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Abstract— Despite considerable efforts by human designers,
accounting for every unique situation that an autonomous
robotic system deployed in the real world could face is often
an infeasible task. As a result, many such deployed systems
still rely on human assistance in various capacities to complete
certain tasks while staying safe. Competence-aware systems
(CAS) is a recently proposed model for reducing such reliance
on human assistance while in turn optimizing the system’s
global autonomous operation by learning its own competence.
However, such systems are limited by a fixed model of their
environment and may perform poorly if their a priori plan-
ning model does not include certain features that emerge as
important over the course of the system’s deployment. In this
paper, we propose a method for improving the competence of a
CAS over time by identifying important state features missing
from the system’s model and incorporating them into its state
representation, thereby refining its state space. QOur approach
exploits information that exists in the standard CAS model and
adds no extra work to the human. The result is an agent that
better predicts human involvement, improving its competence,
reliability, and overall performance.

I. INTRODUCTION

Autonomous robotic systems are increasingly being de-
ployed in highly complex, unstructured domains where they
are expected to operate reliably on the order of months
or even years. Familiar examples include autonomous nav-
igation [1], extraterrestrial exploration [2], personal assis-
tance [3], and other applications [4]. Despite the recent
progress made in artificial intelligence and robotics, it is still
often infeasible to account for every environmental feature
relevant to all possible scenarios that the system may face
in a single planning model. Consequently, many autonomous
systems still rely on human assistance in various capacities
to successfully accomplish their tasks [5].

Competence-aware systems (CAS) has been recently pro-
posed as a planning framework to reduce unnecessary re-
liance on human assistance by learning their own competence
and accounting for it during planning [6]. A CAS is a
semi-autonomous system [7] comprised of an autonomous
agent and a human authority that can operate in one of a
number of distinct levels of autonomy each corresponding
to some set of constraints on its autonomous operation. For
example, a service robot may not be allowed to operate
fully autonomously when an unrecognized obstacle blocks
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Fig. 1: An illustration of our approach in a navigation task.

Colored blocks represent different types of doors. Each colored path
corresponds to the optimal path under a different granularity of the
state space representation. As features are identified and added to
the state representation, the system can better learn to exploit human
assistance and take paths that better match its own competence.

its path but may request that the human operator supervises
its execution, ready to take control. Necessary reliance on a
human authority stems from limited competence on the part
of the autonomous system, but unnecessary reliance stems
from limited information.

While the CAS model enables a semi-autonomous system
to optimize its autonomy over time, it still relies on an
approximate model of its domain for planning. Generally,
the high-level features used by the planning model are
designed carefully by experts prior to deployment, and do
not represent the full breadth of information available to
the agent from sensors or external sources. This could be
due to underspecified objectives or dynamics [8], particularly
in a deployed setting where the use and environment may
vary with each system, or environmental complexity that
is too computationally challenging to fully specify in a
single planning model [9]. This presents a particular issue
in the context of CAS and human-agent interactions when
the initial fixed model that the agent is deployed with does
not align well with that of the human interacting with
the system. The CAS may not have the representational
power to properly discriminate between feedback provided
by the human during the course of operation, leading to
low competence, poor performance, and an over-reliance
on the human as the system cannot properly learn its own
competence in parts of the state space.

In this paper, we propose a method for providing a
CAS the ability to improve its competence over time by
increasing the granularity of its state representation through



online model updates. As illustrated in Figure 1, this process
leads to a more nuanced drawing of the boundaries between
regions of the state space with different levels of competence.
Our approach leverages the CAS model in two critical
ways. First, it exploits information available in a standard
CAS model in the form of human feedback, adding no
extra work to the human, to identify where new features
should be added. Second, it exploits properties of the human-
agent interaction to avoid needing to ever alter the transition
function or reward function, modifying only the state space
directly, allowing the process to be done in a fully automated
way. We prove that when the human and agent share a
sufficient state representation, this approach is guaranteed
to terminate at which point no additional features will be
added. Additionally, we provide both simulated experiments
and experiments with a physical mobile robot that validate
the efficacy of our approach.

II. BACKGROUND ON COMPETENCE AWARENESS

We begin by reviewing the primary model used in this
approach. A competence-aware system (CAS) is a semi-
autonomous system that operates in and plans for multiple
levels of autonomy, each of which is associated with different
restrictions on autonomous operation and distinct forms of
human involvement [6]. A CAS combines three models—a
domain model, an autonomy model, and a feedback model—
into a single decision-making framework. For an in-depth
background we direct the reader to earlier work [6].

The domain model (DM) represents the environment
in which the agent operates with a stochastic shortest
path (SSP) problem. An SSP is represented by the tuple
(S, A, T,C, sp,G) where S is a set of states (feature vectors),
A is a set of actions, T : S x A — AlSl is a transition
function, C' : S x A — R is a positive cost function, sp € S
is an initial state, and G C S is a set of goal states.

The autonomy model (AM) represents the extent of au-
tonomous operation the system can perform in any situation.
AM is represented by the tuple (L, k, u). L= {lo,....,1,} is
the set of levels of autonomy, where each [; corresponds to
a set of constraints on the system’s autonomous operation.
k:SxA— P(L) is the autonomy profile that indicates the
allowed levels of autonomy when performing action a € A
in state s € S. kK may model external constraints that could
represent legal or ethical considerations [10]. x constrains
the full policy space so that the system can never follow a
policy that violates k. p: Sx LX Ax L — R is the cost of
autonomy that represents the cost of operating at level I’ € £
when taking action a € A in the state s € S given that the
agent just operated in level [ € L.

The human feedback model (HM) models the autonomous
agent’s current knowledge and belief about its interactions
with the human agent. HM is represented by the tuple
(3, A\, p, 7). X is the set of feedback signals the agent can
receive from the human. X : S x £ x A x £ — Al*l is the
feedback profile that represents the probability of receiving
signal o when performing action a € A at level I’ € £ given
that the agent is in state s € .S and just operated in level [ € £

and is typically represented using a machine learning model.
p:SxLxAxL— R is the human cost function that
represents the cost to the human of performing action a € A
at level I’ € L given that the agent is in state s € S and just
operated in level [ € £. 7: S x L x A x £ — Al is the
human state transition function that represents the probability
of the human taking the agent to state s’ € S when the agent
attempted to perform action a € A in state s € S but the
human took over control.

Definition 1. A competence-aware system S is represented

by the tuple (S, A,T,C,350,G), where:

o S =S XL is a set of factored states, each comprised
of a domain state s € S and a level of autonomy | € L.

o A= AXL is a set of factored actions, each comprised
of a domain action a €A and a level of autonomy | € L.

o T:8xA— Al isa transition function with T : S x
A= AP XN Sx A= AZ and 7: 8 x A— Al°,

e C:8xA—= Rt isa cost function with C : S x A —
RY, n:SxA—=R andp:SxA—=RF

o 30 € S is the initial state 39 = (so,l) for some | € L.

o G C S is the set of goal states.

The objective is to find an optimal policy 7, € II that
minimizes the value function V™ subject to the condition
that, for every state 5 = (s,l’) € S, the policy 7 (3) never
indicates an action @ = (a,l) € A for which the level of
autonomy [ is not allowed for state s and action a by (s, a).

Intuitively, the competence of a CAS for executing action
a in state S is the most cost-effective level of autonomy
given perfect knowledge of the authority’s feedback model.
If the authority is likely to deny or override the system
autonomously carrying out action a, the competence will
likely be low. Similarly, if the authority is likely to allow
the action to be carried out autonomously, we expect the
competence to be high, although this is not formally required.
We emphasize that this is a definition on the human-agent
system as a whole, and not simply the autonomous agent, as
the competence is directly affected not just by the technical
capabilities of the agent, but also the human authority’s
perception of the agent’s capabilities.

Definition 2. Let \* be the stationary distribution of feed-
back signals that the human authority follows. The compe-
tence of CAS S, denoted Xs, is a mapping from S x A
to the optimal (least-cost) level of autonomy given perfect
knowledge of \t. Formally:

xs(3,a) = argmin Q(5, (a,1); \*)
leL
where Q(3, (a,1); \') is the expected cumulative reward
when taking action @ = (a,l) in state S conditioned on
knowing the human authority’s feedback distribution, \™.

A CAS is level-optimal in state s if the system operates
at its competence in that state under its current optimal
policy. The higher the system’s level-optimality is, the better
it exploits the capabilities of the authority as well as its own.



Definition 3. A CAS S is level-optimal if 7*(3) =
(a,xs(8,a)) Vs € S. S is otherwise ~-level-optimal for
v € [0,1) if this holds for a ~y fraction of states.

III. IMPROVING COMPETENCE

While recent work shows that a CAS will converge to be
level-optimal in the limit under certain assumptions [6], the
result makes no claim about the level of competence of the
CAS. In particular, if a CAS is missing the features necessary
to correctly represent its domain in a way that aligns with the
human authority, even upon convergence to level-optimality,
its competence may be quite low.

Hence, the objective of this work is fo provide a CAS with
the ability to improve its competence over time by leveraging
the existing feedback available to the agent. Formally, this
means that the CAS will increase both its competence—
the optimal level of autonomy to use—and the total level-
optimality of the system. Our approach relies on the as-
sumption that an authority is e-consistent in their feedback;
that is, given the same (3,a), the feedback signal returned
will be the same with probability at least e. We address
practical considerations regarding this assumption later in the
paper. Under this assumption, the system can identify cases
where feedback appears inconsistent or random, indicating a
potential missing feature—a feature used by the authority to
make their decisions, but currently not used by the system.
By identifying the most likely feature or combination of
features missing from the system’s domain model, the agent
can update its model to better align with the internal model
of the authority, enabling it to improve its overall competence
by discriminating between situations where it can and cannot
act in any given level of autonomy.

Let S = (AM,FM,DM) be a competence-aware system.
The complete feature space available to S, e.g., from its
sensors or other external sources, can be partitioned into an
active feature space that is used by S and an inactive feature
space that is not yet used by S. As S receives additional
feedback over time, S will learn to exploit inactive features
in order to more effectively align with the features used by
the human authority.

Definition 4. Given the complete feature space (FS) F =
{F1, Iy, ..., Fy,} available to S, the active FS is denoted as
F C F, and the inactive FS as F = F \ F.

In order to ensure that level-optimality can be improved,
we assume that the human authority produces feedback that
remains consistent during the operation of S. This means that
when the agent performs the same action in the same state
at the same level of autonomy, the authority provides, with
high probability, the same feedback each time. Observing
violations of this assumption is central to our approach.

Definition 5. Let It C F be the set of features used by
the human authority, H, and let Sy = FJ* x --- x F‘% X
L. The ground truth feedback function is a deterministic
mapping f : Sy x A — . H is perfectly consistent if
M (f(5,a)[5,a) =1Vse S,ac A If \N(f(35,0)|5,a) > ¢
for e € (0,1) V5 € S,a € A, then H is e-consistent.

A state 5 is indiscriminate if it is missing information,
leading to the feedback profile having a low predictive
confidence. Intuitively, the condition states that for at least
one action, there is no feedback signal that the system
predicts with sufficiently high probability.

Definition 6. A state 5 is indiscriminate if there exists at
least one action @ € A where Yo € %, A(o[s,a) < 1—-§
where H is e-consistent and 6 € (1 —¢,1 — Iﬁl\)

We call ¢ the discrimination slack. The lower ¢ is set, the
higher the predictive confidence needed for (3,@) to not be
considered indiscriminate.

A discriminator is any subset of features available to the
agent but not currently used by the agent in its planning
model which could help the agent better predict the author-
ity’s feedback. For example, consider a state that represents
a closed door. With no additional features, the agent may
perceive having received equal approvals and disapprovals
from the human authority, while the human was in fact
disallowing the robot from opening doors it felt were too
heavy for the robot to open without damaging itself. By
including features that represent the door’s size, the robot
can then observe this disambiguation, allowing it to better
plan around interactions with a door.

Definition 7. A discriminator is any subset of F which, if
added to F, will improve the accuracy of A by at least a,
for some o € (0,1).

The larger that « is set, the stricter the requirement is on
including a new feature. The methodology for selecting dis-
criminators is well explored in the feature selection literature
and not the focus of this paper; standard approaches include
mRMR [11], JMI [12], and correlation-based methods [13].

IV. STATE SPACE REFINEMENT

Algorithm 1 presents the pseudocode of our approach for
improving the competence of a CAS via iterative partitioning
of the state space by adding new features to the state
representation over time. The algorithm first identifies the
current set of indiscriminate states (Lines 1-6). To avoid
labeling sparsely sampled state-action pairs as indiscriminate
through chance, we limit the process to only consider a
state-action pair if the probability of having observed all
labeled instances of that element in the existing dataset D,
referred to in Algorithm 1 as Obs(D(3,a)), conditioned on
the assumption that there exists a true correct feedback signal
returned with probability at least € by the human for every
state-action pair, is at least some threshold p. (Line 4). Next,
the algorithm samples an indiscriminate state from the set
(Line 9) and identifies the most likely discriminators for that
state using any standard feature selection technique, in our
case mRMR [11] (Line 11). For each potential discriminator,
a new feedback profile is trained using a portion of the full
dataset with the discriminator temporarily added to the active
feature set (Lines 12—13). The discriminator that leads to
the best performing feedback profile, in our case the highest
Matthews coefficient, is selected for validation (Line 14).



Algorithm 1: Single—Step State Space Refinement

Input: A CAS S, dataset D, slack J, and threshold M
Result: An updated CAS S
ST {}
for 5 € S.getStates() do
for @ € S.getActions() do
if maxsex A(0|5,a) <1—6 and
maxsey Pr[Obs(D(5,a))|o is ground truth] < p.
| ST« S uU{s}
7ifS =10
| return S
95 ~ S
10 Dirain, Dvai < Split(D)
11 D < mRMR(D,uin, ', 5)
12 for d € D do
13 Mg — train(F‘l X oo X F\F| X d, Dirain)

A R W =

o«

14 d* = argmax ¢ p evaluate(Aq, Dyar)
15 if validate(d*,S) is True

16 F— Fud

17 S’ < update(S)

18 return S’

If validation is successful, the discriminator is added to the
active feature set and the system is updated (Lines 15-17).

In this work, we make a few key assumptions. First, we
assume that the initial transition function provided in the
domain model is sufficiently correct for any scenario where
the agent is allowed, under x, to act autonomously. We
aim to improve the robustness of deployed systems where
accounting for every scenario a priori is infeasible, but where
the scenarios that are considered a priori are well-designed.
While we only investigate improving the competence of a
CAS by iteratively refining the state space, it may also be
possible to increase the competence by updating the transi-
tion function directly and replanning as the human authority
improves its understanding of the agent’s capabilities.

Second, we assume that the authority has a sufficient
understanding of the agent’s capabilities to both prevent the
execution of an action that the agent cannot perform suc-
cessfully and also provide consistent feedback. We make this
assumption for two reasons. First, there are different ways
to improve the authority’s understanding of the system’s
capabilities so that it has the appropriate trust [14], or re-
liance, on the system. These include pre-deployment training,
standardized feedback criteria, and expert knowledge of the
system. Second, recognizing potential failure and handling
fault recovery are separate areas of active research that are
orthogonal to what we examine in this paper.

Under these assumptions, we do not need to update the
domain model’s transition or reward functions directly at
any point. It suffices for the agent to be able to discriminate
between actions that it has the competence to perform
autonomously and actions that require human involvement.

A natural question is whether in the process of adding
a discriminator so as to make some indiscriminate states
discriminate, we will as an unintended by-product make

some discriminate state indiscriminate.

Remark 1. Adding a discriminator will never cause a
discriminate state to become indiscriminate.

While not obvious a priori, this remark is trivially true.
Observe that any given discriminate state will either be
affected by the discriminator or it will not. If it is not
affected, the feedback profile for the state will not change.
If the state is affected, then the initial state in question by
definition no longer exists. More importantly, we want to
ensure that every state is eventually properly discriminated
given a sufficient set of features.

The following theorem states that if every feature that the
human uses to determine their feedback is available to the
robot, then there must be a point in time at which the robot
has fully discriminated all states, and no state will become
indiscriminate past that point.

Theorem 1. Let F™ be the set of features used by the
human to determine their feedback, I, be the number of
indiscriminate states at time t, and \; be the feedback profile
at time t. If F** C F, {\;} converges in distribution, no
(5,a) € S x A is starved, H is e-consistent and there is
positive discrimination slack, then there exists some t* > 0

Sor which it holds that I, = 0 for all t' > t*.

Proof. First, observe that as F® C F, if there is a point
at which F* C F', then because the sequence {\;} con-
verges in distribution lim;_, ., Pr(|]A; — A®| > ~) = 0
Vv > 0. Hence, there exists some t* > (0 for which
Pr(|]A: — A?*| > &) = 0 at which point it is clear that no
state will be indiscriminate under §. Consequently, for the
claim to not hold, it must be the case that for every ¢ > 0,
F"\ (F* N F) # 0. Pick such a t, sufficiently large, for
which there is an indiscriminate state 3 € S. There is some
subset, G C F™"\ (F* N F), which is a discriminator of
s. As this holds for all ¢ > 0 and 5 € S, we either reach a
satisficing ¢* where F*\ (F*NF) # (), and hence are done,
or where F* C F' which contradicts our assumption. O

V. EXPERIMENTS

We implemented our framework in a simulated domain
in which a mobile robot is tasked with delivering packages
to various rooms on a college campus. An illustration of
the map used in our experiments can be seen in Figure 3.
To accomplish its task, the agent may need to navigate two
types of obstacles: crosswalks and doors.

Domain Model Domain states are specified by location,
heading, and obstacle information when relevant. The full set
of features available to the system for crosswalk obstacles
include the traffic condition, the visibility condition, and
whether the street is one way or two ways. The total available
features available to the system for door obstacles include
whether they are open or closed, their size, color, and
whether they have a handle or not (and hence whether they
can be pushed open). Finally, the current hour in the day is
also available to the agent as a global state feature.
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However, as the state space of an SSP grows exponentially
in the size of its feature space, and it is not known a priori
which features will be utilized by the human in providing
their feedback, only a small subset of these features are
initially used by the planning model. Specifically, the CAS is
initialized with traffic conditions at crosswalk obstacles and
at door obstacles whether the obstacle is open or closed.
To increase its competence, the CAS must learn which
additional features it needs to add to its model to correctly
predict human feedback with high confidence. The additional
causal features that the human authority uses to determine
their feedback are the visibility condition of the crosswalk,
the pedestrian traffic (which is unavailable to the agent
directly but can be indirectly modeled by the time of day),
and both the size and opening mechanism of doors. To
obfuscate things further for the system, non-causal features
are intentionally correlated with certain causal features. For
example, in one building, the door color is perfectly consis-
tent with the door size, and with one exception, the street type
is consistent with the visibility condition. This tests whether
our approach uses causal features over correlative features.

Autonomy and Feedback Models We consider an agent
with four levels of autonomy: no autonomy (ly), verified
autonomy (ly), supervised autonomy (ls), and unsupervised
autonomy (I3). lp requires the human authority to complete
the action for the agent. [y requires the agent to query the
authority for explicit approval prior to executing its intended
action. [y requires the human authority to be available
in a supervisory capability while the agent executes the
action, with the ability to override and take over control if
necessary. [3 is fully autonomous. The agent can receive the
following four feedback signals: approval (&), disapproval
(8), override (@), and none (0).

Initially, A is uniformly distributed and k(s,a) = {lo, {1}
for all actions in states with obstacles. For states with no
obstacles, the system is allowed to operate in unsupervised
autonomy. In all experiments, the human authority is 0.95-
consistent, and uniformly random over the possible feedback
signals in the other 5%. To avoid generalization between
actions which had no relationship, we maintained a separate
feedback dataset for each action a € A. The data features
used in each dataset were the level of autonomy and the state
features currently used by the system.

We implemented our feedback profile A as a GA2M [15],
which works well on low dimensional feature spaces where
pairwise feature interactions are important. We trained our
A on all features and pairwise feature tensors using the
native grid search function for hyperparameter tuning [16].
In Algorithm 1, we set 6 = 0.95, and the train/validation
split is 75%/25%. Our validation step (Line 15) entails
the feedback profile produced by D* having a Matthews
correlation coefficient above 0.5 that is also at least 0.05
higher than the existing feedback profile’s coefficient; the
intuition here being that the new feedback profile should
be statistically better than random, and at least marginally
better than the existing feedback profile. More stringent
requirements may inadvertently fail to identify features that
are missing but which only affect a very small portion of the
state space (in the most extreme case, a single state).
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Fig. 4: Left: The paths taken by the robot. Yellow circles represent human intervention or assistance. Right: The robot in the domain.
Green denotes doors the human will approve the robot to open and red denotes doors the human disallows the robot from opening.

Results We compared the performance of a modified CAS
that can add to its active feature set over time and a standard
CAS that must rely only on its initial set of state features.
We ran 200 episodes where, in each episode, the start and
goal states were randomly sampled uniformly from the set
of rooms across the campus. The modified CAS was able to
identify and add all missing causal features (four of them); in
particular, the size of the doors, their opening mechanism (if
they could be pushed open or not), the visibility condition
at crosswalks, and finally the time of day which provides
information on the level of pedestrian traffic which is not
able to be measured directly by the system.

We first observe in Figure 2a that the modified CAS
reached roughly 100% level-optimality across all states, and
over 90% level-optimality across all visited states. However,
we see that the level-optimality across all states for the
standard CAS did not change significantly over the course of
the simulation in either case. The level-optimality starts off
high (roughly 93%) because in most states the agent is able
to act autonomously a priori; it is only in the small set of
crucial, or risk-sensitive, states with obstacles that the agent
must learn its competence. Furthermore, the modified CAS
was able to diminish its reliance on the human operator much
more effectively. By episode 200, the number of feedback
signals received has begun to flatten, whereas in the standard
CAS case it continues to grow linearly at a constant rate.
In other words, the modified CAS is able to perform more
optimally with fewer feedback signals from the human.

In Figure 2b, we plot the percent error in cost prediction:
the error in the expected cost of reaching the goal compared
to the true cost incurred in the process of doing so. The
modified CAS (orange) approaches close to 0 percent error,
demonstrating that it has learned to predict the human’s
feedback with high accuracy across the domain, whereas the
standard CAS continues to have large error throughout.

Robot Experiment We also implemented our approach
on a TurtleBot3 mobile robot. The results can be seen in
Figure 4 where we depict the three distinct paths taken
by the robot over time. The robot starts in the top left
corner, as depicted, and its goal is to reach the bottom
left corner. The red line represents the first path taken by
the robot—the robot, knowing nothing about the differences

between doors, takes the shortest path to the goal requiring
it to request human aid to open a pull door. The blue line
represents the path taken by the robot after introducing the
new feature doortype—the robot now travels through the
first push door, knowing that the bottom pull door is not
openable by it. However, the agent still attempts to open
the nearest door after, a pull door, as it has not determined
with high confidence if doortype is the determining factor,
or if it simply is disallowed from opening the bottom door
specifically. After receiving a disapproval, it requests human
help. The green line represents the final path—the robot has
now identified that doortype is the determining factor, and
takes the path that only interacts with push doors, despite
being longer than the other two.

VI. RELATED WORK

There has been prior interest in exploring model incom-
pleteness in sequential decision making under uncertainty. A
longstanding line of work has investigated Markov decision
processes (MDPs) that are imprecisely known a priori. In-
stead of a singular function used to model domain transition
or reward dynamics, these dynamics are modeled as distribu-
tions over sets of functions [17], [18], [19]. This notion was
more recently generalized under the terminology uncertain
MDPs (UMDPs) [20], [21], [22], [23]. As in our work, these
models are intended to deal with domains where producing
a fully precise and accurate model of the domain is hard or
infeasible a priori, or where the dynamics are non-stationary.
This work, however, is concerned with MDPs in which the
representation of the state space itself is incomplete.

Learning from human interaction has been an active area
in recent years, including learning from human input [24],
[25], [26] and learning from demonstration [27], [28], [29].
Our work is related to the former, in which an agent must
learn parameters of its model through interactions with a
human (e.g. advice or questions). However, our work is
unique as it exploits unexpected inconsistencies in a model
learned from human input to address the problem of an
incomplete state representation.

Feature selection is an area that has been extensively stud-
ied in particular for its benefits in machine learning and data
analysis [30]. Feature selection has most commonly been



applied to data analysis where the data is high dimensional,
warranting a need to select the features that optimize the
objective function while preserving the underlying structure
of the data [31]. It has also been used in reinforcement
learning as a technique to more efficiently determine the
most relevant sensory features for capturing the transition
dynamics of the domain [32] and for identifying a sparse set
of features for learning robotic manipulation skills that adapt
to different objects [33].

VII. CONCLUSION

We present a method for enabling competence-aware
systems to improve their competence and level-optimality
over the course of their deployment by refining the state
representation so as to better predict human feedback. Our
method works by identifying indiscriminate states, states that
are likely missing information needed to accurately predict
human feedback, and adding the most likely discriminators
for such states, features that improve the feedback profile,
to the state representation. This enables the system to better
discriminate the feedback received from the human authority.
We evaluate our method on a simulated delivery robot,
demonstrating that our approach enables the CAS to correctly
identify missing state features and significantly improve its
level-optimality and plan accuracy when compared to an
unmodified CAS. Furthermore, we demonstrate the viability
of the approach on a physical mobile robot.

There are several areas of future work. First, we have
only considered the presence of a human authority agent;
however, in general we believe that our approach extends to
situations where the authority is another automated system
or a high quality sensor that can be queried. Second, our
method currently relies on the human having a sufficient
understanding of the system’s capabilities, which may not
always be valid. To address this, we are investigating how
new feedback signals that specifically indicate a lack of
knowledge or confidence on the part of the human may be
used to prompt the system to gather additional information.
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