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Abstract— Although experts carefully specify the high-level
decision-making models in autonomous systems, it is infeasible
to guarantee safety across every scenario during operation. We
therefore propose a safety metareasoning system that optimizes
the severity of the system’s safety concerns and the interference
to the system’s task: the system executes in parallel a task
process that completes a specified task and safety processes that
each address a specified safety concern with a conflict resolver
for arbitration. This paper offers a formal definition of a safety
metareasoning system, a recommendation algorithm for a safety
process, an arbitration algorithm for a conflict resolver, an
application of our approach to planetary rover exploration, and
a demonstration that our approach is effective in simulation.

I. INTRODUCTION

While planning and robotics experts carefully design,
build, and test the models used by autonomous systems
for high-level decision making, it is infeasible for these
models to ensure safety across every scenario within the
domain of operation [1]. This is due to the challenge of
specifying comprehensive decision-making models given the
complexity of the state space or action space, a lack of
information about the environment, or a misunderstanding of
the limitations of the autonomous system [2]. For example,
a courier robot could use a decision-making model with
features for safely interacting with different types of doors
but not for navigating a crosswalk, which increases the risk
of endangering people, damaging property, or breaking the
courier robot [3]. Therefore, as autonomous systems grow in
independence and sophistication [4], it is critical to give them
the ability to maintain and restore safety during operation.

A naive approach to giving an autonomous system the
ability to maintain and restore safety is to use a compre-
hensive decision-making model with every feature needed to
cover every scenario within the domain of operation. This
model, however, would suffer from two main drawbacks in
real world environments [1]. First, the model would simply
be infeasible to design due to the intractability of complex
environments. Second, even if it were feasible to design,
the model would likely be infeasible to solve with exact
or even approximate methods due to the urgency of real-
time environments. Hence, to avoid the infeasibility of a
monolithic model, this paper offers a scalable framework for
safe decision making in autonomous systems that decouples
the system into a primary process with features required to
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Fig. 1. A planetary rover executes a task process Υ that analyzes different
points of interest within a region of a planet and safety processes θc, θd,
and θr that address crevices, dust storms, and rough terrain with a conflict
resolver σ for arbitration. Consider the highlighted time slice that shows the
planetary rover completing the analysis task while addressing crevices, dust
storms, and rough terrain. Intuitively, (1) the task process performs the East
action starting in the cell (3, 7) and ending in the cell (4, 7), (2) the safety
processes θc, θd, and θr recommend the parameters (∅,⇒), (∅,∅), and
(⇓,∅), that can adjust the wheel rotation rate and the steering of the East
action being performed by the task process Υ, and (3) the conflict resolver
σ selects the optimal parameter (⇓,⇒) that adjusts the East action being
performed by the task process Υ given the parameters (∅,⇒), (∅,∅), and
(⇓,∅) recommended by the safety processes θc, θd, and θr .

achieve its main goal and secondary processes each with
features required to respond to a particular hazard.

Several areas of work that focus on safety in autonomous
systems have seen recent attention [4]. First, methods avoid
negative side effects that cause a system to interfere with its
environment (e.g., by adding an extra term to its objective
function [5], [6] or modifying its decision-making model
based on human feedback [7]). Next, methods mitigate re-
ward hacking that cause a system to game its reward function
(e.g., by applying ethical constraints to its behavior [8], [9],
[10], [11], [12], [13] or treating its reward function as an
observation of its true objective function [14], [15], [16]).
Finally, methods handle distributional change that cause a
system to perform poorly in a new environment that differs
from its original environment (e.g., by detecting anomalies
using Monte Carlo methods based on particle filters [17],
[18], [19] or multiple model estimation based on neural
networks [20], [21]). However, while these areas are critical
to safety, this paper focuses on tweaking the operation of an
autonomous system for safe decision making.

We propose a disciplined, decision-theoretic metareason-
ing approach to safe decision making in autonomous sys-
tems. A safety metareasoning system executes in parallel
a task process that completes a specified task and safety
processes that each address a specified safety concern with a
conflict resolver for arbitration. Like a standard autonomous
system, the task process completes a specified task by
performing an action in its current state following its policy.



However, at fixed intervals as the task process performs each
action, there are two operations that are not considered by a
standard autonomous system. First, the safety processes each
address a specified safety concern by recommending a rating
over a set of parameters in its current state that can adjust the
action being performed by the task process. Second, the con-
flict resolver for arbitration selects the optimal parameter that
will adjust the action being performed by the task process
given the ratings over the set of parameters recommended
by the safety processes. Our experiments on the planetary
rover exploration domain illustrated in Figure 1 highlights
that our approach optimizes the severity of safety concerns
(the danger of particular hazards) and the interference to the
task (the overhead of safety on the main goal).

Our main contributions are: (1) a formal definition of a
safety metareasoning system, (2) a recommendation algo-
rithm for a safety process, (3) an arbitration algorithm for
a conflict resolver, (4) an application of our approach to
planetary rover exploration, and (5) a demonstration that our
approach is effective in simulation.

II. BACKGROUND

A Markov decision process (MDP) is a decision pro-
cess for reasoning in fully observable, stochastic environ-
ments [22]. An MDP is described by a tuple ⟨S,A, T,R⟩.
The set of states is S. The set of actions is A. The transition
function T : S × A × S → [0, 1] represents the probability
of reaching a state s′ ∈ S after performing an action a ∈ A
in a state s ∈ S. The reward function R : S × A → R
represents the expected immediate reward of performing
an action a ∈ A in a state s ∈ S. A solution to an
MDP is a policy π : S → A indicating that an action
π(s) ∈ A should be performed in a state s ∈ S. A value
function V π : S → R represents the expected discounted
cumulative reward V π(s) ∈ R of starting in a state s ∈ S
following a policy π : S → A for a given discount factor
0 ≤ γ < 1. An optimal policy π∗ : S → A maximizes
the expected discounted cumulative reward V ∗(s) ∈ R for
each state s ∈ S corresponding to an optimal value function
V ∗(s) = maxa∈A

[
R(s, a) + γ

∑
s′∈S T (s, a, s

′)V ∗(s′)
]
.

Value iteration is a common algorithm that computes the
optimal value function V ∗ [23]. It begins with an optimal
0-horizon value function V ∗

0 . It then builds an optimal (t+
1)-horizon value function V ∗

t+1 from an optimal t-horizon
value function V ∗

t by using the Bellman backup operator,
V ∗
t+1 = maxa∈A

[
R(s, a) + γ

∑
s′∈S T (s, a, s

′)V ∗
t (s

′)
]
, for

each time step t until the condition ∥Vt+1−Vt∥∞ < ϵ (1−γ)
γ

is satisfied for a given convergence threshold ϵ.

III. METAREASONING FOR SAFETY

In this section, we introduce a safety metareasoning system
that executes in parallel a task process that completes a
specified task and safety processes that each address a spec-
ified safety concern with a conflict resolver for arbitration.
Note that this is a typical form of metareasoning [24], [25],
[26], [27], [28] in that meta-level processes (safety processes)
monitor and control an object-level process (task process).

1) Task Processes: The task process completes a specified
task by performing an action in its current state following its
policy. The representation of the task process must reflect the
properties of the task. This paper represents a task process as
an MDP, a decision process for tasks with full observability,
because it is a standard model in planning and robotics [29].
However, it is possible to use different classes of decision
processes for tasks with partial observability [30] or start and
goal states [31]. We define the task process below.

Definition 1. The task process, represented by an MDP Υ =
⟨S,A, T,R⟩, performs an action a = π(s) ∈ A in a state
s ∈ S following a policy π to complete a specified task.

Example. To complete the analysis task, the planetary rover
in the highlighted time slice of Figure 1 executes the task
process Υ that performs the East action starting in the cell
(3, 7) and ending in the cell (4, 7).

2) Safety Processes: A safety process addresses a spec-
ified safety concern by recommending a rating over a set
of parameters in its current state that can adjust the action
being performed by the task process. The representation of a
safety process is a variant of an MDP with several attributes:
a set of states that describe the safety concern, a set of
parameters that can adjust the action being performed by the
task process, a transition function that reflects the dynamics
of the world, a severity function that reflects the severity of
the safety concern, and an interference function that reflects
the interference to the task. We define a safety process below.

Definition 2. A safety process, represented by a variant of
an MDP θ = ⟨S̄, P̄ , T̄ , ϕ, ψ⟩ ∈ Θ, recommends a rating ρθs̄
over a set of parameters P̄ in a state s̄ ∈ S̄ that can adjust
the action a ∈ A being performed by the task process Υ to
address a specified safety concern.

• S̄ is a set of states that describe the safety concern.
• P̄ = P̄1 × P̄2 × · · · × P̄N is a set of parameters such

that each parameter factor P̄i adjusts the action a ∈ A
being performed by the task process Υ with a ∅ ∈ P̄i

symbol that indicates no adjustment.
• T̄ : S̄ × P̄ × S̄ → [0, 1] is a transition function that

represents the probability of reaching a state s̄′ ∈ S̄
after using a parameter p̄ ∈ P̄ in a state s̄ ∈ S̄.

• ϕ : S̄ → {1, 2, . . . , L} is a severity function that
represents the severity of the safety concern in a state
s̄ ∈ S̄ such that 1 is the lowest level and L is the
highest level where a severity level 1 ≤ ℓ ≤ L is strictly
preferred to a severity level 1 ≤ ℓ+ 1 ≤ L.

• ψ : P̄ → R+ is an interference function that represents
the interference of a parameter p̄ ∈ P̄ on the action
a ∈ A being performed by the task process Υ.

Example. To address crevices, dust storms, and rough ter-
rain, the planetary rover in the highlighted time slice of
Figure 1 executes the safety processes θc, θd, and θr that
recommend the parameters (∅,⇒), (∅,∅), and (⇓,∅) that
can adjust the wheel rotation rate and the steering of the East
action being performed by the task process Υ.



Fig. 2. A safety metareasoning system that has the task process in red,
the safety processes in blue, and the conflict resolver in purple.

Each safety process recommends a rating over a set of
parameters instead of only a parameter. For a given state,
this rating contains |L| + 1 values for each of the |P̄ | pa-
rameters: the expected discounted frequency of each severity
level and the expected discounted cumulative interference
that would be incurred by the safety process if it were to
use that parameter in that state. We define this rating below.

Definition 3. A rating, ρθs̄, over a set of parameters P̄ in
a state s̄ ∈ S̄ recommended by a safety process θ ∈ Θ is
represented by the following |P̄ | × (|L|+ 1) matrix:

ρθs̄ =


Φθ

s̄,p̄1 [1] Φθ
s̄,p̄1 [2] . . . Φθ

s̄,p̄1 [L] Ψθ
s̄,p̄1

Φθ
s̄,p̄2 [1] Φθ

s̄,p̄2 [2] . . . Φθ
s̄,p̄2 [L] Ψθ

s̄,p̄2
...

...
...

...
...

Φθ
s̄,p̄N [1] Φθ

s̄,p̄N [2] . . . Φθ
s̄,p̄N [L] Ψθ

s̄,p̄N

 .
When a safety process θ ∈ Θ uses a parameter p̄ ∈ P̄
in a state s̄ ∈ S̄, the expected discounted frequency of
each severity level 1 ≤ ℓ ≤ L incurred is Φθ

s̄,p̄[ℓ] =
[ϕ(s̄) = ℓ] + γ

∑
s̄′∈S̄ T̄ (s̄, p̄, s̄

′)minp̄′∈P̄ Φθ
s̄′,p̄′ [ℓ] and the

expected discounted cumulative interference incurred is
Ψθ

s̄,p̄ = ψ(p̄)+γ
∑

s̄′∈S̄ T̄ (s̄, p̄, s̄
′)minp̄′∈P̄ Ψθ

s̄′,p̄′ . Note that
the operator [·] denotes Iverson bracket notation.

3) Conflict Resolvers: The conflict resolver for arbitration
selects the optimal parameter that will adjust the action being
performed by the task process given the ratings over the set of
parameters recommended by the safety processes. Intuitively,
if no safety process or only one safety process encounters
its safety concern, there is no need for arbitration. However,
if multiple safety processes encounter their safety concerns,
the conflict resolver arbitrates by selecting the parameter that
optimally addresses each safety concern. The representation
of the conflict resolver is a function that maps the ratings over
the set of parameters recommended by the safety processes
to a parameter. We define the conflict resolver below.

Definition 4. The conflict resolver, σ : ρθ1s̄1 × ρ
θ2
s̄2 × · · · ×

ρθns̄n → P̄ , selects the optimal parameter p̄ ∈ P̄ that
adjusts the action a ∈ A being performed by the task
process Υ given the ratings ρθis̄i over the set of parameters P̄
recommended by the safety processes θi ∈ Θ for arbitration.

Example. For arbitration, the planetary rover in the high-
lighted time slice of Figure 1 uses the conflict resolver σ
that selects the optimal parameter (⇓,⇒) that adjusts the
East action being performed by the task process Υ given
the parameters (∅,⇒), (∅,∅), (⇓,∅) recommended by the
safety processes θc, θd, and θr.

The optimal parameter selected by the conflict resolver
satisfies a lexicographic objective function. First, in the order
of decreasing severity level, this parameter must minimize
the maximum expected discounted frequency of each severity
level incurred across all safety processes (minimize the max-
imum anticipated danger of particular hazards). Second, this
parameter must minimize the maximum expected discounted
cumulative interference incurred across all safety processes
(minimize the maximum anticipated overhead of safety on
the main goal). Formally, given each rating ρθis̄i over the set of
parameters P̄ recommended by each safety process θi ∈ Θ
in its state s̄i ∈ S̄i, we define this function below.

min
p̄∈P̄

[
max
θi∈Θ

[
Φθi

s̄i,p̄[L]≻Φθi
s̄i,p̄[L−1]≻ · · · ≻Φθi

s̄i,p̄[1]≻Ψθi
s̄i,p̄

]]
4) Safety Metareasoning Systems: We provide a complete

description of a safety metareasoning system below.

Definition 5. A safety metareasoning system, ⟨Υ,Θ, σ⟩,
runs in parallel a task process Υ that completes a specified
task and safety processes Θ that each address a specified
safety concern with a conflict resolver σ for arbitration.

Figure 2 summarizes a safety metareasoning system. There
is a task transition for the task process Υ from the state st ∈
S at time step t ∈ H to the successor state st+1 ∈ S at time
step (t + 1) ∈ H given the action at = π(st) ∈ A. During
this task transition, there are many safety transitions for each
safety process θi ∈ Θ from the state s̄it̄ ∈ S̄

i at time step t̄ ∈
H̄ to the successor state s̄it̄′ ∈ S̄

i at time step t̄′ ∈ H̄ . In each
safety transition, each safety process θi ∈ Θ recommends a
rating ρθi

s̄i
t̄

over the set of parameter P̄ to the conflict resolver
σ. The conflict resolver σ then selects the optimal parameter
p̄t̄ ∈ P̄ that satisfies the lexicographic objective function.
Once the optimal parameter p̄t̄ ∈ P̄ is selected by the conflict
resolver σ, the action at = π(st) ∈ A of the task process Υ is
adjusted in a way that reflects that optimal parameter. Notice
that the task process Υ operates on course-grained time steps
t ∈ H while each safety process θi ∈ Θ operates on fine-
grained time steps t̄ ∈ H̄ as the actions performed by the
task process can continually be adjusted by the parameters
recommended by the safety processes.

The actions of the task process and the parameters of the
safety processes are tightly integrated. In particular, a safety
metareasoning system must send an action and a parameter to
a motion planner that computes motor commands that reflect
performing the action subject to the constraints imposed by
the parameter. Suppose that a planetary rover performs the
North action with the (⇓,⇐) parameter for slowing down
and shifting left. Here, the planetary rover must send the
North action and the (⇓,⇐) parameter to the motion planner
that must compute motor commands that move the planetary
rover north subject to the constraints of slowing down and
swerving left. Formally, it is possible to view an action a ∈ A
of a task process as a parameterized action a[p̄] ∈ A given
a parameter p̄ ∈ P̄ of the safety processes.

We now describe the two necessary algorithms of a safety
metareasoning system in the following subsections.



Algorithm 1: The recommendation algorithm.
Input: The safety process θ = ⟨S̄, P̄ , T̄ , ϕ, ψ⟩
Output: The matrix ρθ that is used to construct the rating

ρθs̄ for each state s̄ ∈ S̄ of the safety process θ

1 for ℓ→ L,L− 1, . . . , 1 do
2 Φθ[ℓ]← 0S̄×P̄

3 Ψθ ← 0S̄×P̄

4 Λ← ∅
5 for ℓ→ L,L− 1, . . . , 1 do
6 κ(s̄) := [ϕ(s̄) = ℓ]
7 Φθ[ℓ]← MODIFIEDVALUEITERATION(θ, κ,Λ)

8 for s̄ in S̄ do
9 α← minp̄∈P̄ Φθ

s̄,p̄[ℓ]
10 for p̄ in P̄ do
11 if Φθ

s̄,p̄[ℓ] > α then
12 Λ← Λ ∪ (s̄, p̄)

13 κ(p̄) := ψ(p̄)
14 Ψθ ← MODIFIEDVALUEITERATION(θ, κ,Λ)

15 return ρθ =
[
Φθ[1],Φθ[2], . . . ,Φθ[L],Ψθ

]
A. Recommendation Algorithm

The recommendation algorithm in Algorithm 1 generates
a matrix that is used to construct the rating for each state
of a safety process (between the blue and purple objects in
Figure 2). Given a safety process, this involves generating the
expected discounted frequency of each severity level and the
expected discounted cumulative interference incurred when
using a parameter in a state for every state and parameter of
the safety process. Note that this algorithm is run offline for
each safety process before the operation of the system.

Initially, for each severity level and the interference, an
|S̄|×|P̄ | matrix is initialized (Lines 1-3). The |S̄|×|P̄ | matrix
for each severity level (Lines 5-7) and the interference (Lines
13-14) is then filled with its corresponding expected dis-
counted values using modified value iteration that minimizes
over states and parameters given a cost function instead of
maximizing over states and actions given a reward function.
Observe that the cost function κ(s̄) is used to compute the
expected discounted frequency of each severity level (Line 6)
while the cost function κ(p̄) is used to compute the expected
discounted cumulative interference (Line 13). Finally, the
|S̄| × |P̄ | matrix for each severity level and the interference
is stacked into an |S̄|×|P̄ |×(L+1) matrix (Line 15) that is
used to construct the rating for each state of a safety process.

Most importantly, in order to satisfy the lexicographic
objective function, a set of violating state-parameter pairs is
initialized (Line 4). For each severity level, a state-parameter
pair is added to the set of violating state-parameter pairs
if that parameter in that state is worse than the optimal
parameter in that state (Lines 8-12). The set of violating
state-parameter pairs enables modified value iteration to
forbid every state-parameter pair that did not satisfy the lex-
icographic objective function from the previous executions
of modified value iteration (Lines 7 and 14).

We show the correctness and the worst-case time com-
plexity of the recommendation algorithm below.

Algorithm 2: The arbitration algorithm.

Input: The ratings ρθi
s̄i

in the current state s̄i ∈ S̄i of the
safety processes θi ∈ Θ

Output: A random optimal parameter p̄ ∈ P̄
1 P̄ ∗ ← P̄

2 for ν → Φ[L],Φ[L− 1], . . . ,Φ[1],Ψ do
3 α← minp̄∈P̄

[
maxθi∈Θ ν

θi
s̄i,p̄

]
4 for p̄ in P̄ ∗ do
5 β ← maxθi∈Θ ν

θi
s̄i,p̄

6 if β > α then
7 P̄ ∗ ← P̄ ∗ \ {p̄}
8 return RANDOM(P̄ ∗)

Proposition 1 (Correctness). Algorithm 1 generates a matrix
ρθ of the expected discounted frequency Φθ

s̄,p̄[ℓ] of each
severity level 1 ≤ ℓ ≤ L and the expected discounted
cumulative interference Ψθ

s̄,p̄ for each state s̄ ∈ S̄ and
parameter p̄ ∈ P̄ of a safety process θ ∈ Θ that satisfies
the lexicographic objective function.

Proof Sketch. Observe that there is an execution of a form
of value iteration for each severity level and the interference
in the order of the lexicographic objective function. It is
known that standard value iteration without any set of violat-
ing state-parameter pairs would compute the corresponding
expected discounted values for each severity level and the
interference but may not satisfy the lexicographic objective
function. However, by forbidding the set of violating state-
parameter pairs, modified value iteration satisfies the lexico-
graphic objective function. Thus, Algorithm 1 is correct.

Proposition 2 (Time Complexity). Algorithm 1 has a worst-
case time complexity of O((L+ 1)|S̄|2|P̄ |).

Proof Sketch. There are L+ 1 executions of value iteration
that each have a time complexity of O(|S̄|2|P̄ |) for a total
time complexity of O((L+ 1)|S̄|2|P̄ |).

B. Arbitration Algorithm

The arbitration algorithm in Algorithm 2 implements the
conflict resolver that selects the parameter that optimally
addresses each safety process (between the purple and blue
objects in Figure 2). Initially, a set of potentially optimal pa-
rameters is initialized (Line 1). Each severity level in the or-
der of decreasing severity level followed by the interference
is then processed (Line 2). To optimize the lexicographic
objective function, the set of potentially optimal parameters
is then pruned (Line 3-7). This involves computing the value
of the parameter that minimizes the maximum respective
expected discounted value over all safety processes (Line 3).
With the value of this parameter, each parameter that has a
maximum respective expected discounted value greater than
that value is pruned (Line 4-7). Finally, a random optimal
parameter that optimally addresses each safety process is
selected (Line 8). Note that this algorithm is performed
online during the operation of the system.

We show the correctness and the worst-case time com-
plexity of the arbitration algorithm below.



Proposition 3 (Correctness). Algorithm 2 selects a random
optimal parameter p̄ ∈ P̄ that optimizes the lexicographic
objective function given the ratings ρθis̄i in the current state
s̄i ∈ S̄i of the safety processes θi ∈ Θ.

Proof Sketch. In the order of the lexicographic objective
function, any parameter with a maximum expected dis-
counted frequency greater than the optimal parameter for
each severity level is pruned and any parameter with a
maximum discounted cumulative interference greater than
the optimal parameter for the interference is pruned. As this
optimizes the lexicographic objective function, any remain-
ing parameter is optimal. Hence, Algorithm 2 is correct.

Proposition 4 (Time Complexity). Algorithm 2 has a worst-
case time complexity of O((L+ 1)|P̄ ||Θ|).

Proof Sketch. There are L severity level pruning steps that
each have a time complexity of O(|P̄ ||Θ|) and an interfer-
ence pruning step that has a time complexity of O(|P̄ ||Θ|)
for a total time complexity of O((L+ 1)|P̄ ||Θ|).

IV. PLANETARY ROVER EXPLORATION

We turn to an application of our approach to planetary
rover exploration [32]: a planetary rover must analyze dif-
ferent points of interest within a region of a planet while
addressing crevices, dust storms, and rough terrain.

The planetary rover has 4 internal components: a battery
of a battery level b ∈ B = {0, 1, . . . ,M} where 0 is a dis-
charged battery and M is a charged battery, a rock analyzer
of a health status h1 ∈ H1 = {NOMINAL, ERROR}, a soil
analyzer of a health status h2 ∈ H2 = {NOMINAL, ERROR},
and an objective report o ∈ O = {TRUE, FALSE}I with an
analysis status TRUE or FALSE for all points of interest I .

The planetary rover is within a region of a planet as an m
by n grid where each cell is at a horizontal location x ∈ X =
{1, 2, . . . , n} and a vertical location y ∈ Y = {1, 2, . . . ,m}
with weather of a type w ∈W = {LIGHT,DARK}.

The planetary rover can perform 4 movement actions in
each cell (x, y): it can move north to a cell (x, y + 1), east
to a cell (x + 1, y), south to a cell (x, y − 1), or west to a
cell (x − 1, y) if the new horizontal position is between 1
and n and the new vertical position is between 1 and m.

The planetary rover can perform 4 static actions in each
cell (x, y): it can reboot its analyzers to set the health statuses
of the rock analyzer h1 and the soil analyzer h2 to NOMINAL,
charge its battery to the battery level b′ = (b+2) if the cell
(x, y) has weather of a type w = LIGHT, analyze the cell
(x, y) if the health statuses of the rock analyzer h1 and the
soil analyzer h2 are set to NOMINAL, and transmit its data to
complete the mission if the objective report is o = {TRUE}I
with an analysis status TRUE for all points of interest I .

All actions discharge the battery to a battery level b′ =
(b−1) and requires the battery to be at a battery level b > 0.

A. Task Process

We consider the task process, Υ = ⟨S,A, T,R⟩, designed
to complete the analysis task of the planetary rover. The set

of states S = X × Y × B ×H1 ×H2 × O crosses a set of
horizontal positions X , a set of vertical positions Y , a set of
battery levels B, a set of rock analyzer health statuses H1, a
set of soil analyzer health statuses H2, and a set of objective
reports O. The set of actions A = {↑,→, ↓,←,⊖,⊕,⊙,⊘}
has the north, east, south, west, reboot, charge, analyze, and
transmit actions. The transition and reward functions T and
R are designed for the analysis task of the task process Υ.

B. Safety Processes

We consider each safety process, θ = ⟨S̄, P̄ , T̄ , ϕ, ψ⟩ ∈
Θ, designed to address a safety concern of the planetary
rover. Intuitively, each safety process has information about
its safety concern and can adjust the action performed by the
task process by changing its wheel rotation rate (i.e., speed)
and its steering (i.e., direction).

Formally, each safety process θ ∈ Θ has a set of states S̄θ

that describe the safety concern but the same set of param-
eters P̄ = P̄1 × P̄2 with parameter factors P̄1 and P̄2: the
wheel rotation rate parameter factor P̄1 = {⇓,⇑,♢,∅} has
the slow, speed, and stop actions while the steering parameter
factor P̄2 = {⇐,⇒,∅} has the shift left and shift right
actions (with the ∅ symbol that indicates no adjustment).
The transition, severity, and interference functions T̄θ, ϕθ,
and ψθ are designed for the safety concern of the safety
process θ ∈ Θ. We describe each safety process below.

1) Crevices: The process, θc = ⟨S̄c, ·, ·, ·, ·⟩, monitors
for crevices to prevent the planetary rover from inhibit-
ing the movement of its wheels. The set of states S̄c =
F 1
c × F 2

c × F 3
c × F 4

c crosses the horizontal rover position
relative to the crevice F 1

c = {NONE,APPROACHING,AT},
the vertical rover position relative to the crevice F 2

c =
{NONE, LEFT,CENTER,RIGHT}, the rover speed F 3

c =
{NONE, LOW,NORMAL,HIGH}, and the rover offset relative
to its normal path F 4

c = {LEFT,CENTER,RIGHT}.
2) Dust Storms: The process, θd = ⟨S̄d, ·, ·, ·, ·⟩, monitors

for dust storms to prevent the planetary rover from damaging
its sensitive sensors. The set of states S̄d = F 1

d ×F 2
d crosses

the dust storm density F 1
d = {1, 2, . . . , J} with a limit J

and the rover mode F 2
d = {ISAWAKE, ISSLEEPING}.

3) Rough Terrain: The process, θr = ⟨S̄r, ·, ·, ·, ·⟩, mon-
itors for rough terrain to prevent the planetary rover from
damaging its wheels. The set of states S̄r = F 1

r × F 2
r × F 3

r

crosses the horizontal rover position relative to the crevice
F 1
r = {NONE,APPROACHING,AT}, the rover speed F 2

r =
{NONE, LOW,NORMAL,HIGH}, and the terrain roughness
F 3
r = {1, 2, . . . ,K} with a limit K.

V. EXPERIMENTS

We demonstrate that our approach is effective in sim-
ulation by comparing a standard planetary rover to dif-
ferent safety metareasoning planetary rovers. The standard
planetary rover r0 does not have any safety metareasoning
while each safety metareasoning planetary rover ri>0 has a
growing set of safety processes: Θr0 = {}, Θr1 = {θc},
Θr2 = {θc, θd}, and Θr3 = {θc, θd, θr}.
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Fig. 3. The performance of each planetary rover for the severity levels and the interference starting with no safety processes and ending with all safety
processes where (a) to (d) have a limit of 100 as unsafe operation is rare, (e) has a limit of 6000 as safe operation is common, and (f) has a limit of 2000.
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Fig. 4. The severity level probability distributions when different combi-
nations of safety concerns occur across every simulation: (a) is for either
no safety concern or isolated crevices, dust storms, and rough terrain, (b) is
for simultaneous crevices and dust storms, (c) is for simultaneous crevices
and rough terrain, (d) is for simultaneous dust storms and rough terrain, and
(e) is for simultaneous crevices, dust storms, and rough terrain.

Each planetary rover must complete the analysis task while
addressing the safety concerns that can occur stochastically
either in isolation or simultaneously during 50 simulations.
For the analysis task, the internal components of the plan-
etary rover begin with a battery level b = M = 10, health
statuses h1 = h2 = NOMINAL, and an objective report
o = (FALSE, FALSE) while the region of the planet has
|I| = 2 points of interest in an n = 10 by m = 10 grid
such that each cell has weather of a type w = LIGHT with
0.8 probability or w = DARK with 0.2 probability. For dust
storms, the dust storm density limit is J = 10. For rough
terrain, the terrain roughness limit is K = 10.

Figure 3 shows that our proposed approach is effective in
simulation. In Figure 3(a) and (e), at the highest and lowest
severity levels, the severity level 5 frequency decreases while
the severity level 1 frequency increases from r0 to r3 as
expected. In Figure 3(b), (c), and (d), at the middle severity
levels, the severity level 4, 3, and 2 frequencies remain
roughly equal or decrease from r0 to r2 but then increase at
r3. This is because the severity level 4, 3, and 2 frequencies
for crevices and dust storms must increase to decrease the
severity level 5 frequency for rough terrain because a lower
severity level is strictly preferred to a higher severity level

TABLE I
A COMPARISON OF A NAIVE APPROACH TO OUR PROPOSED APPROACH.

Capabilities Size[Naive] Size[Proposed] Overhead[Proposed] (s)

Analysis Task 16000 16000 4.23e−7± 1.75e−8
+ Crevices + 2288000 + 144 6.63e−5± 2.53e−7
+ Dust Storms + 43776000 + 20 7.97e−5± 1.16e−7
+ Rough Terrain + 5483520000 + 120 1.08e−4± 2.87e−7

due to the lexicographic objective function. In Figure 3(f), the
cumulative interference increases from r0 to r3 as expected.
This is because the interference must increase to shift the
severity level frequencies from the severity level 5 to 1 but
only as much as necessary due to the lexicographic objective
function. Overall, the system optimizes the severity of its
safety concerns and the interference to its task.

Figure 4 compares our proposed approach with the lexico-
graphic objective function to a simple objective function for
arbitration. The simple objective function always addresses
safety concerns sequentially and independently: it first ad-
dresses a crevice (if any), then a dust storm (if any), and
finally rough terrain (if any) without reasoning about how
addressing one safety concern could impact other safety con-
cerns or how addressing multiple safety concerns could be
performed simultaneously. For each figure, the lexicographic
objective function exhibits severity level probabilities that
encourage low severity levels but discourage high severity
levels compared to the simple objective function.

Table I compares our proposed approach to a naive ap-
proach that would use a monolithic MDP with every feature
of the analysis task and each safety process. The naive
approach, however, is intractable given the complexity of its
state space and action space. Generally, as the agent becomes
capable of addressing each safety concern by including the
set of states for each safety process, the naive approach
grows multiplicatively while our proposed approach grows
additively with negligible overhead for arbitration.

VI. CONCLUSION

We introduce a disciplined, decision-theoretic metareason-
ing approach to safe decision making in autonomous systems
that optimizes the severity of its safety concerns and the
interference to its task. By decoupling a safety metareasoning
system into a task process and safety processes, our approach
offers a key benefit: it provides a framework for autonomous
systems to complete a task while addressing safety concerns
in a way that avoids a monolithic decision-making model
that is often not only intractable but also infeasible to build
correctly. Future work will explore complex, general-purpose
safety processes for a variety of common safety concerns.
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