More Efficient Drug Screening with 3D Bioprinting Taking a drug to market is a competitive, costly and challenging process involving preclinical laboratory and animal testing before the even more time-consuming and expensive four phases of human clinical trials, which can take as many as 7 to 15 years at price tags as high as \$5.5 billion. Even if 10 viable drug compounds are identified for human trials, only 1 out of 9 will actually make it to market. Given this high attrition rate, can bioprinting save valuable time and resources by better identifying viable compounds in order to move only the most promising drugs to clinical trials? Limitations of animal models for drug screening During the initial stages of drug discovery, often referred to as preclinical trials, new chemical entities (NCEs) are monitored to determine the life cycle of the compounds inside and outside of the targeted system (pharmacokinetics) and their chemical reactions (metabolism). Because of the ethical issues surrounding human trials and their high costs, a significant number of these early tests are performed on animals. While the transition from preclinical animal testing to clinical human trials has improved thanks to better research tools and the rise of artificial intelligence in target identification, there is still a real need for improved preclinical screening because animal testing often fails to recapitulate the complexity of the human metabolism, leading to false positives and negatives that do not accurately reflect the toxicity of drugs to human systems. 3D cell cultures are more relevant Given the limitations of animal models, it is no wonder that scientists have turned to human organ models. But although human cells have long been cultured in 2D, in recent years, a paradigm shift has led more and more scientists to recognize the importance of working with human cells in the 3D environments afforded by bioprinting in order to produce more physiologically relevant models. Combining the automation of cell culturing in 3D bioprinting with carefully tailored biomaterials, known as bioinks, has made it possible to grow, feed and maintain human organ models in larger quantities and in a lot less time, reducing time and labor spent on these tasks. Laboratory robotics can also now pick and place cell culture reagents or other NCEs and liquid samples in high numbers, enabling higher throughput screening and running a variety of other laboratory tasks more efficiently. Bioinks better mimic ECM Bioinks are another powerful tool that help researchers advance their drug discovery research. Tissue-specific bioinks improve cell adhesion and differentiation, helping with the formation of human organoids. Proteins and other biological factors can also be added to more accurately recreate extracellular matrices (ECM) and better simulate in vivo microenvironments. Furthermore, with multiple methods of crosslinking (chemical, light, thermal), the stiffness of constructs can be modulated to better serve specific cell types, like cartilage or bone tissue. Learn more Bioprinting's more relevant human organ models can save the drug industry time and money by more efficiently identifying viable compounds in the initial stages of drug development. Conceivably only the most promising compounds would move on to costly human clinical trials. The

CELL(NK >>

lugust 17, 2020

technology's growing influence means that scientists continue to validate more and more applications. Dive deeper into how the bioprinting industry is changing drug screening and development. Watch our webinar on 3D bioprinting for COVID-19 studies or read our application note, which discusses the effectiveness of testing drug efficacy in 2D and 3D.

More from Our Blog

Continuous Optical Bioprinting Brings Unmatched Speed to 3D Cell Culturing and Tissue Engineering August 3, 2022 The BIONOVA X is the world's first digital light processing (DLP) 3D bioprinter compatible with such a wide range of biomaterials and living cells. **READ MORE**

Bioprinted Ear Successfully Transplanted into Patient June 6, 2022

Share on facebook Share on twitter Share on linkedin A huge day for bioprinting as

Whether you are new to bioprinting or a first-time BIO X user, the recently published "Protocol for Printing 3D Neural Tissues Using the BIO X Equipped with a Pneumatic

doctors were able to transplant an ear bioprinted utilizing the

The Ultimate User Guide to Bioprinting Neural Tissue

May 2, 2022

READ MORE

Printhead" is a must-read.

READ MORE

READ MORE

READ MORE A BICO COMPANY **CONTACT US** EU: +46 31-12 87 00

NAVIGATION About us Careers Sustainability **MyCELLINK** 3D bioprinters **Biomaterials** Shop **POLICIES** Supplier Code of Conduct Internal Code of Conduct Whistleblower/Speak-up channel

Extrusion vs. DLP 3D Bioprinting - Explanatory comparison November 6, 2020 From stiff bone to soft fat and from miniscule capillaries to a whole brain, our cells' ability to form myriad tissue types is the most fascinating yet **READ MORE**

Keep up with the latest bioprinting news by signing up for our emails **SUBSCRIBE** APAC: +65 8750 2284 sales@cellink.com

Cookie Policy Privacy Policy

Commitment to Biomaterial Quality September 2, 2021 We offer a wide range of bioinks and biomaterials to ensure the viability of cells before, during and after bioprinting. Each optimized formulation confers the

Creating More Complex Constructs with Coaxial Bioprinting July 13, 2021 Introduction Multimaterial bioprinting is used to achieve complex structures composed of two or more hydrogels that are able to modulate mechanical, chemical or biological

properties. **READ MORE**

5 reasons to upgrade to the BIO X™ or BIO X6™ March 1, 2021 When it comes to your bioprinting needs, CELLINK have got you covered. Whether you're just getting started, or looking to take your bioprinting to the **READ MORE**

More Relevant 3D Lung Cancer Models February 19, 2021 Share on facebook Share on twitter Share on linkedin To study the complexities of lung cancer, the leading cause of cancer-related deaths, and the mechanisms **READ MORE**

October 27, 2020

Got collagen? April 7, 2022 Being the most abundant protein in mammals has earned collagen a special status in tissue engineering labs. But recent global supply chain disruptions have made finding a reliable supplier a truly Herculean race against time. **READ MORE** Let There Be Light! How the Lumen X+ Is Redefining **Bioprinting Capabilities** October 8, 2021

READ MORE

June 18, 2021 FRESH, or Freeform Reversible Embedding of Suspended Hydrogels, was originally developed as a 3D bioprinting method to address the many limitations faced when using soft **READ MORE**

Enabling More Complex Geometries with FRESH Bioprinting

BIO X

Evaluating Liver Toxicity in Bioprinted Mini Livers February 19, 2021 The development of a functional 3D liver model requires synergy of multiple liver-specific cells to create a physiologically relevant microenvironment. CELLINK's BIO X™ provides an

READ MORE

Room-temperature Transport of 3D Bioprinted Constructs February 19, 2021 Share on facebook Share on twitter Share on linkedin To address the high costs of shipping cryopreserved constructs and tissues between laboratories, CELLINK and **Atelerix READ MORE**

What are spheroids and why are they important? Spheroids are three-dimensional (3D) cell cultures that arrange themselves during proliferation into sphere-like formations. They got their name in the 1970s when hamster lung cells grown in suspension were observed arranging themselves into perfect spheres. With two-dimensional (2D), CELLINK

CELLINK is a part of the Bio-convergence revolution. Our products and services combine the power

U.S.: +1 (833) 235-5465

of biology, engineering and computer science to create the future of health.

COPYRIGHT © 2022 CELLINK - All rights reserved.

Read more at BICO.com

By better replicating the in vivo cellular environment, the transition from 2D cell culturing to 3D set off a chain reaction of scientific advances in many research **READ MORE**

3D Bioprinters Are Advancing Cancer Research March 19, 2021 Although the past decade has yielded significant reductions in the cancer death rate around the world, cancer is still the second leading cause of death globally, accounting for about 10 million deaths in 2020.