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RESEARCH PARTNERSHIP INTRODUCTION

LabGenius and Sanofi initiated a research partnership to demonstrate that LabGenius’ machine learning (ML)-driven antibody engineering platform, EVA™, is able to
co-optimise 2 pre-determined properties of a monovalent NANOBODY® protein, whilst also maintaining favourable production characteristics. The success criteria were
defined as LabGenius’ ability to deliver 10 NANOBODY® variants with a more than 2-fold improvement in property 1 compared to the Sanofi starting molecule, whilst
Maintaining potency (property 2) and maintaining acceptable yield and minimal tendency for aggregation. The starting molecule was a single-domain antibody (VHH) that

binds to and blocks a pro-inflammatory cytokine.

APPROACH: FROM START MOLECULE TO FINAL PANEL

The starting parent NANOBODY® molecule was
subjected to a deep mutational scan and
phage-based selection, followed by the
construction of a combinatorial library with
subsequent selection. The NGS enrichment data
after each round allowed the development of an
ML-based model to predict both protein affinity
(as a proxy for potency) and NANOBODY®
property 1. The top 85 predicted variants were then
produced and characterised in high-throughput
format to assess both potency and NANOBODY®
property 1.
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100% of the predicted variants showed varying
degrees of improvement in NANOBODY®
property 1 and maintained potency (property 2)
when compared with the starting protein.
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Figure 1: LabGenius’ ML-driven process. Shown for affinity optimisation example.

CHARACTERISATION OF TOP 24 VARIANTS

16/24 molecules showed >2-fold improvement in the desired NANOBODY® property 1
compared with the starting molecule.
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Figure 2: Desired property 1 improvements.

100% of top 24 variants with improved property 1 characteristics maintained an
acceptable potency within 2-fold of the starting molecule.
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Figure 3: Potency improvements.

VARIANTS CONTAINED NON-INTUITIVE DESIGNS

TOP 10 VARIANTS DEMONSTRATED 7-FOLD

IMPROVEMENT IN THE DESIRED PROPERTIES

The top 10 improved NANOBODY® variants were then selected for extended
characterisation. All variants expressed well in E. coli with yields varying from 8.1 to
64.8 mg/L and all proteins showed minimal tendency for aggregation (98-100%
monomer).
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Figure 4: Top 10 variants measured for potency and property 1.

CONCLUSION

The top 10 improved NANOBODY® variants were selected for extended
characterisation. These variants had between 4 and 9 mutations compared to the
starting molecule. Interestingly, analysis of the mutations showed that of all the
different mutations predicted, 2 were common to all 10 selected variants, both of
which were non-intuitive.

Introduction of the 2 mutations into
the starting molecule resulted in a
2-fold improvement in the
NANOBODY® property being
optimised. Their removal from the
optimised variants resulted in loss
of activity previously observed,
showing that the mutations are
essential but not sufficient for the
iImproved NANOBODY® molecule
property 1 and the combination 1
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Through two rounds of selection, LabGenius were able to build an ML-based model
to predict protein potency and improve a second NANOBODY® property. The output
of this model was the discovery of more than 10 NANOBODY® variants that showed
up to nearly 7-fold improvement of the key desired property compared to the
starting protein, and maintained potency within the 2-fold of the starting protein.
These variants had between 4 and 9 mutations compared to the starting molecule.

Overall, the EVA™ platform’s use of sequence diversification and ML proved a novel
and effective method to co-optimise NANOBODY® properties.
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