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Introduction

About the Dataset

The purpose of this report is to build a fake news detection model that can detect language patterns that
characterize fake and real news. The dataset was downloaded as a .csv file from The Information Security
and Object Technology (ISOT) Research Group at the University of Victoria in British Columbia, Canada.
The Fake.csv dataset contains news articles from different sources that were flagged by Wikipedia and
Politifact (an American fact-checking organization) as unreliable websites. The True.csv dataset contains
news articles from Reuters (a reliable news organization).

What is “Fake News”?

Fake news is information that is clearly and deliberately fabricated in such a way that appears legitimate
and is designed to manipulate people’s perception of real events (Center for Information Technology and
Society at University of California, Santa Barbara). False and misleading content can be presented in
various forms of communication, including written, spoken, and digital/electronic. Importantly, fake news
or disinformation is a deliberate form of deception that capitalizes on the intent to manipulate the reader
or audience. This notion separates itself from misinformation, which is created regardless of the intent to
deceive. When individuals or groups knowingly share or re-post misinformation to deliberately cast doubt
on an event, misinformation can easily turn into disinformation.

The problem of “fake news” has been a persistent theme in the headlines for decades, but most notably
within the past few years. One of the most relevant examples of a fake news campaign is the collective
“Big Lie” narrative that is reinforced by former President Donald Trump about the 2020 election results
(Brennan Center for Justice). The National Intelligence Council released a 2021 assessment of foreign
threats to the 2020 U.S. federal elections and found that Russian President Vladimir Putin authorized
Russian individuals/groups and government organizations to denigrate President Biden’s candidacy and the
Democratic Party with the intent of eroding public trust in the electoral process.

These campaigns have largely existed in the medley of social media networks where false and misleading
information may easily go undetected with the speed in which it spreads, taking into account the appended
efforts made by both domestic and foreign actors. In response, social media platforms like Facebook and
Twitter are now engaging in fact-checking and labeling misinformation. Yet, these initiatives target the
spread of misinformation rather than the source. Different variations of falsehoods may still exist in the
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media. And without identifying and stamping out on the origin of these falsehoods, we may observe a
never-ending stream of fake news and illusory efforts.

Why is this model relevant?

For the purposes of our Natural Language Processing (NLP) model — a machine learning technique that
programs the computer to interpret and manipulate the human language — our dataset consists of news
headlines and texts that were electronically published in written form. Effectively, we target the primary
source of these headlines rather than secondary or tertiary efforts made by (social) media users.

About two-thirds of U.S. adults say false and misleading news stories have caused a great deal of confusion
about the basic facts of current events, according to a survey of 1,002 U.S. adults conducted by Pew Research
Center from Dec. 1-4, 2016. This report was published a year before the collection of our raw dataset and
four years before the 2020 presidential election fraud disinformation campaign.

With the upcoming presidential election in 2024, the reversal of content moderation and rise in Generative
Artificial Intelligence (AI) may put the public at risk. On June 2, 2023, YouTube announced a reversal of
its policy ban on misinformation about the 2020 presidential election. The Republican National Committee
created a lookbook video featuring Al-generated images and clips of Biden and Vice President Kamala Harris
celebrating at Election Day. These trends dangerously illustrate a future in which truths and falsehoods
become much harder to discriminate, making it more pertinent for statisticians and data scientists to explore
appropriate algorithms to detect fake news.

Exploratory Data Analysis (EDA)

Prior to modeling, we can inspect what our data looks like. We cannot assume that our raw data is
completely clean and ready for modeling. Instead, we need to convert some variables to factors, remove any
missing values, and clean our predictor names. Additionally, there will be some text-cleaning manipulation
performed on our data for our natural language pre-processing step.

Loading Packages and Data

Let’s load in all necessary packages required for this report in R.

Next, we can load our Fake.csv and True.csv datasets and assign the data to a variable. We then clean
our predictor names using clean_names() such that all resulting names are unique and consist of the _
character, numbers, and letters. Afterwards, we create a new column truth_value where we assign “fake”
or “news” to each dataset, and a target category Category identifying Fake News as 0 and Real News as 1.
After assigning those values, we can combine the two dataframes by row into a new dataframe called news.
The purpose behind the new columns truth_value and Category is to identify whether a news title/text is
fake or news in the merged dataframe.

# Loading the data as a .csv and assigning the data to a wvariable
fake _news <- read.csv("Fake.csv")
real_news <- read.csv("True.csv")

# cleaning predictor names
fake_news <- clean_names(fake_news)
real _news <- clean_names(real_news)

# calling head() to see the first five observations
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# head(fake_news)
# head(real_news)

truth_value = "fake"
fakeNews <- cbind(fake_news, truth_value)

truth_value = "true"
realNews <- cbind(real_news, truth_value)

# Create a Target Category Identifying Fake News as O and Real News as 1
fakeNews['Category'] = 0
realNews['Category'] 1

# Combine the two dataframes into a new dataframe called 'news'
news <- rbind(fakeNews, realNews)

# making sure that the 'nmews' dataframe contains both fake and true news
# head(news) # contains truth_value = FAKE
# tail (news) # contains truth_value TRUE

We can retrieve the dimensions of our new dataframe news. Our dataframe consists of over 40,000 observa-
tions and exactly 5 variables.

dim(news) # retrieving the dimensions of our new dataframe

## [1] 44898 6

To view the distribution of truth values of our news dataframe, we can create a bar graph using ggplot.
There are 23,481 fake news observations and 21,417 real news observations. It appears that our dataframe
is relatively balanced in both categories.



Distribution of Truth Values of News Data
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Truth Value of News

It is important to determine whether there are null values in our news dataframe prior to tidying our data.
Using is.null (), we observe no null values in our dataframe. We can then proceed to text-cleaning methods
in Natural Language Processing (NLP).

is.null(news)

## [1] FALSE

Text Cleaning Methods in Natural Language Processing (NLP)

Tidying the Data
Date: One of our variables date is in %B %d, %Y format (e.g., June 10, 2023), which is not conventional
to use in our classification model. So, we take care to convert date in standard YYYY-MM-DD format.

Lower Case: We then lower case all words in the news article to ensure our text is consistent when
performing parsing in the process of NLP preprocessing.

Remove Punctuation and Number We remove all punctuation and numbers in our data. We are only

interested in words.

# Convert the date in date format
date <- as.Date(news$date, format = "YB %d, %Y")
news$date <- format(date, ")Y-%m-%d")

# Lower case all words in title



news$title <- tolower(news$title)

# Remove punctuation
news$title <- gsub("[[:punct:]]", "", news$title)

# Remove numbers
news$title <- gsub("[[:digit:]]", " ", news$title)

Lemmatize words

Next, we take care to lemmatize the remaining words in our title column using lemmatize_strings().
Lemmatization is the process of minimizing the words to their root form, which is known as the lemma.
The purpose of this process is to standardize and consider different forms of the same word as a single unit,
which reduces the complexity of our vocabulary and improves analysis accuracy. For example, lemmatizing
the word “bagels” normalize the text to “bagel.”

news$title <- lemmatize_strings(news$title)

Removing Stop Words

Then, we make sure to remove stop words, which eliminates common words like articles, pronouns, and prepo-
sitions. These words do not generally carry significant meaning, so this process would highlight important
keywords that bear semantic meaning and reduce noise in our dataset.

# Create a corpus
corpus <- VCorpus(VectorSource(news$title))

# Remove English stop words
corpus_clean <- tm_map(corpus, removeWords, stopwords("english"))

news_title <- sapply(corpus_clean, as.character)

# Recreate corpus using news_title
corpus <- VCorpus(VectorSource(news_title))

# Remove unncessary letters
corpus_clean <- tm_map(corpus, removeWords, c("s", "t", "k"))

news_title <- sapply(corpus_clean, as.character)

Term Frequency-Inverse Document Frequency (TF-IDF)

We can build a term-document matrix, which consists of the frequency of words in all true and fake news
title texts. We can control the weighting such that our frequency weight is standardized to the Term
Frequency-Inverse Document Frequency (TF-IDF), which can be calculated by taking the product of
two statistics: term frequency (TF) and inverse document frequency (IDF). We consider the TF as the ratio
between the number of times a keyword is found in a document and the number of words in document.
The IDF is the natural logarithm of (the total number of documents / number of documents containing a
keyword).



tdm <- TermDocumentMatrix(corpus_clean,

list( weightTfIdf))
m <- as.matrix(tdm)
v <- sort(rowSums(m), TRUE)
d <- data.frame( names (V) , V)
head(d, 10)
## word tf_idf
## trump trump 2754.1124
## video video 1964.7612
## say say 1703.9990
## obama obama 1074.4964
## house house 1058.5861
## republican republican 1045.0129
## new new 893.8787
## clinton clinton 885.0131
## hillary hillary 856.5789
## watch watch 852.7406
tdm

## <<TermDocumentMatrix (terms: 19312, documents: 44898)>>
## Non-/sparse entries: 406255/866663921

## Sparsity : 100%
## Maximal term length: 118
## Weighting : term frequency - inverse document frequency (normalized) (tf-idf)

freq=rowSums (as.matrix(tdm))
head(sort (freq, TRUE) )

## trump video say obama house republican
##  2754.112 1964.761  1703.999  1074.496  1058.586  1045.013

We can extract six terms with the greatest TF-IDF frequencies, ranked from highest to lowest.

plot(sort(freq, ™, "aquamarine4", "Word TF-IDF frequencies", "TF-IDF-based ra
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TF-IDF-based rank

While we will not be using our calculated TF-IDF frequency in our predictive model, it is important to
consider the relevancy of the terms with the largest TF-IDF value in each document.

# Add a new column 'maz_tfidf' to store the largest TF-IDF walue for each word
news$max_tfidf <- 0

# Iterate over each word in the dataframe
for (i in 1l:nrow(news)) {
words <- strsplit(news$title[i], "\\s+")
max_tfidf <- 0O

# Find the largest TF-IDF walue for each word in the tezxt
for (j in 1:length(words)) {
for (word in words[[jl]) {
tfidf_value <- d$tf_idf[i]
if ('is.na(tfidf_value) && tfidf_value > max_tfidf) {
max_tfidf <- tfidf_value
3
}

# Assign the largest TF-IDF walue to the corresponding row in the dataframe
news$max_tfidf[i] <- max_tfidf

}

Based on the preceding dataframe d, we can build a barplot consisting of the most frequent words. We can
numerically and visually observe that the most frequent word in all new titles is trump, followed by wvideo,
say, and obama.



barplot(dfreq[1:10,]$freq, 2, dfreq[1:10,]$word,
"lavender", "Most frequent words",
"Word frequencies")
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Text Normalization and White Spaces

Afterwards, we replace all occurrences of one or more whitespace characters with a single space. This ensures
that our processed text reduces variation in whitespace usage, so the text is uniformly aligned.

# Replaces all occurrences of 1 or more whitespace characters with a single space
news_title <- gsub("\\s+", " ", news_title)

# Drop news$title and add news_title to our 'news' dataframe
news$title <- news_title

After performing all necessary text-cleaning methods, we find ourselves with a standardized title text that
optimally represents important features of our data. Ultimately, these methods prioritize computational
efficiency and accuracy.

We can then examine the emotional lexicons of the observed words in our title text and match its sentiment
with our dictionary terms.

Examine Sentiment and Emotion Lexicons

Now, we will be introducing the syuzhet sentiment analysis algorithm package in R. This package consists of
a NRC Word-Emotion Association Lexicon which includes positive/negative sentiment values and emotional
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categories that can classify a word’s association with eight emotions (i.e., anger, anticipation, disgust, fear,
joy, sadness, surprise, and trust).

Prior to retrieving the sentiment values for the title text, we consider the news dataframe uniquely as “fake”
or “true.”

fake_news <- news[news$truth_value == "fake",]
true_news <- news[news$truth_value == "true",]

f.sentiment <- get_nrc_sentiment(fake_news$title)

## Warning: ‘spread_()‘ was deprecated in tidyr 1.2.0.

## i Please use ‘spread()‘ instead.

## i The deprecated feature was likely used in the syuzhet package.

##  Please report the issue to the authors.

## This warning is displayed once every 8 hours.

## Call ‘lifecycle::last_lifecycle_warnings()‘ to see where this warning was
## generated.

t.sentiment <- get_nrc_sentiment (true_news$title)

head(f.sentiment)

##  anger anticipation disgust fear joy sadness surprise trust negative positive

## 1 0 0 0 0 O 1 1 0 1 0
## 2 1 2 1 1 0 1 1 0 2 0
## 3 1 2 0 1 0 0 0 1 3 0
## 4 0 0 0 0 O 0 1 0 0 0
## 5 0 0 0 0 O 0 1 0 0 2
## 6 0 0 1 1 0 1 0 1 2 0

head(t.sentiment)

##  anger anticipation disgust fear joy sadness surprise trust negative positive

## 1 1 1 0 2 0 0 0 1 2 1
## 2 0 0 0 1 0 0 0 0 0 0
## 3 0 0 0 0 O 0 0 0 0 1
## 4 0 0 0 0 O 0 0 0 0 0
## 5 0 0 0 0 O 0 1 0 0 0
## 6 0 2 1 0 1 0 0 2 0 3

# save(fake_news, f.sentiment, file="fake_sentiment.rda")
load("fake_sentiment.rda")

# save(true_news, t.sentiment, file="true_sentiment.rda")
load("true_sentiment.rda")

We can examine the top emotion observed in both fake and real news. The top emotion in fake news is
“fear”; the top emotion in real news is “trust.”



# Show top emotion "fear" in fake mnews
fear_fake <- which(f.sentiment$anger > 0) # fear
head(fake_news$title[fear_fake])

## [1] "drink brag trump staffer start russian collusion investigation"

## [2] "sheriff david clarke become internet joke threaten poke people eye"

## [3] "fresh golf course trump lash fbi deputy director james comey"

## [4] "former cia director slam trump un bully openly suggest hes act like dictator tweet"
## [5] "papa johns founder retire figure racism bad business"

## [6] "watch paul ryan just tell us doesnt care struggle family live blue state"

# Show top emotion "trust" in real mnews
trust_true <- which(t.sentiment$trust > 0) # trust
head(true_news$title[trust_true])

## [1] " us budget fight loom republican flip fiscal script"

## [2] "white house congress prepare talk spend immigration"

## [3] "alabama official certify senatorelect jones today despite challenge cnn"
## [4] "jones certify us senate winner despite moore challenge"

## [6] "new york governor question constitutionality federal tax overhaul"

## [6] "man say deliver manure mnuchin protest new us tax law"

We can then plot the percentage of each emotion and positive/negative sentiment by counting each column
in the f.sentiment and t.sentiment tables.

# Bar Plot of Emotions tin Fake/True News

barplot(
sort (colSums (prop.table(f.sentiment[, 1:8]))),
TRUE,
0.7,
1,
"Emotions in Fake News", "Percentage"
)

10
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barplot(
sort (colSums (prop.table(t.sentiment[, 1:8]))),
horiz = TRUE,
cex.names = 0.7,
las = 1,
main = "Emotions in True News", xlab="Percentage"

)
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Emotions in True News
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# Bar Plot of Positive/Negative Sentiment in Fake/True News

barplot(
sort (colSums (prop.table(f.sentiment[, 9:10]))),
TRUE,
@7
1,
"Positive/Negative Sentiment in Fake News", "Percentage"
)

12



Positive/Negative Sentiment in Fake News
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barplot(

sort (colSums (prop.table(t.sentiment[, 9:10]))),

horiz = TRUE,

cex.names = 0.7,

las = 1,

main = "Positive/Negative Sentiment in True News", xlab="Percentage"

)



Positive/Negative Sentiment in True News
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To set up a new dataframe in which we consider all sentiments as factors, we consider “1” to indicate the
presence of a sentiment and “0” as the absence of a sentiment. We then combine the news dataframe and
all_sentiment dataframe into a final _news dataframe.

For the purpose of the report, we are focused on the binary values of all_sentiment, which we determine
based on the title of the news articles and NRC Word-Emotion Association Lexicon. Our goal is to build
an ML model that closely predicts the truth_value of our news dataset.

# Constder all sentiments
all_sentiment <- get_nrc_sentiment(news_title)

# Combining the news dataframe to sentiment dataframe
final_news <- cbind(news, all_sentiment)

# save(all_sentiment, final_news, file="final_news.rda")
load("final_news.rda")

Setting Up Models

Prior to setting up our model, we will randomly split our data into training and testing sets, while taking
care to stratify our sample on our response variable, i.e., truth_value.

Splitting Training and Testing Set

Our first step is to set our seed, which creates reproducible results every time we train our models. We set
our initial_split() against our final_news dataframe, ensuring that 80% of our data is randomly split
to our training set and 20% to testing set. I chose a proportion of 0.8 because this allows for more training
data while preserving enough data for our test.

14



set.seed(123)
news_split <- final_news %>} initial_split( 0.8, truth_value)

news_train <- training(news_split)
news_test <- testing(news_split)

news_train <- news_train %>% mutate( factor (truth_value, c("fake", "true")))
news_test <- news_test %> mutate( factor(truth_value, c("fake", "true")))

The training data has 35,917 observations; the testing data has 8,981 observations.

dim(news_train)

## [1] 35917 17

dim(news_test)

## [1] 8981 17

Visual EDA and Codebook

Note: We will be excluding the rest of the variables in our original dataset. The date and subject variables
fail to logically explain whether a news article is real or fake. After all, real and fake news occur anytime.
We can view the distribution of truth value of news articles by date below:

Date Date when the news article was published; originally in %B %d, %Y format (e.g., June 10, 2023).
Converted character to YYYY-MM-DD format (e.g., 2023-06-10).

ggplot(news, aes(date)) +
geom_bar (aes( truth_value)) +
scale_fill_manual( c("firebrick3", "blue")) +
ggtitle("Distribution of Truth Value of News Articles by Date") +
xlab("Date") + ylab("Amount of News Articles")

15



Distribution of Truth Value of News Articles by Date
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In our dataset, all news articles that fall under the subject “Government News,” “left-news,” “Middle-east,”
“News,” “politics,” and “US_ News” correspond to a truth_value = "fake". All news articles that contain
the subject “politicsNews” and “worldnews” have a “true” truth_value. While the subject variable appears
to have a clear distinction between the truth values in our dataset, we cannot confidently apply this predictive
method in our real-world population of news articles. Ultimately and realistically, all news subjects may
contain both real and fake information.

Subject Character subject category of news article (i.e., Government News, left-news, Middle-east, News,
politics, US_ News, politicsNews, worldnews)

ggplot (news, aes(subject)) +
geom_bar(aes(fill = truth_value)) +
theme (axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
scale_fill manual (values = c("firebrick3", "blue")) +
ggtitle("Bar Plot of Truth Value of News Articles by Subject") +
xlab("News Subject") + ylab("Amount of News Articles")



Bar Plot of Truth Value of News Articles by Subject
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Correlation Matrix

Let’s explore the overall relationship between all the numeric, continuous variables using a correlation matrix
on our training dataset.

We can first select numeric variables that pass the condition is.numeric() to ensure that we only capture
numeric variables in our correlation matrix. The strongest linear dependence occurs between negative and

anger with a correlation coefficient of 0.71. Variable pairs with relatively strong linear dependence include
anger and fear withr? = 0.64, and then positive and joy with r? = 0.58 and positive and trust with

r? = 0.57.

# Select columns in news_train that are numeric
num_news_train <- select_if(news_train, is.numeric)

# Create a correlation matriz

M = cor(num_news_train)
corrplot (M, method='circle', addCoef.col = 1, number.cex = 0.7)

17
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Building Our Model Recipe

Now, we begin to build our model recipe by taking into account both our predictors (calculated based on the
positive/negative sentiment values and emotional categories of the NRC Word-Emotion Association Lexicon)
and response variable truth_value.

Let’s consider all eight emotions (anger, anticipation, disgust, fear, joy, sadness, surprise, trust) and sen-
timents (positive, negative). We will exclude the date and subject variables, as we observe our main
predictors. Since all variables used in our model are categorical, we make sure to convert these variables into
dummy variables, and center and scale our data for model usage.

# Building our recipe
news_recipe <- recipe(truth_value ~ anger + anticipation + disgust + fear + joy + sadness + surprise +
step_dummy (all_nominal_predictors()) %>} # create dummy variables
step_center(all_predictors()) %>% # standardize predictor variables
step_scale(all_predictors()) %>%
step_normalize(all_predictors()) %>%
step_interact(terms = ~anger:disgust:fear:sadness:negative + joy:surprise:trust:positive) # create <

news_recipe %>

prep() %>%

bake(new data = news_train)

18



## # A tibble: 35,917 x 13

## anger anticipation disgust = fear joy sadness surprise trust negative
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -0.781 -0.753 -0.528 -0.824 -0.570 0.741 0.535 -0.906 -0.0927
## 2 0.433 1.98 1.22 0.228 -0.570 0.741 0.535 -0.906 0.833
## 3 0.433 1.98 -0.528 0.228 -0.570 -0.673 -0.866 0.224 1.76
# 4 -0.781 -0.753 -0.528 -0.824 -0.570 -0.673 0.535 -0.906 -1.02
# 5 -0.781 -0.753 -0.528 -0.824 -0.570 -0.673 0.535 -0.906 -1.02
## 6 -0.781 -0.753 1.22 0.228 -0.570 0.741 -0.866 0.224 0.833
## 7 0.433 -0.7563 -0.528 0.228 -0.570 -0.673 0.535 1.35 -0.0927
## 8 1.65 -0.7563 -0.528 2.33 -0.570 -0.673 1.94 1.35 1.76
## 9 -0.781 1.98 1.22  0.228 1.11 0.741 0.535 -0.906 -0.0927
## 10 0.433 -0.753 1.22 0.228 -0.570 0.741 -0.866 -0.906 -0.0927

## # i 35,907 more rows

## # 1 4 more variables: positive <dbl>, truth_value <fct>,
## # joy_x_surprise_x_trust_x_positive <dbl>,

## # anger_x_disgust_x_fear_x_sadness_x_negative <dbl>

K-Fold Cross Validation

We will perform stratified cross validation on our response variable truth_value by 5 folds.

news_folds <- vfold_cv(news_train, B truth_value); news_folds

## # b5-fold cross-validation using stratification
## # A tibble: 5 x 2

##  splits id

##  <list> <chr>
## 1 <split [28733/7184]> Foldl
## 2 <split [28733/7184]1> Fold2
## 3 <split [28733/7184]> Fold3
## 4 <split [28734/7183]> Fold4
## 5 <split [28735/7182]> Fold5

Next, we can save our results to an RDA file for future processing. Because model building takes up some
computing time, we can effectively return to our RDA file and load it later for future use.

# save(news_folds, news_recipe, news_train, news_test, file="News_Modeling Setup.rda")
load("News_Modeling_Setup.rda")

Building Prediction Models

We will be building four different machine learning models to assess our report using the same recipe. Since
the model tuning takes up some computing time and power, we will perform the codes in the appendix, and
save and load the model separately in our resulting findings. That way, we only run our model once.

The models we will be analyzing are as follows:

e Decision Tree

e« Random Forest
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¢ Gradient Boosted Tree

o Elastic Net Regression

Performance Metric

To evaluate performance, we will be applying the metric of performance, Receiver Operating Characteristic
Area Under the Curve, roc_auc. This metric is commonly used in ML to determine the quality of binary
classification models. We can visually represent the metric by plotting the ROC curve, which shows the
trade-off between the true positive rate (TPR) and false positive rate (FPR). A model containing a higher
ROC AUC value indicates better predictive power of the model, where the ROC curve comes closer to the
top-left corner of the plot (i.e., higher TPR and lower FPR). A perfect classifier would result in a ROC AUC
value of 1.0.

Model Building Outline

All four of our models tend to follow a similar pattern. The general process can be outlined as such:

1. Set up the model by identifying the type of model, prepare the engine, and set the mode. Since we are
working with a classification model, we will set the mode to “classification.”

Prepare the workflow for the model and add the new model and our established news_recipe.

Set up the tuning grid, specify the parameters we want to tune and levels of tuning.

Tune the model with parameters and/or hyperparameters of choice.

Select the most accurate model based on the tuning grid and finalize the workflow with those tuning
parameters.

Fit the chosen model with our workflow to the training dataset news_train.

Save our results to an RDA file to ensure efficiency as we load our product back to our main project
file.

Gl N

N

Model Results

Since our dataset has over 40,000 observations, it is important to save all our models and load our results
to inspect each of their individual performances and analysis. This step ensures that we do not re-run any
of our models, thus reducing computing time.

# save(tune_tree, file="tune_tree.rda")

# save(rf_tune, file = "rf_tune.rda")

# save(tune_bt_class, file = "tune_bt_class.rda")
# save(en_tune, file = "en_tune.rda")

load("tune_tree.rda")
load("rf_tune.rda")
load("tune_bt_class.rda")
load("en_tune.rda")

Visualizing Results
To visualize the results of our tuned model, we will be using the autoplot function in R. Since our primary

performance metric is roc_auc, we will visualize our model performance based on the effects that the change
in certain parameters has on roc_auc.
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Decision Tree

In a pruned decision tree, we would tune the cost_complexity, or the range of complexity of the tree, which
is specifically used to prevent overfitting. In our grid, we set the range of cost_complexity to -3 and -1
with the levels = 10. We notice that as the Cost-Complexity Parameter increased, the ROC AUC value
trended lower.

# RANDOM FOREST MODEL
rf_class_news <- rand_forest(mtry = tune(),
trees = tune(),
min n = tune()) %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("classification")

# Set up a random forest workflow with recipe 'news_recipe’
rf_class_wf <- workflow() %>%

add_model (rf_class_news) %>%

add_recipe(news_recipe)

# Create a regular grid with 1 level each
rf_grid <- grid_regular(mtry(range = c(1, 6)),
trees(range = c(200, 600)),
min_n(range c(10, 20)),
levels = 5)

# Plot the tuned tree
autoplot (tune_tree)

accuracy

0.64 -

0.63 -

0.62 -

0.61+

0.60 -

0.59

roc_auc

0.66 -

0.64 -

0.62 -

0.60 -

0.001 0.010 0.100
Cost—-Complexity Parameter
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And we can extract the model fit results and view them with the rpart.plot() function. We can view the
actual splits in this function, which we observe that the optimal value of cost_complexity resulted in a
relatively deep tree.

best_complexity <- select_best(tune_tree, "roc_auc"
# Finalize workflow and fit the final model to training set
tree_final <- finalize_workflow(tree_wf, best_complexity)
tree_final <- fit(tree_final, news_train)

tree_final fit <- fit(tree_final, news_train)

# RPart Plot

tree_final fit %>%
extract_fit_engine() %>
rpart.plot( FALSE)

fake
8
100%.

(3o Jdisgust >= 0.35 (0}

fake true
8 5
25%, 75%,
negative >= -0.56 prise >= -0.17
fake
047
35%
fear >= -0.3 ;

true

053 0.
15% 20% 32%
surprise >= 1.2 surprise >= 1.2 anger_x_disgust_x_fear_x_sadness_x_negative >= -0.035
fake true true true
0.42 0.56 0.54 0
12% 17% 6%
anger_x_disgust_x_fear_x_sadness_x_negative >= ~0.035 anticipation < -0.069 negative >= 0.37 anticipation >= ~0.069
Take true true
0 051 0.
3% 10% 4%
anger_x_disgust_x_fear_x_sadness_x_negative < ~0.036 oy >= 027 negative < -0.56
fake true

054
%
positive >= 0.52 anger_x_disgust_x_fear_x_sadness_x_negative >= -0.23

0.

true

050

2%
anticipation >= ~0.069

anger_x_disgust_x_fear_x_sadness_x_negative >= -0.12

fake true fake fake’ fake fake fake’ true true fake fake fake’ true true fake fake’ true fake true true true
0.26 0.61 0.29 0.39 0.38 0.43 0.36 0.63 0.72 0.39 0.33 0.48 0.57 0.62 0.30 0.39 0.57 0.37 0.57 0.62 0.67
24% 1% 3% 9% 1% 1% 0% 1% 0% 3% 1% 3% 6% 7% 1% 1% 5% 1% 4% 12% 16%

Random Forest
In our random forest model, we tuned three unique parameters:

(1) mtry, or the number of variables we randomly sample as candidates at each split.
(2) trees, or the number of decision trees to be built in the random forest model
(3) min_n, or the minimum number of samples in a node that is required to split.

We set our mtry within the range of 1 and 6, trees within the range of 200 and 600, and min_n within the
range of 10 and 20. We fit 5 levels to our model.

We observe from our plot that generally around the second predictor, the ROC AUC value is the highest.
The difference in number of trees did not affect much of the ROC AUC. It appears that our most accurate
model has 500 trees, 2 mtry, and 10 min_n with a ROC AUC of 0.7242.
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autoplot (rf_tune) + theme_minimal()
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# Randomly Selected Predictors
best_rf <- select_best(rf_tune, metric = "roc_auc")
show_best (rf_tune, n=1)
## Warning: No value of ‘metric‘ was given; metric ’roc_auc’ will be used.
## # A tibble: 1 x 9
## mtry trees min_n .metric .estimator mean n std_err .config
##  <int> <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 2 500 10 roc_auc binary 0.724 5 0.00328 Preprocessorl_ModelO~

# Finalize workflow and fit the final model to training set
rf_final <- finalize_workflow(rf_class_wf, best_rf)
rf_final <- fit(rf_final, news_train)

rf_final fit <- fit(rf_final, data=news_train)

We can also create a Variable Importance Plot (VIP), which provides a list of the most significant variables
according to the mean decrease in Gini index, which is determined by measuring the the quality of the split
of a node on a variable (feature).

# VIP PLOT

rf_final %>, extract_fit_parsnip() %>%
vip() +
theme_minimal ()
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We observe that our most significant variable/variable interaction of our random forest model is the negative
emotional sentiment, i.e., the interaction among anger, disgust, fear, sadness, and negative.

Gradient Boosted Trees

In our Gradient Boosted Trees model, we tuned three different parameters:

(1) mtry, or the number of variables we randomly sample as candidates at each split.
(2) trees, or the number of decision trees to be built in the random forest model
(3) learn_rate, or the rate of how fast the model learns

We set our mtry within the range of 1 and 6, trees within the range of 200 and 600, and learn_rate within
the range of -10 and -1. We fit 5 levels to our model.

We observe from our plot that generally as the number of predictors increases, the ROC AUC value increases.
Additionally, as the number of trees increases, the ROC AUC value also increases. It appears that our most
accurate model has 500 trees, mtry = 6 and learn_rate = 6 with a ROC AUC of 0.7215408.

autoplot (tune_bt_class) + theme_minimal ()
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# Randomly Selected Predictors
show_best (tune_bt_class, 1)
## Warning: No value of ‘metric‘ was given; metric ’roc_auc’ will be used.
## # A tibble: 1 x 9
## mtry trees learn_rate .metric .estimator mean n std_err .config
##  <int> <int> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 6 500 0.1 roc_auc binary 0.722 5 0.00336 Preprocessorl_M~
best_bt_class <- select_best(tune_bt_class, "roc_auc")

final _bt_model <- finalize_ workflow(bt_class_wf, best_bt_class)
final bt_model <- fit(final_bt_model, news_train)
final bt_fit <- fit(final_bt_model, news_train)

Elastic Net Regression

In our elastic net regression, we tuned penalty and mixture using the multinom_reg() with the glmnet
engine. After setting up the model and workflow, we created a regular grid for penalty and mixture with
10 levels each: letting penalty range from 0.01 to 3 and ‘mixture range from 0 to 1.

We observe that lower values of mixture and penalty produce higher ROC AUC values. Lower proportions
of the lasso penalty correspond to higher ROC AUC values. The penalty also produces higher ROC AUC
values because regularization increases. Ultimately, our most optimal model has a penalty of 0.01 and
mixture of 0 with a ROC AUC value of 0.6789722.
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autoplot(en_tune) + theme_minimal()
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best_en <- select_best(en_tune, metric = "roc_auc")

show_best(en_tune, n=1)

## Warning: No value of ‘metric‘ was given; metric ’roc_auc’ will be used.

## # A tibble: 1 x 8

##  penalty mixture .metric .estimator mean n std_err .config
#i#t <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 0.01 0 roc_auc binary 0.679 5 0.00164 Preprocessorl_ModelOO1

final_en_model <- finalize_workflow(en_workflow_news, best_en)
final_en_model <- fit(final_en_model, news_train)
final _en_fit <- fit(final_en_model, data=news_train)

Model Accuracy

Using the augment () function, we can model our fit against our training set and estimate our ROC AUC
value. We can create a tibble containing all the ROC AUC estimates of all four models.
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# DECISION TREE ROC AUC ####

decision_tree_roc <- augment(tree_final_ fit, news_train) %>%
roc_auc( truth_value, .pred_fake) %>%
select(.estimate)

# RANDOM FOREST ####

random_forest_roc <- augment(rf_final fit, news_train) %>%
roc_auc( truth_value, .pred_fake) %>%
select(.estimate)

# GRADIENT BOOSTED TREES #####

bt_roc <- augment(final_bt_model, news_train) %>%
roc_auc( truth_value, .pred_fake) %>%
select(.estimate)

# ELASTIC NET REGRESSION

en_roc <- augment(final_en_model, news_train) %>%
roc_auc( truth_value, .pred_fake) %>%
select(.estimate)

news_mod_names <- c("Decision Tree",
"Random Forest",
"Gradient Boosted Trees",
"Elastic Net Regression")

all_news_roc <- c(decision_tree_roc$.estimate,
random_forest_roc$.estimate,
bt_roc$.estimate,
en_roc$.estimate)

# Create tibble with model and ROC AUC wvalue of optimal model
news_result <- tibble( news_mod_names,
all_news_roc) %>% arrange(desc(ROC_AUC))

We observe that our Random Forest model performed the best overall with a ROC AUC score of 0.7992152,
followed by the Gradient Boosted Tree with a ROC AUC score of 0.7789864. We consider these metrics as
acceptable discrimination with the first score approximating 0.8, which is considered excellent discrimination.
These metrics are only fitted on the training model, so we need to make sure that our models perform on our
testing data. We will be moving forward with the Random Forest model, but explore the Gradient Boosted
Tree model’s performance on the testing data as well. Let’s now find the models’ true performances on our
testing set.

Another way to visually inspect and compare the ROC AUC values for each fitted model is a lollipop plot,
which shows the relationship between a numeric (ROC AUC) and categorical variable (Types of Model).

news_lollipop_plot <- ggplot(news_result, aes( Model, ROC_AUC)) +
geom_segment (aes ( Model, 0, ROC_AUC, 0)) +
geom_point ( 7, "black", "#FB4F14", 0.3, 21, 3)
labs( "Model Performance based on ROC AUC") +

theme_minimal ()

news_lollipop_plot
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# save(news_result, file = "news_result.rda")

load("news_result.rda")
news_result

## # A tibble: 4 x 2

## Model ROC_AUC
#it <chr> <dbl>
## 1 Random Forest 0.799
## 2 Gradient Boosted Trees 0.779
## 3 Elastic Net Regression 0.679
## 4 Decision Tree 0.677

Results From Our Best Models

Let’s proceed to analyze the true results of our best fitted model, i.e. a random forest model. We will also
explore our second best model and analyze the results of our Gradient Boosted Tree. The Gradient Boosted
Tree model is nevertheless an incredibly powerful algorithm that is worth exploring on our testing set.

Random Forest

The random forest model performed the best out of our fitted models. Let’s now examine the strength of
this model with data the model has not seen. After all, the high ROC AUC score in the tibble represents
the model’s capability to predict the truth value of the news headline using the same data it was originally
trained on.
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Best Model: Random Forest 1017
Random forest model #1017 performed the best overall from all the random forest models. This model
exceeded all other prediction models we performed on. We can view the model’s output, ROC AUC value,

and tuned parameters below:

show_best (rf_tune, "roc_auc", 1)

## # A tibble: 1 x 9

## mtry trees min_n .metric .estimator mean n std_err .config
##  <int> <int> <int> <chr> <chr> <dbl> <int>  <dbl> <chr>
##H 1 2 500 10 roc_auc binary 0.724 5 0.00328 Preprocessorl_ModelO~

Gradient Boosted Tree

The Gradient Boosted Tree performed the second best out of our fitted models. We can examine the strength
of this model by observing its computed ROC AUC value on the training dataset below.

show_best (tune_bt_class, "roc_auc", 1)

## # A tibble: 1 x 9

## mtry trees learn_rate .metric .estimator mean n std_err .config
## <int> <int> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 6 500 0.1 roc_auc binary 0.722 5 0.00336 Preprocessorl_ M~

After observing our optimal (and second optimal) model, we can fit our testing data to the model and assess
the actual performance in predicting whether a news headline is true or fake.

Final ROC AUC Results

Random Forest 1017
ROC AUC

The resulting ROC AUC value after fitting our testing dataset is 0.7388494. We consider these metrics as
acceptable discrimination, as the AUC value ranges between 0.7 and 0.8.

random_forest_roc_test <- augment(rf_final fit, news_test) %>%
roc_auc( truth_value, .pred_fake) %>%
select(.estimate)

random_forest_roc_test

## # A tibble: 1 x 1

## .estimate
#it <dbl>
## 1 0.739
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ROC Curve

To visualize the ROC AUC score, it is helpful to plot a ROC curve. The closer the curve approximates to
the top left corner, the greater the model’s ROC AUC value is and the better the model performs.

augment (rf_final fit, news_test) %>%
roc_curve(truth_value, .pred_fake) %>%
autoplot ()
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Based on the ROC curve, we observe that the plot approximates to the top left. While the plot does not
perfectly resemble a perfect top-left right angle, the curve confirms our computed AUC curve.

Gradient Boosted Tree
ROC AUC

The resulting ROC AUC value after fitting our testing dataset to a Gradient Boosted Tree is 0.7356351. We
consider these metrics as acceptable discrimination, as the AUC value ranges between 0.7 and 0.8. However,
the value falls short of the ROC AUC value of our Random Forest model. This makes sense considering that
this model performs secondary to our Random Forest model, according to the computed ROC AUC value
on our training set.

bt_roc_test <- augment(final_bt_model, news_test) %>%
roc_auc( truth_value, .pred_fake) %>%
select(.estimate)

bt_roc_test
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## # A tibble: 1 x 1

## .estimate
## <dbl>
## 1 0.737
ROC Curve

Based on the ROC curve, we observe that the plot approximates to the top left. The curve confirms our
computed AUC curve.

augment (final_bt_fit, news_test) %>%
roc_curve(truth_value, .pred_fake) %>
autoplot ()
1.00 ~
0.754
2>
=
= 0.50 -
c
(O]
n
0.25 -
0.004
0.00 0.25 0.50 0.75 1.00
1 - specificity

Putting the Model to the Test

Finally, we can put our Random Forest model to the test and observe whether our model accurately predicts
a headline to be true or fake.

Fake News Example

Let’s generate a random news headline observation, which we identify as “fake.” We observe that the tidied
title text is:
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“man pen benghazi mom gop convention speech startle degree flip hillary”

The sample observation has the following emotional/sentiment metrics:

e anger =0

e anticipation = 0

e disgust =0
e fear =1
. joy =0

o sadness = 0
e surprise = 1
o trust =0

e negative =1
e positive = 3

set.seed (1)
sample <- news_test %>} sample_n(1)

sample

#it title

## 1 man pen benghazi mom gop convention speech startle degree flip hillary

#i#

## 1 The man who wrote the speech for Patricia Smith, a.k.a. Benghazi Mom, for the GOP convention has
##  subject date truth_value Category anger anticipation disgust fear joy

## 1 News 2016-08-17 fake 0 0 0 0 1 0

##  sadness surprise trust negative positive

## 1 0 1 0 1 3

Based on our prediction, the model correctly predicts that the news headline is “fake.”

predict(rf_final fit, sample, "class")

## # A tibble: 1 x 1
## .pred_class

##  <fct>

## 1 fake

True News Sample

Now, we re-generate a random news headline observation, which we identify as “true.” We observe that the
tidied title text is:

“republican senator collins say talk tazx bill productive”

The sample observation has the following emotional/sentiment metrics:
e anger =0
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o anticipation = 0

e disgust =0
e fear =0
o joy = 0

o sadness = 1
e surprise = 0
o trust =0

e negative = 1
e positive = 2

set.seed(2)
sample2 <- news_test %>/, sample_n(1)

sample2

## title

## 1 republican senator collins say talk tax bill productive

##

## 1 WASHINGTON (Reuters) - Republican U.S. Senator Susan Collins, who has demanded changes to a Republ
it subject date truth_value Category anger anticipation disgust fear

## 1 politicsNews 2017-11-28 true 1 0 0 0 0

##  joy sadness surprise trust negative positive

## 1 0 1 0 0 1 2

predict(rf_final_fit, sample2, "class")

## # A tibble: 1 x 1
## .pred_class

##  <fct>

## 1 true

Based on our prediction, the model correctly predicts that the news headline is “true.”

Disclaimer

The fake news detection model is not 100% accurate. We do not expect that all sample headlines would be
accurately predicted. Indeed, we are only working with emotion/sentiment as the sole predictor of a given
headline’s truth value. Perhaps if we were to consider the news article text rather than the headline or
include more predictors (e.g., commonality of words), our model accuracy would improve immensely. This
makes sense as we introduce more data in our existing variable (more text) and/or more predictor variables.
However, given our software’s limited computing power, we considered a smaller region of data — albeit
with over 40,000 observations. Ultimately, this model is well-versed in providing a preliminary analysis of
how fake news actors deliberately induce emotion in forms of deception.
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Conclusion

Overall, the Random Forest model provided the most accurate prediction of whether a given news headline
is fake or true. This model was not entirely perfect. We may consider further extensions that may generate
a more improved predictive model.

For instance, we may examine the application of a Naive Bayes classifier, Support Vector Machine (SVM), or
neural network. These models may require greater bandwidth, complexity, and versatility in other program-
ming languages like Python. It may be worthwhile to explore several deep learning models and fit different
architectures of neural networks, as we train the model to accurately predict the truth value of a text.

As far as the number of observations goes, we have a sufficient sample size. So, rather than increasing the
size of our observation, we can take care to improve the complexity of our predictors laterally. By evaluating
the news article text rather than the headline alone, we could see an increase in the complexity of terms
available. We could also explore various predictors on top of the frequency of emotionally-charged words
(e.g., commonality of words) or classify our predictors based on different kinds of word-emotion lexicons.
Ultimately, there are many ways we can explore the accuracy of our model performance and maximize the
potential that our preliminary report provides. These considerations are compelling as we explore ways to
quell false and misleading information in the media.
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Model Appendix

# DECISION TREE

tree_spec <- decision_tree(cost_complexity = tune()) %>%

set_engine("rpart") %>%
set_mode("classification")

tree_wf <- workflow() %>%
add_model (tree_spec) %>%
add_recipe(news_recipe)

param_grid <- grid_regular(cost_complexity(range = c(-3,

# RANDOM FOREST MODEL
rf_class_news <- rand_forest(mtry = tune(),
trees = tune(),
min n = tune()) %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("classification")

-1)), levels

# Set up a random forest workflow with recipe 'news_recipe’

rf_class_wf <- workflow() %>%
add_model (rf_class_news) %>%
add_recipe(news_recipe)

# Create a regular grid with 1 level each
rf_grid <- grid_regular(mtry(range = c(1, 6)),
trees(range = c(200, 600)),
min_n(range c(10, 20)),
levels = b)

# BOOSTED TREES MODEL
bt_class_spec <- boost_tree(mtry = tune(),
trees = tune(),
learn_rate = tune()) %>%
set_engine("xgboost") %>%
set_mode("classification")

bt_class_wf <- workflow() %>%
add_model (bt_class_spec) %>%
add_recipe(news_recipe)

# SET UP GRID

bt_grid <- grid_regular(mtry(range = c(1, 6)),
trees(range = c(200, 600)),
learn_rate(range = c(-10, -1)),
levels = 5)

# ELASTIC NET REGRESSION
# Fitting and tuning an elastic net

en_news <- multinom_reg(mixture=tune(), penalty=tune()) %>%

set_mode("classification") %>%
set_engine("glmnet")
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# Set up model and workflow

en_workflow_news <- workflow() %>
add_recipe(news_recipe) %>%
add_model (en_news)

# Create a regular grid for 'penalty’' and 'mizture’
en_grid <- grid_regular(penalty(range=c(0.01,3), trans=identity_trans()),
mixture(range=c(0,1)), levels=10)

### TUNING

# DECISION TREE
tune_tree <- tune_grid(
tree_wf,
resamples = news_folds,
grid = param_grid

)
# RANDOM FOREST MODEL

# Fit all models to your folded data using 'tune_grid()'
rf_tune <- tune_grid(

rf_class_wf,

resamples = news_folds,

grid = rf_grid

# BOOSTED TREES MODEL

# TUNE GRID

tune_bt_class <- tune_grid(
bt_class_wf,
resamples = news_folds,
grid = bt_grid

)

# ELASTIC NET REGRESSION

# Fit model to folded data using 'tune_grid()
en_tune <- tune_grid(

en_workflow_news,

resamples = news_folds,

grid = en_grid

best_en <- select_best(en_tune, metric = "roc_auc")
final_en_model <- finalize_workflow(en_workflow_news, best_en)

final_en_model <- fit(final_en_model, news_train)
final_en_fit <- fit(final_en_model, data=news_train)
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