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Abstract

LLMs have shown remarkable success in various natural lan-
guage tasks. However, because they are still susceptible to
factual inaccuracies and hallucinations, it is important to de-
velop techniques that can calibrate these models and measure
their confidence, especially in the context of RLHF wors-
ening model calibration. Building on existing work in self-
consistency, we introduce a novel technique for calibrating
black box LLMs. In particular, given a prompt, our technique
can calibrate the LLM by averaging over the token proba-
bility distributions generated for a prompt ensemble that is
comprised of prompt variations. In our preliminary experi-
ments, we show that our technique in combination with tem-
perature scaling considerably decreases expected calibration
error and Brier score with minimal impact on accuracy, when
using OpenAI’s LLM with RLHF text-davinci-003 to
answer questions across a range of QA datasets. The result is
an effective way to calibrate black box LLMs without need-
ing to finetune or access model parameters.

Introduction
Large language models (LLMs) have shown remarkable suc-
cess in various natural language tasks, including dialogue,
code completion, language translation, and story genera-
tion (Rae et al. 2021; Thoppilan et al. 2022; Ouyang et al.
2022). Nevertheless, when faced with uncommon facts (Po-
erner, Waltinger, and Schütze 2019) or complex reason-
ing (Talmor et al. 2020), these models are still susceptible to
incorrect answers and hallucinations, generating both minor
factual errors and completely fabricated narratives, scenar-
ios, or events. As a result, in order to mitigate the safety risks
and consequences of LLMs and responsibly deploy them in
real-world applications, it has become increasingly neces-
sary to develop techniques that can be used to calibrate these
models and measure their confidence.

In response, there has been work on calibrating LLMs.
Generally, these techniques fall into some combination of
three approaches. First, in finetuning techniques, the model
is finetuned using a proxy calibration objective function to
directly optimize for model calibration (Jiang et al. 2021;
Xiao et al. 2022; Lin, Hilton, and Evans 2022). Next, in ver-
bal elicitation techniques, the model provides a verbal con-
fidence by using different prompting strategies that can im-
prove their reasoning and evaluation capabilities (Tian et al.
2023; Xiong et al. 2023). Finally, in self-consistency tech-
niques, the model generates a set of answers to different ver-
sions of a given prompt to estimate the confidence based

on consistency across the set of answers (Zhao et al. 2021;
Arora et al. 2023; Xiong et al. 2023; Jiang et al. 2023; Por-
tillo Wightman, Delucia, and Dredze 2023).

Building on existing work in self-consistency, we intro-
duce a novel technique for calibrating black box LLMs that
uses a prompt ensemble instead of just a single prompt. To
illustrate our technique, consider a question-answering (QA)
task in which the LLM must answer a multiple-choice ques-
tion. To do this, an LLM typically takes in a prompt that
includes the multiple-choice question and generates a token
probability distribution over each multiple-choice answer,
which is often treated as an approximation of confidence.
In contrast, our technique (1) generates a prompt ensemble,
specifically a set of prompt variations, that has identical se-
mantic meaning to the given prompt, (2) feeds the prompt
ensemble into the LLM to generate a set of token proba-
bility distributions, and (3) averages each token probability
distribution to produce a final token probability distribution.

In our preliminary experiments, we use OpenAI’s LLM
text-davinci-003, a model trained with RLHF for in-
struction following, to answer questions across a range of
QA datasets. The key takeaway is that our technique in com-
bination with temperature scaling considerably decreases
expected calibration error and Brier score with minimal im-
pact on accuracy. In addition, we observe that the token
probability distribution produced by the model spreads out
across a range of confidence intervals and the model’s cal-
ibration approaches perfect model calibration. The result is
a novel technique for calibrating black box LLMs that not
only improves model calibration but also does not require
finetuning the model or accessing the model’s parameters
and therefore can be easily applied to black box models that
are only exposed through a limited API.

Related Work
Calibration of deep learning models has been an area of ex-
tensive research (Guo et al. 2017; Wang 2023). For LLMs
in particular, (Guo et al. 2017; Desai and Durrett 2020; Ka-
davath et al. 2022) show that a pretrained LLM’s calibration
can improve with the number of parameters in the model and
that they can be well calibrated after post-hoc calibration
methods like temperature scaling. In contrast, LLMs trained
with RLHF have been shown to be poorly calibrated even
with temperature scaling: (OpenAI 2023) demonstrates that
RLHF negatively affects calibration, forcing model logits to
concentrate at extreme values and making it difficult to im-
prove model calibration through scaling model logits alone.
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Figure 1: An illustration of our LLM calibration approach.

In general, methods that calibrate LLMs often fall into
some combination of each of the three approaches below:

Finetuning In the first approach, the LLM is finetuned us-
ing a proxy calibration objective function to directly opti-
mize for model calibration. In general, (Xiao et al. 2022)
demonstrates that the choice of proxy objective function can
have a significant impact on model calibration. For example,
(Jiang et al. 2021) first finetunes the model with a softmax-
based or margin-based objective function and then applies
posthoc temperature scaling and decision trees. Moreover,
(Lin, Hilton, and Evans 2022) first teaches the model to ex-
press verbal confidences and then performs supervised fine-
tuning using a mathematical reasoning dataset. In contrast,
while these method heavily rely on finetuning, our technique
eliminates the need for finetuning entirely.

Verbal Confidence In the next approach, the LLM pro-
vides a verbal confidence by using different prompting
strategies that can improve their reasoning and evaluation
capabilities. This is motivated by model logits being either
inaccessible in black box LLMs or rendered inaccurate due
to RLHF. For example, (Tian et al. 2023) asks the LLM
to elicit verbal confidences for k guesses to a question and
averages them together to produce a calibrated verbal con-
fidence. However, this can be very sensitive to the choice
of prompt structure, making it difficult to generalize across
different tasks, especially those that involve sequential rea-
soning. To explore this, (Xiong et al. 2023) asks the model
to elicit verbal confidences using different temperatures and
prompt strategies, including Chain-of-Thought, Multi-Step,
and Top-K reasoning. However, while these methods resort
to verbal confidences, our technique continues to leverage
the confidences encoded in the model logits instead.

Self-Consistency In the final approach, the LLM gener-
ates a set of answers to different versions of a given prompt
to estimate the confidence based on consistency across the
set of answers. Generally, (Zhao et al. 2021; Arora et al.
2023) demonstrate that LLMs can be sensitive to differ-
ent prompting strategies, example orderings, and question
reformulations. Leveraging this idea, (Xiong et al. 2023)
asks the model to elicit a verbal confidence for k guesses
to a question but represents the question using different
prompt strategies and temperatures. Similarly, (Jiang et al.
2023; Portillo Wightman, Delucia, and Dredze 2023) gener-
ate an ensemble of prompts with template paraphrasing or
option permutations and uses prompt agreement to generate
a calibrated confidence. However, while these methods only
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Figure 2: An idealized prompt structure used in our technique.

slightly change the prompt template, insert misleading hints,
or permute answer choices, our technique uses entirely dif-
ferent formulations of the prompts themselves.

Prompt Variations
In this section, we introduce our technique for calibrating
black box LLMs. For simplicity, we consider our technique
in the setting of QA tasks. In short, for a given prompt, our
technique first uses the LLM to generate a prompt ensem-
ble that consists of a set of prompt variations, each of which
have identical semantic meaning to the given prompt. Af-
ter that, for each prompt variation in the prompt ensemble,
our technique uses the LLM to compute a token probability
distribution. Finally, the token probability distributions for
each prompt variation in the prompt ensemble are averaged
to produce a final token probability distribution. In our ex-
periments, we show that this leads to final token probability
distributions that get close to perfect model calibration.

Intuitively, we hypothesize that calibrating an LLM with
prompt variations works for similar reasons to typical en-
semble approaches in machine learning. By using prompt
variations, the activations of the LLM can potentially travel
through different regions/trajectories of the neural network.
Naturally, each region/trajectory may assign too much or too
little confidence to a specific answer. Consequently, by using
the token probability distributions from a range of prompt
variations, the overconfidence and underconfidence can be
mitigated, resulting in a better calibrated LLM.

Notation We begin by describing some notation that will
be used in the paper. Formally, given a vocabulary T , an
LLM takes in an input token sequence t1, . . . , tn and outputs
a token probability distribution Pr(t|t1, . . . , tn) over each



Metric Method OpenbookQA TruthfulQA LogiQA MMLU-Bio MMLU-Nutrition MMLU-History MMLU-Physics MMLU-Law MMLU-Marketing All

ECE ↓
∅ 0.111 0.235 0.232 0.087 0.117 0.112 0.195 0.097 0.037 0.141
[VAR] 0.084 0.206 0.205 0.085 0.086 0.077 0.138 0.093 0.047 0.116
[TEMP] 0.059 0.174 0.151 0.047 0.075 0.079 0.130 0.066 0.024 0.090
[VAR, TEMP] 0.033 0.122 0.109 0.031 0.025 0.054 0.072 0.032 0.037 0.039

BRIER ↓
∅ 0.25 0.47 0.50 0.23 0.25 0.29 0.43 0.27 0.13 0.32
[VAR] 0.22 0.41 0.40 0.20 0.23 0.23 0.33 0.24 0.12 0.27
[TEMP] 0.18 0.31 0.34 0.17 0.19 0.21 0.30 0.19 0.09 0.22
[VAR, TEMP] 0.19 0.27 0.28 0.17 0.19 0.20 0.26 0.18 0.09 0.21

ACCURACY ↑
∅ 0.71 0.47 0.45 0.77 0.72 0.69 0.51 0.70 0.85 0.64
[VAR] 0.69 0.43 0.45 0.75 0.65 0.69 0.50 0.70 0.81 0.62
[TEMP] 0.71 0.47 0.45 0.77 0.72 0.69 0.51 0.70 0.85 0.64
[VAR, TEMP] 0.69 0.43 0.45 0.75 0.65 0.69 0.50 0.70 0.81 0.62

Table 1: The expected calibration error, Brier score, and accuracy for each LLM calibration method.

output token t. Specifically, given the input token sequence
t1, . . . , tn, the LLM first generates a score zt for each output
token t and then generates the token probability distribution
Pr(t|t1, . . . , tn) over each output token t by using the soft-
max probability function in the following way:

Pr(t|t1, . . . , tn) =
ezt∑
t′ e

zt′
.

In the setting of QA tasks in particular, a multiple choice
question Q is an input token sequence Q = ⟨t1, . . . , tn⟩
and the multiple choice answers A is a set of output tokens
A = {1, 2, . . . , ℓ}. Consequently, given a multiple choice
question Q = ⟨t1, . . . , tn⟩, the LLM predicts a multiple
choice answer â in the following way:

â = argmax
a

Pr(a|Q).

The goal of this paper is to calibrate the LLM. Here, cali-
bration can be viewed as the process of ensuring that the to-
ken probability distribution generated by the LLM matches
the probability of the LLM being correct. In QA tasks specif-
ically, if the LLM generates a probability p for a multiple
choice answer a given a multiple choice question Q, the
LLM should be correct approximately p of the time. Gener-
ally, this enables the token probability distribution generated
by the LLM to be a decent approximation of confidence.

Methodology We now describe our technique for calibrat-
ing a black box LLM with a prompt ensemble. In our tech-
nique, a prompt ensemble E(P ) is a set of prompt variations
that have identical semantic meaning to a given prompt P . In
the setting of QA tasks, a prompt ensemble E(Q) is there-
fore a set of multiple choice question variations that have
identical semantic meaning to a given multiple choice ques-
tion Q. As an example, suppose we have the multiple choice
question Q = “What is the capital city of the US?”. Given
this, the prompt ensemble E(Q) could be composed of the
prompt variations “Can you tell me the name of the capi-
tal city of the US?”, “Where is the capital city of the US
located?”, and “What is the name of the US capital?”.

In order to generate the prompt ensemble for a given
prompt, a range of methods can be used. For our technique
in particular, the LLM text-davinci-003 is used to gen-
erate the prompt ensemble as it is a standard black box LLM
that is available for public use. By using a specific prompt
structure for different formats of multiple choice questions

(e.g. fill-in-the-blank, all-that-apply, all...except), the LLM
can accurately generate a prompt ensemble E(Q) for a given
multiple choice question Q. We provide an idealized prompt
template used by our technique for a fill-in-the-blank multi-
ple choice question in Figure 2.

After generating the prompt ensemble E(Q) for a given
multiple choice question Q, each multiple choice question
variation e ∈ E(Q) is input into the LLM and a token
probability distribution Pre(a|e) is output by the LLM. The
token probability distributions Pre(a|e) for each prompt
e ∈ E(Q) is then averaged together to generate a final to-
ken probability distribution Pr(a|Q). In our experiments,
we demonstrate that the final token probability distribution
Pr(a|Q) is better calibrated compared to each individual to-
ken probability distributions Pre(a|e).

Figure 1 illustrates our technique. In Steps (1) to (3), a
prompt ensemble E(P ) is generated by using the LLM for
a given prompt P . In Steps (4) to (5), the LLM generates
a set of token probability distributions Pre(a|e) for each
prompt variation e within the prompt ensemble E(P ). In
Step (6), these predicted token distributions Pre(a|e) are av-
eraged together to generate a final token probability distribu-
tion Pr(a|Q). In Step (7), it is possible to apply temperature
scaling to the final token probability distribution Pr(a|Q).

Temperature Scaling Our technique can be combined
with temperature scaling (Guo et al. 2017), which is a com-
mon, simple, and effective calibration method. In tempera-
ture scaling, the token probability distribution generated by
the LLM is adjusted by introducing a temperature constant
τ , making the token probability distribution more or less uni-
form (spread out). Formally, the token probability distribu-
tion Pr(t|t1, . . . , tn) is adjusted by introducing a tempera-
ture constant τ in the following way:

Pr(t|t1, . . . , tn) =
ezt/τ∑
t′ e

zt′/τ
.

There are multiple calibration methods that may be compat-
ible with our technique, such as Platt scaling (Böken 2021)
and isotonic regression (Zadrozny and Elkan 2002), but we
consider temperature scaling here due to its simplicity.

Preliminary Experiments
Our experiments use OpenAI’s LLM text-davinci-003,
a model trained for instruction following using RLHF, to an-
swer questions across a range of QA datasets. This LLM
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Figure 3: The reliability diagram for each LLM calibration method.

is selected because it is a typical black box LLM that
can only be accessed through an API that provides model
logits for the top k token completions. Here, we com-
pare the following LLM calibration methods: no calibra-
tion (∅), prompt variations ([VAR]), temperature scaling
([TEMP]), and prompt variations with temperature scaling
([VAR, TEMP]). Overall, our experiments provide encourag-
ing results that prompt variations with temperature scaling
significantly boost model calibration.

Datasets We evaluate model calibration on a range of
QA datasets. OpenbookQA (Mihaylov et al. 2018) contains
questions that involve combining commonsense knowledge
with open book facts. TruthfulQA (Lin, Hilton, and Evans
2021) contains questions associated with common miscon-
ceptions and false beliefs held by people. LogiQA (Liu
et al. 2020)) contains questions that involve logical reason-
ing. MMLU (Hendrycks et al. 2021) contains a set of over
50 datasets for different subject areas (specifically includ-
ing Bio, Nutrition, History, Physics, Law, and Marketing).
Note that a collection of 100 questions are randomly sam-
pled from each of the 9 datasets considered in our experi-
ments for a total of 900 questions.

Metrics We evaluate model calibration along several met-
rics. Expected Calibration Error (ECE) is the expected
absolute difference—over N confidence bins—between
the actual accuracy of a bin and a given model’s mean
token probability for a bin: ECE = 1

N

∑N
i=1 |Bi| ·

|Accuracy(Bi)−Confidence(Bi)|. Note that the token prob-
abilities for all answers are binned into 10 bins of equal size.
Brier Score (BRIER) is the expected squared difference be-
tween a given model’s token probabilities and the actual cor-
rectness (0 or 1), which penalizes random guessing from
the model. Accuracy (ACC) is the number of questions an-
swered correctly divided by the total number of questions.

Results Figure 3 shows the reliability diagram for each
LLM calibration method. For each confidence bin, this fig-
ure plots the mean predicted probability against the ac-
tual accuracy. Therefore, the objective is to achieve perfect
model calibration (green). Here, we see that the baseline
LLM without any calibration (blue) is quite miscalibrated
with an accuracy ranging between 0.6 and 0.9 when the con-
fidence is near 1.0 and between 0.0 and 0.3 when the con-
fidence is near 0.0. This is due to RLHF forcing model log-
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(b) [VAR]
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Figure 4: The frequency diagrams over the token probabilities.

its to concentrate at the extreme values. Moreover, prompt
variations (purple) and temperature scaling (pink) used in
isolation tend to improve model calibration. Finally, when
using prompt variations with temperature scaling (yellow),
the LLM gets close to perfect model calibration (green).

Table 1 show the expected calibration error, Brier score,
and accuracy metrics for each LLM calibration method.
Here, we find that prompt variations with temperature scal-
ing ([VAR, TEMP]) consistently decreases the expected cal-
ibration error by over 70% and the Brier score by over 34%
across all QA datasets. Moreover, we see that accuracy re-
mains roughly the same despite the decrease in the expected
calibration error and the Brier score, which is encouraging.

Figure 4 has the frequency diagrams over the token prob-
abilities generated by each LLM calibration method. First,
for ∅, the token probabilities are heavily concentrated at the
extreme values of 0.0 and 1.0 confidence intervals, which is
expected as RLHF encourages the model to assign the most
weight to the answer with the highest probability instead
of matching the model logits with the probability of being
correct. Next, for [TEMP] and [VAR], the token probabili-
ties further spread out across different confidence intervals
because [TEMP] smooths out token probabilities and [VAR]
averages token probabilities across the different prompt vari-
ations. Finally, for [VAR, TEMP], the token probabilities are
even further spread out across the confidence intervals.

Conclusion
In this paper, we introduce a novel technique for calibrat-
ing black box LLMs. In particular, given a prompt, our tech-
nique improves LLM calibration by averaging over the token
probability distributions generated for a prompt ensemble
that is comprised of prompt variations. In our experiments,
we demonstrate that our technique in combination with tem-
perature scaling considerably decreases expected calibration
error and Brier score with minimal impact on accuracy. Fu-
ture work will develop different classes of prompt variations
and apply our technique to a variety of models and datasets.
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