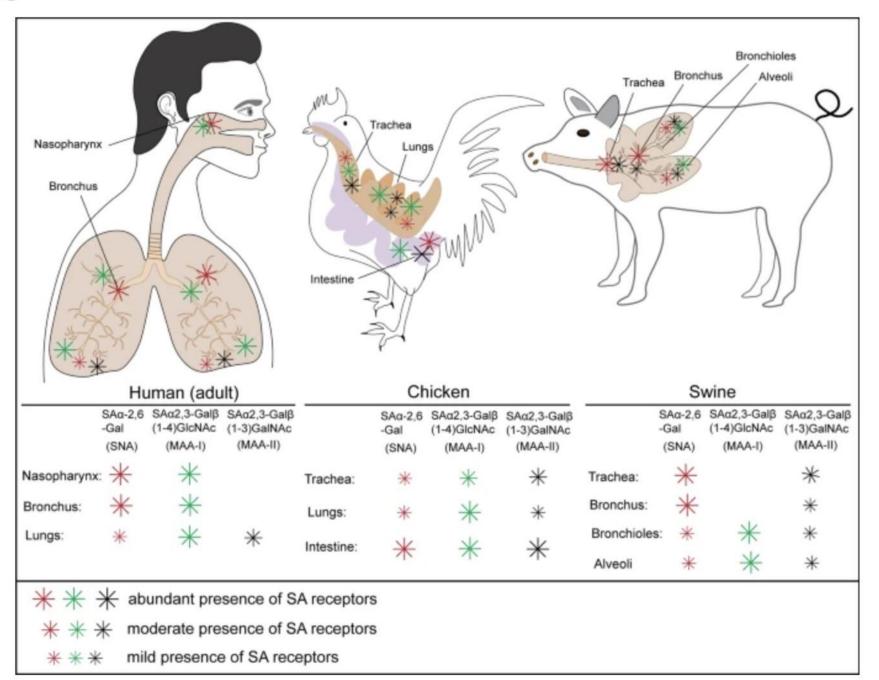
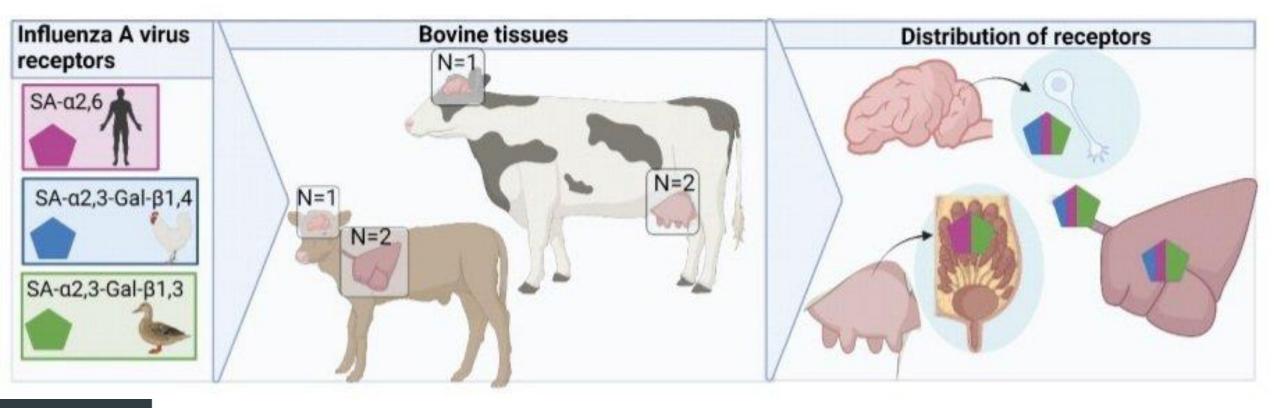
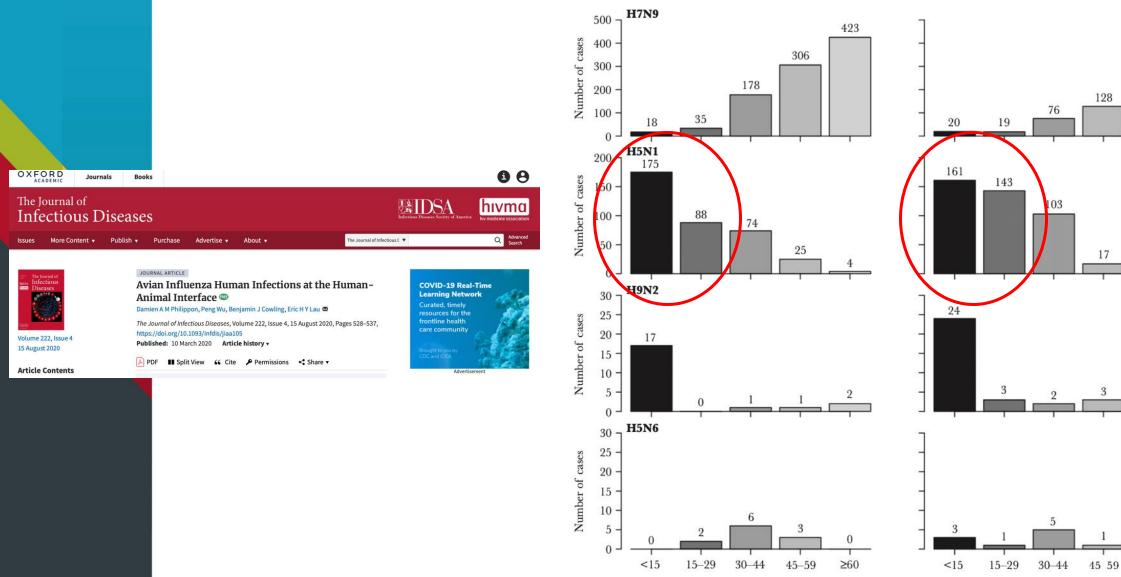




Fig. 2

Cumulative number of confirmed human cases[†] for avian influenza A(H5N1) reported to WHO, 2003-2024

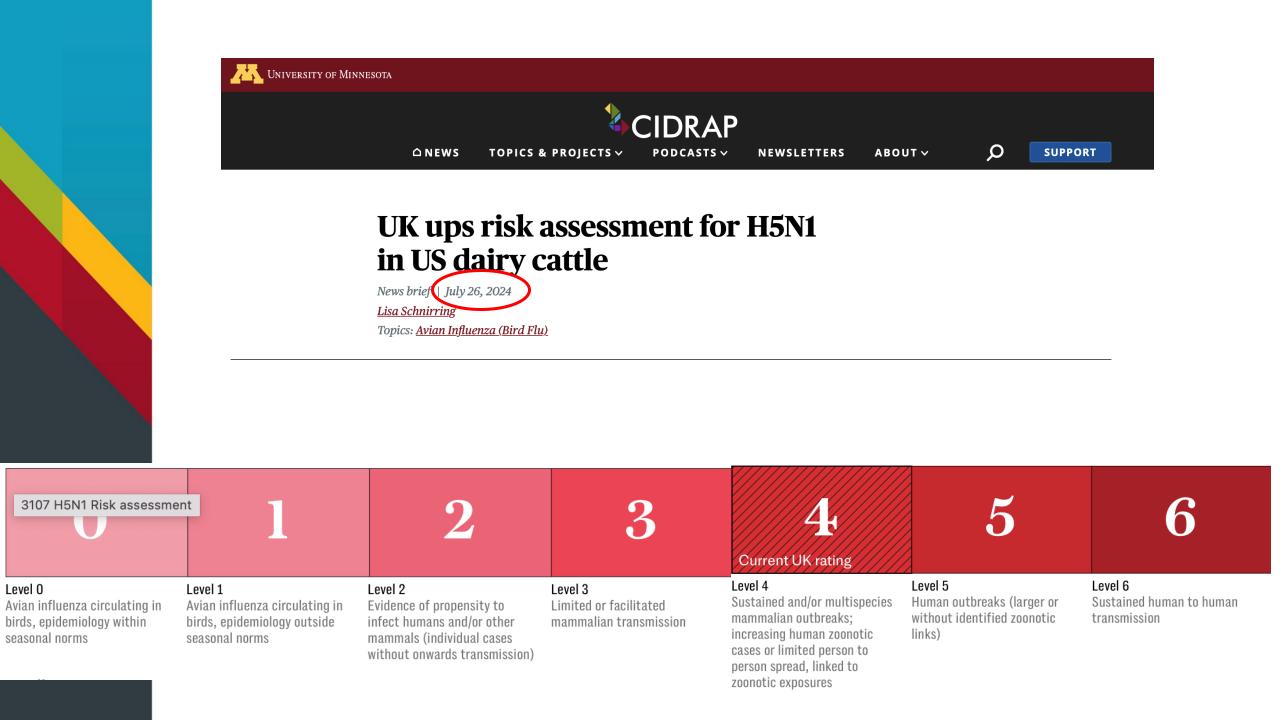

Country	2003	-2009*	2010-	-2014*	2015-	2019*	20	20	20	21	20	22	20	23	20	24	То	tal
	cases	deaths																
Azerbaijan	8	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	5
Bangladesh	1	0	6	1	1	0	0	0	0	0	0	0	0	0	0	0	8	1
Cambodia	9	7	47	30	0	0	0	0	0	0	0	0	6	4	5	1	67	42
Canada	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Chile	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
China	38	25	9	5	6	1	0	0	0	0	1	1	1	0	0	0	55	32
Djibouti	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Ecuador	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
Egypt	90	27	120	50	149	43	0	0	0	0	0	0	0	0	0	0	359	120
India	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1
Indonesia	162	134	35	31	3	3	0	0	0	0	0	0	0	0	0	0	200	168
Iraq	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2
Lao People's Democratic Republic	2	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	3	2
Myanmar	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Nepal	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1
Nigeria	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Pakistan	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1
Spain	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	
Thailand	25	17	0	0	0	0	0	0	0	~	0	0	0	0	0	0	25	17
Turkey	12	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	4
United Kingdom	0	0	0	0	0	0	0	0	1	0	0	0	4	0	0	0	5	0
United States of America	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
Viet Nam	112	57	15	7	0	0	0	0	0	0	1	0	0	0	0		120	64
Total	468	282	233	125	160	48	1	0	2	1	6	1	12	4	5	l	887	462

*2003-2009, 2010-2014 and 2015-2019 total figures. Breakdowns by year available on subsequent tables. [†]This count includes reported detections in asymptomatic individuals. In some cases, the confirmation of infection versus transient contamination of the nasopharynx/oropharynx with virus particles after exposure to infected birds or contaminated environment remains inconclusive. Total number of cases includes number of deaths.

CFR = 52%

WHO reports only laboratory-confirmed cases. All dates refer to onset of illness. Source: WHO/GIP, data in HQ as of 26 February 2024.

Female age (years)


173

≥60

Figure 4. Distribution of the human cases per age categories and sex for H7N9, H5N1, H9N2, and H5N6. Subtypes are ordered according to the total number of cases reported in descending order.

Male age (years)

Philippon et al 2020

UK HSA Warning

"Dr Susan Hopkins, the Chief Medical Advisor of the UK Health Security Agency (UKHSA), said the US outbreak "demonstrates that influenza A (H5N1) continues to infect new mammals and spread between them."

"But decode the language and you find that the UKHSA puts the likelihood of H5N1 crossing the threshold and evolving into a likely pandemic at somewhere **between one-in-ten and one-in-three** – barely long odds."

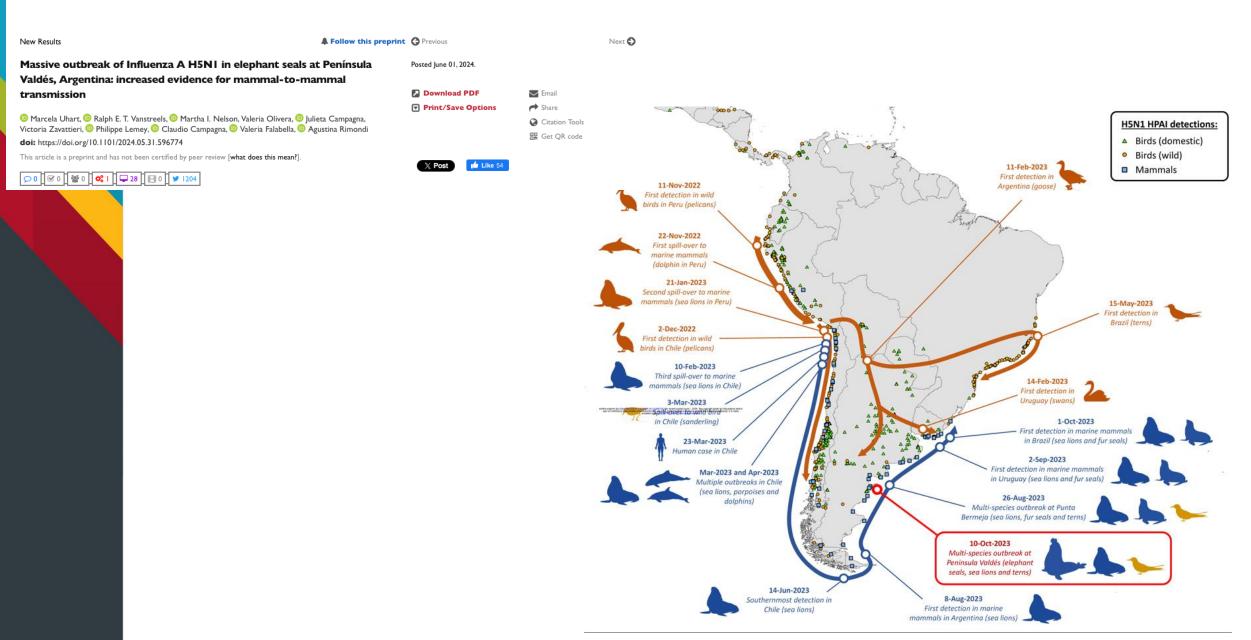
https://www.telegraph.co.uk/global-health/science-and-disease/bird-flu-pandemic-threat-rises-experts-say-risk-is-low/

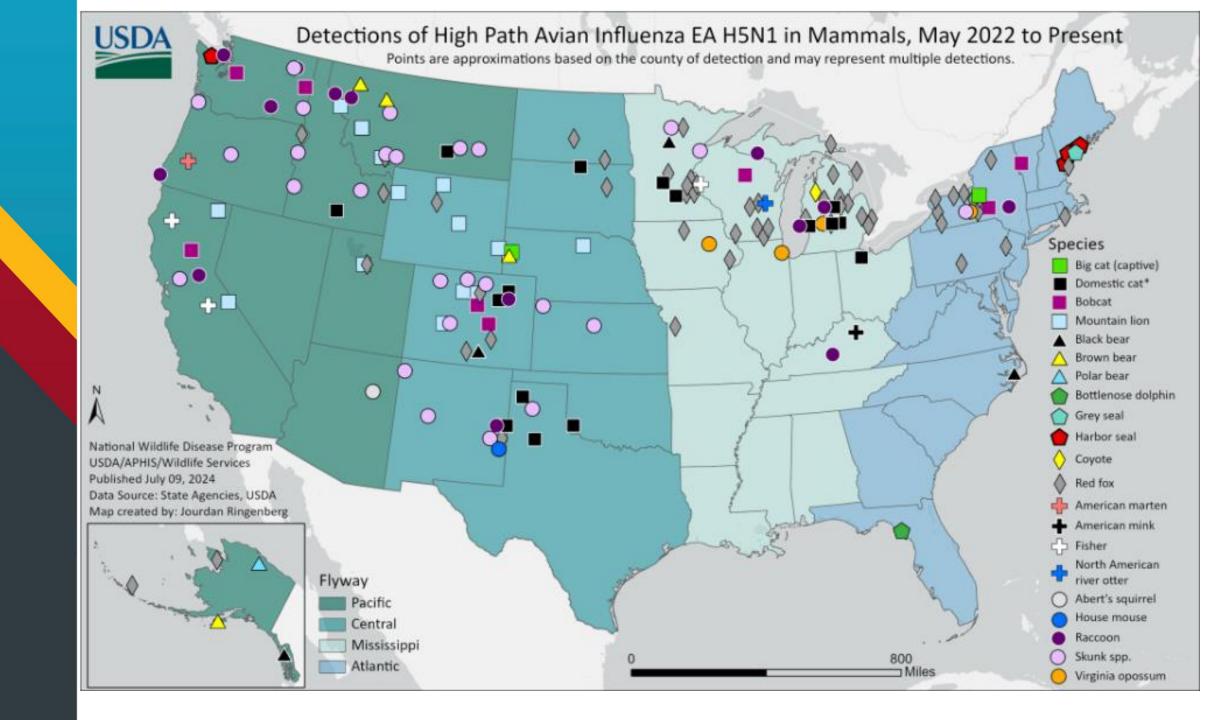
Emerg Infect Dis. 2024 Mar; 30(3): 444–452. doi: <u>10.3201/eid3003.231098</u> PMCID: PMC10902543 PMID: <u>38407173</u>

Recent Changes in Patterns of Mammal Infection with Highly Pathogenic Avian Influenza A(H5N1) Virus Worldwide

Pablo I. Plaza, Víctor Gamarra-Toledo, Juan Rodríguez Euguí, and Sergio A. Lambertucci

Figure 1


Geographic location of mammal species affected by highly pathogenic influenza virus A(H5N1) in previous waves of infection, 2003–2019 (A), and in the current panzootic, 2020–2023 (B).



HOME | SUBMIT | FAQ | BLOG | ALERTS / RSS | RESOURCES | ABOUT | CHANNELS

Search

	Q
Advanced	Searc

Avian Influenza (Bird Flu)

EXPLORE TOPICS ~

H5 Bird Flu: Current Situation

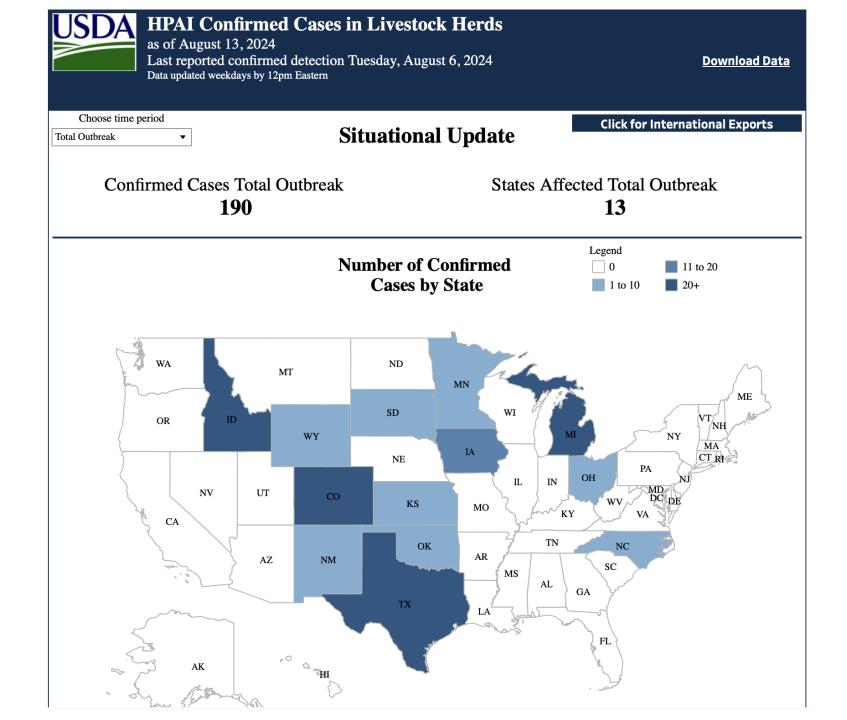
National flu surveillance (since February 25, 2024)

Cumulative surveillance (since 2022)

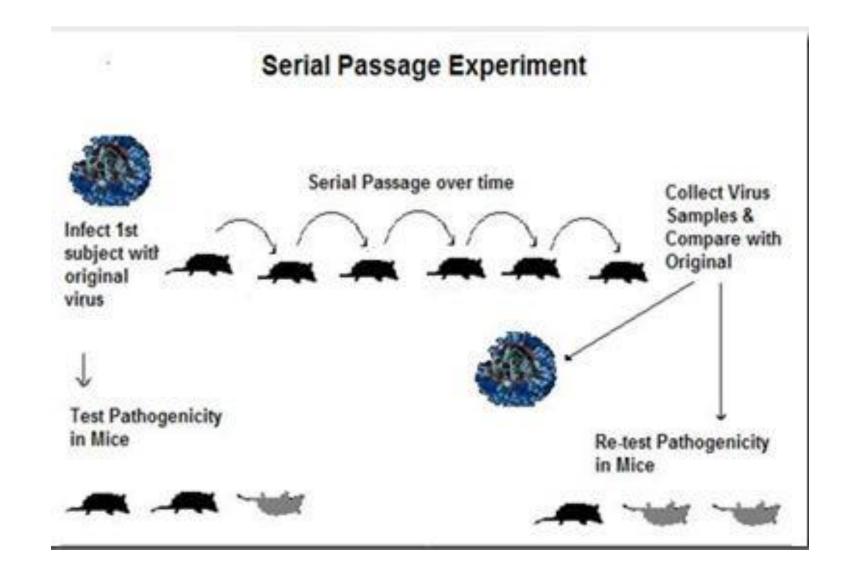
Humans

Report

Total Reported Human Cases in the United States: **14** (since 2022) **4** following exposure to dairy cows (reported between 4/1/2024 and 7/3/2024) | <u>Report</u> **10** following exposure to poultry (reported between 4/28/2022 and 7/25/2024) | <u>Fa</u>


States with Reported Case(s): 3

*9 of the 14 H5 human cases reported in the US have been confirmed as H5N1.


Learn More

Jurisdictions with Bird Flu in Wild Birds	States with Outbreaks in Poultry	States with Outbreaks in Dairy Cows
50	48	13

https://afludiary.blogspot.com/2016/09/virology-j-adaptation-of-hpai-h5n2-in.html

medRχiv

THE PREPRINT SERVER FOR HEALTH SCIENCES

HOME | SUBMIT | FAQ | BLOG | ALERTS / RSS | RESOURCES | ABOUT

Search	Q
	Advanced Search
C Previous	Next 🗲
Posted July 31, 2024.	
Download PDF	Email
Print/Save Options	And the share
Author Declarations	Citation Tools
	Get QR code
X Post 🖬 Like 141	
COVID-19 SARS-C	CoV-2 preprints from
medRxiv and bioR	xiv
Subject Area	

A Follow this preprint

A One Health Investigation into H5NI Avian Influenza Virus Epizootics on **Two Dairy Farms**

Ismaila Shittu, Diego Silva, Judith U. Oguzie, Lyudmyla V. Marushchak, Gene G. Olinger, John A. Lednicky, Claudia M. Trujillo-Vargas, Nicholas E. Schneider, Haiping Hao, 💿 Gregory C. Gray doi: https://doi.org/10.1101/2024.07.27.24310982

Metrics

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

Abstract

Full Text Info/History Preview PDF

Table 1: Demographic characteristics of participants from the two dairy farms

Participants characteristics	Farm A (n=10)	(n=7)	Combined
Age in years, median (range)	38 (26 – 59)	27 (16 – 39)	33 (16-59)
Male/female number	7/3	5/2	
Ethnicity			
Latino	10 (100%)	5 (71.4%)	15 (88.2%)
American-Indian or Alaska native	-	2 (28.6%)	2 (11.8%)
Highest level of education			
Primary (grades 1-5)	1 (10%)	2 (28.6%)	3 (17.65%)
Secondary	1 (10%)	3 (42.9%)	4 (23.53%)
Tertiary	2 (20%)	1 (14.3%)	3 (17.65%)
College (2 years)	1 (10%)	1 (14.3%)	2 (5.88%)
College (4 years)	5 (50%)	-	5 (35.29%)
History of chronic breathing problems?			
Yes	-	-	
No	9 (90%)	7 (100%)	16 (94.1%)
Unknown	1	-	1 (5.9%)
Have you ever used inhaled tobacco products?			
Yes	1	2	3 (17.7%)
Previously	1	-	1 (5.9%)
No	8	5	13 (76.4%)
Any medications in the last 30 days?			
Yes (antibiotics, ibuprofen, multivitamin,			
cough syrup, diarrhea pills, dewormer and hear	4 (40%)	1 (14.3%)	5 (29.4%)
problem)			
No	6 (60%)	6 (85.7%)	12 (70.6%)

Recent respiratory illness? Yes	4 (40%)	1 (14.3%)	5 (29.4%)
Past respiratory illness (last 12 months)? Yes	5 (50%)	4 (57.1%)	9 (52.9%)
Recent respiratory illness noticed among	6 (60%)		6 (35.3%)
household? Yes	0 (00%)	-	0 (33.3%)
Recent respiratory illness noticed among co-	4 (100/)	0 (00 50/)	((25.20/)
workers? Yes	4 (40%)	2 (28.5%)	6 (35.3%)
Have you received vaccination for human	8 (80%)	1 (14.2%)	9 (52.9%)
influenza? Yes	8 (8070)	1 (14.270)	9 (32.970)
Have you received vaccination for human	10 (100%)	1 (14.2%)	11 (64.7%)
SARS-CoV-2? Yes	10 (100%)	1 (14.276)	11 (04.776)
Job type on the farm?			
Calf caretaker	1 (10%)	-	1 (5.8%)
Veterinarian	-	1 (14.2%)	1 (5.8%)
Inseminator	-	1 (14.2%)	1 (5.8%)
Feeders	1 (14.2%)	1 (14.2%)	2 (11.7%)
Milkers	1 (10%)	4 (57.1%)	5 (29.4%)
Tractor driver/maintenance	4 (40%)	-	4 (23.5%)
Maternity	1 (10%)	-	1 (5.8%)
Maintenance	1 (10%)	-	1 (5.8%)
Mechanic shop	2 (20%)	-	2 (11.7%)
Cleaning services	2 (20%)	-	2 (11.7%)
Hospital	1 (10%)	-	1 (5.8%)
Breeder	-	1 (14.2%)	1 (5.8%)
Others			3 (17.6%)

Table 2. Farm workers clinical history and laboratory assay results.

Sample ID		Respiratory symptoms	Nasopharyngeal swab		MN*
number	Farm	during the last 12 months?	influenza A qRT-PCR (Ct)	MN* titer	interpretation
USH_01	Farm A	No	Negative	1:20	Negative
USH_02	Farm A	Yes	Negative	1:10	Negative
USH_03	Farm A	Yes	Negative	1:10	Negative
USH_04	Farm A	Yes	Negative	<1:10	Negative
USH_05	Farm A	No	Negative	1:40	Positive
USH_06	Farm A	Yes	Negative	1:20	Negative
USH_07	Farm A	No	Negative	1:20	Negative
USH_08	Farm A	Yes	Negative	1:20	Negative
USH_09	Farm A	Yes	Negative	1:20	Negative
USH_10	Farm A	Yes	Negative	1:80	Positive
USH_11	Farm B	No	Negative	1:20	Negative
USH_12	Farm B	No	Negative	1:20	Negative
USH_13	Farm B	Yes	Negative	NA	NA
USH_14	Farm B	Yes	Negative	NA	NA
USH_15	Farm B	No	Negative	1:20	Negative
USH_16	Farm B	Yes	Negative	1:20	Negative
USH_17	Farm B	Yes	Negative	NA	NA

N

*Serologic microneutralization (MN) assays were run against recombinant H5N1 (rg-A/bald eagle/Florida/W22-134-

OP/2022 of clade 2.3.4.4b), NA = Not applicable

Considerations for Human H5 Cases Presenting to Healthcare

- Is this a sporadic animal-to-human case (low risk)?
- Is this a virus with mutations adapting to human infection and transmission (higher risk)?
- Is this human-to-human transmission case (high risk)?

Objectives for US Healthcare in H5N1

- Increased surveillance/detection
 - Awareness of clinical syndromes and epidemiological risk
 - Testing and subtyping influenza viruses
- Identification of PUI and appropriate response
 - Identify, Isolate, Inform
- Prevent ongoing transmission
 - Respiratory isolation
- Treatment
 - Neuraminidase inhibitors, supportive care

FDA Approved Tests for Subtyping Influenza A*

- BioCode (Applied Biocode, Inc)
- Idylla (Biocartis NV)
- BioFire (Biofire Diagnostics, LLC)
- ePlex/eSensor (GenMark Diagnostics, Inc)
- Verigene (Luminex Corp)
- NxTAG (Luminex Molecular Diagnostics, Inc)
- QIAstat-DX (Qiagen GmbH)
- CDC Assay

*20 out of 93 FDA-approved influenza A assays

What Can We Do?

- Be aware of risk and screen patients presenting with ILI, ARI, or conjunctivitis
- Identify PUIs
- Implement appropriate IPC for PUIs
- Use sub-typing influenza test for PUI if possible
 - Single influenza test isn't always enough!
- For Flu A + and H1/H3 negative results, refer immediately to CDC and further testing for H5 or sequencing
 - This result should raise concern level
- Notify public health early

NETEC Resources Training, Education, and Consultation

- <u>NETEC Hospital SPORA</u>
- <u>NETEC EMS SPORSA</u>
- <u>PPE from A to Z: PAPRs for</u> <u>Respiratory Protection</u>
- <u>NETEC: Identify, Isolate, and</u> <u>Inform</u>
- <u>Highly Pathogenic Avian</u> <u>Influenza - NETEC</u>

Highly Pathogenic Avian Influenza Resources

Outbreak Information:

- <u>Current H5N1 Bird Flu</u>
 <u>Situation in Dairy Cows</u>
 <u>Bird Flu</u> | <u>CDC</u>
- The Transmission
 - <u>Subscribe to the</u>
 <u>Transmission</u>
- <u>ProMED</u>
 - <u>Subscribe</u> to ProMED Email Newsletter

Training, Education, and Consultation:

- Introduction to the 2024
 Joint Commission
 Standards for Infection
 Control
- <u>Request a Training from</u>
 <u>the Region VII RESPTC</u>
 - Hospital and EMS Education Available!
- Request a Region VII RESPTC Site Visit.
 - <u>Jgruber@nebraska</u> <u>med.com</u>

Contact Us:

Contact the Region VII RESPTC directly at Jgruber@nebraskamed.com