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Abstract

What role do government policies which distort market competition play in imped-
ing farmers’ climate change adaptation? We study this question in the context of In-
dia, where longer-run adaptation to climate change has been inadequate — posing a
considerable risk to its ∼250 million agricultural workers. We exploit spatial disconti-
nuities in intermediary market power, created by state-level laws that restrict farmer-
intermediary transactions to the same state, to determine how spatial competition af-
fects farmers’ adaptation. We find that a farmer selling in the 75th percentile of the
competition index compared to one that faces the 25th percentile of the competition in-
dex achieves a 4.9 percent higher output for each additional day of extreme heat. This
effect is driven by increased input usage by farmers in anticipation of higher prices af-
ter climate shocks, an effect limited only to high competition areas. We then propose
and estimate a quantitative spatial trade model with intermediary market power to ex-
amine the welfare implications of higher competition for adaptation. Our structural
estimates suggest that the farmer’s economic loss due to extreme weather (i.e. their
climate damage function) could be mitigated by 13.8 percent if government regulation
distorting market competition is dismantled. These results highlight the importance of
understanding the political economy of reforming these competition-distorting laws to
accelerate climate change adaptation.
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1 Introduction

This paper analyzes whether market distortions induced by a country’s institutions inhibit
its adaptation to climate change. Though the negative impacts of a departure from perfect
competition are well documented (Arrow 1962, Ashenfelter et al. 2014), these detrimental
effects risk being exacerbated by the climate crisis. One major source of these distortions
is government regulations which can concentrate market power in the hands of a few eco-
nomic agents. In light of this, do institutional policies, that dictate an agents’ market power,
impede climate change adaptation? And would eliminating these distortions by establish-
ing free markets enhance welfare by aiding adaptation? In this article, we address these
questions in the context of competition in India’s agricultural markets, and the role of mar-
ket power, in facilitating farmer adaptation to climate change.

Our analysis is motivated by a simple observation: in aworldwhere climate changewill
result in crop production losses and fall in agricultural productivity (IPCC 2022), farmer
adaptation is crucial, and critically depends on institutional and policy constraints. A coun-
try’s agricultural policy can play a dominant role in building resilience and reducing ex-
posure to the impacts of climate change—with the potential to either advance or distort
(through the imposition of soft limits1) adaptation behavior (Mees 2017, Valdivieso et al.
2017, Oo et al. 2017).2 For instance, Annan & Schlenker (2015) show that federal crop in-
surance policy in the United States creates a moral hazard problem, disincentivizing adap-
tation and consequently exacerbating losses. Similarly, agricultural laws in India, which
create market power for agricultural intermediaries (Chatterjee 2019), may also disincen-
tivize adaptation. Consider the case where post climate shock adaptation may be depen-
dent on higher input usage, which in turn is contingent on higher expected prices. The
market power of intermediaries may, however, constrain farmer prices from rising beyond
a level that impels farmers to adapt to climate shocks. Thus, the impact of climate change
on agriculture is inherently dependent on the capacity to effectively adapt. But how and to
what extent this capacity is constrained by government-induced distortions to market com-
petition remains an open question.

Addressing these questions empirically poses three challenges: first, competition is not
directly observable, making it difficult to credibly measure its intensity (OECD 2021); sec-
ond, causal identification of competition on adaptation suffers from both potential endo-
geneity in competition and in adaptation response; and lastly, limited simultaneous varia-

1Soft adaptation limit is defined as the existence of adaptive options to avoid intolerable risks, but which are
currently unavailable.

2See Kuruppu & Willie (2015) and Robinson (2018) for a discussion on how the governance architecture
can act as a bottleneck to adaptation in small island developing states.
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tion in climate shocks andmarket competitionmakes it challenging to detect any significant
causal effects, should they exist. We tackle these challenges by studying the impact of spa-
tial competition between intermediaries on farmer adaptation in India, focusing on a law
that restricts farmers to selling their produce to intermediaries within their own state. The
Indian context affords us progress on all three challenges.

Central to our approach are the state-specific Agriculture Produce andMarketing Com-
mittee (APMC)Actswhich regulate the first sale and purchase of agricultural commodities
within each state in India. Two provisions in these laws are noteworthy for our purpose:
first, farmers in a state are restricted to sell their produce at government designated phys-
ical markets (known as mandis) within their own state; second, output can only be sold
to government-licensed intermediaries, each of whom requires a market-specific license
to operate in the respective APMC mandi.3 Importantly, other wholesalers, retail traders,
or food processing companies cannot buy directly from the farmer. Therefore, the spatial
arbitrage constraints imposed on farmers by the law — restricting access to licensed in-
termediaries within a state border — reduce the competition faced by intermediaries. In
essence, state-specific institutional setup governing the sale of agricultural output gener-
ates spatially varying monopsony power for licensed intermediaries, a source of variation
which we can exploit to address the empirical challenges.

The context allows us, first, to accurately measure competition at the mandi level, offer-
ing spatially granular variation in competition intensity between intermediaries. We collect
novel microdata from India on the geolocations of mandis, and combine it with the daily
quantity arrivals and prices of agricultural produce there-within. Subsequently, drawing
on the standardmeasure of market access in trade literature (Donaldson &Hornbeck 2016,
Allen & Atkin 2016), we measure the competition intensity faced by each intermediary as
the inverse-distance weighted sum of the value of trade at all other markets near a origin
market site, but in the same state.4

Second, the interstate trade restrictions on farmers help us overcome the potential endo-
geneity in the location of intermediaries. Potential bias in estimating the impact of market
power on adaptation can arise if, for instance, markets were placed in areas with higher

3Intermediaries, or middlemen, tend to be the principal buyers of farmers’ output in developing countries
(Reardon 2015). The license to operate in a mandi is provided to them by the APMC board under whose
jurisdiction the mandi falls. Unlike farmers, there are no sale restrictions on the intermediary, who is free to
transport the purchased produce and sell it to retailers all over the country.

4Chatterjee (2019) defines spatial competition as the number ofmarkets in the neighborhood of eachmarket
weighted by the inverse of their distance. Thus, there is no variable controlling for the size of the markets in
his measure. This is similar to the market potential measure in Harris (1954), who defines it as the summation
of markets accessible to a point divided by their distances from that point. Similarly, Macchiavello & Morjaria
(2021) use the number of proximate competitors as a measure of competition. We employ these different
measures for testing the robustness of our results.
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predisposition for farmer innovation. The APMC Acts establish a discontinuity at the bor-
der in the competition faced by intermediaries. This allows us to employ a hybrid border-
discontinuity design with market pairs, akin to Chatterjee (2019). We form market pairs
by matching mandis that are in close proximity with each other but lie on different sides of
a state border, thereby allowing us to difference out unobserved factors, other than compe-
tition, that affect adaptation.

Third, India, with an estimated 263 million agricultural workers (Census of India 2011)
spread across 15 agro-climatic regions (Ahmad et al. 2017)—each with substantial spa-
tial heterogeneity in competition intensity—offers significant variation to study the effect
of market power on farmer adaptation to climate change.5 Agricultural households, which
account for 48 percent of total households in India (NABARD2018), have been incentivized
to invest in an adaptation portfolio owing to an unprecedented increase over the past sev-
eral decades in both maximum temperature, and frequency and intensity of extreme heat
days (Krishnan et al. 2020; also see Figure 1).6 Notably, this effect is expected to worsen,
with India projected to have the highest climate-change induced increase in heat exposure
and vulnerability to crop production losses relative to other nations (Jones et al. 2018, IPCC
2022).7 This is relevant because it motivates our use of extreme heat (defined as tempera-
tures ≥ 35◦C or 95◦F) as a proxy for climate shocks.

The empirical analysis proceeds in three steps. Section 4.A motivates our core ques-
tion — the role of market power in adaptation — by asking if Indian farmers have adapted
in the long-run. Evidence to the contrary would indicate that constraints imposed by dis-
tortionary institutional policies on adaptation may be persistent and binding; Section 4.B
explores whether intermediary market power mitigates the deleterious impact of climate
shocks; Section 4.C investigates the mechanisms.

5India has the highest number of agricultural workers in the world. 263 million people (54.6 percent of
India’s total workforce) are employed in agriculture. The figure of 263 million comprises of 119 million cul-
tivators/farmers and 144 million agricultural laborers. There is, however, some debate about the total farmer
population in India, with official figures ranging between 100 and 150 million. The main source of contention
is the absence of a standard definition of who constitutes a farmer. See Damodaran (2021) and Narayanan &
Saha (2021) for a detailed discussion.

6An agricultural household is defined as a household that received some value of produce more than |5000
(equivalent to US$63 using the average USD-INR exchange rate in calendar year 2021) from agricultural activ-
ities (e.g., cultivation of field crops, horticultural crops, fodder crops, plantation, animal husbandry, vermicul-
ture, sericulture, etc.) and had at least one self-employed member in agriculture, either in principal status or
in subsidiary status during last 365 days.

7India’s average temperature has risen by approximately 0.7◦C between 1901–2018. By the end of this cen-
tury, the average temperature across India is projected to rise by 4.4◦C relative to the 1976–2005 average, under
the RCP8.5 scenario (Krishnan et al. 2020). Furthermore, the frequency of summer heat waves over India is
projected to be 3 to 4 times higher by the end of the 21st century under the RCP8.5 scenario, as compared to the
1976–2005 baseline period. The average duration of heat wave events is also projected to approximately double
(Rohini et al. 2019). Finally, Mishra et al. (2012) and Turner & Annamalai (2012) project a steady decline in
the total precipitation during monsoon months.
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(a) Change in Maximum Temperature (b) Change in Extreme Heat Days
Notes: The weather data for Panel (a) comes from Terraclimate (2018), which has a monthly temporal resolution and a
4-km (1/24th degree) spatial resolution. Change in maximum temperature is calculated by taking the average maximum
temperature for each grid point within Indian boundaries for two time periods: 1960-70 and 2010-2020; and then differencing
the two. The weather data for Panel (b) is sourced from India Meteorological Department (2009) which uses 395 weather
stations to provide a 1 × 1 degree gridded daily temperature dataset starting from 1951 up until 2020. Extreme heat days
were defined for each grid cell as days with maximum temperature greater than the 95th percentile of the temperature
distribution in the respective grid cell between 1950-2020. Change in number of extreme heat days is calculated by taking
the total number of extreme heat days between 1960-70 and comparing the same to the total number of extreme heat days
between 2010-20.

Figure 1: Climatological Changes Over India Between 1960-70 and 2010-20

We begin by documenting evidence of limited long-run yield-stabilizing adaptation in
India. Following Burke & Emerick (2016), we measure long-run adaptation as the differ-
ence between panel and long-differences estimates of the effect of extreme heat on yields.
The panel estimates capture short-run within-year adjustments by farmers, while the long-
differences estimates encapsulate long-run transformational adaptations. Their difference,
thus, reflects the share of the short-run impacts that are offset in the longer run. Using
fine geospatial crop yields and weather data from 1968 to 2017, we find that both methods
yield significant but similar estimates— each additional day of extreme heat reduces yields
by 1.0 to 2.7 percent — indicating that long-run adaptations have likely offset none of the
short-run impacts of adverse climate. Therefore, the bottlenecks farmers face in adopting
short-run strategies have a direct and cumulative impact on their ability to adapt in the
long-term, making it imperative to recognise and address these constraints.

Our core result is that market power of intermediaries arising out of institutional poli-
cies acts as a major constraint on the farmers’ post-climate shock adaptation efforts. Using
a hybrid border-discontinuity design, we find that a farmer selling in the 75th percentile of
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competition compared to one that faces the 25th percentile of competition achieves a 4.5 to
5.2 percent higher output on average for each additional degree-day of extreme heat. This
result is robust to different distance thresholds, ranging from 25 to 50 kilometers, between
market pairs. We corroborate these findings using (i) a panel approach, and (ii) a panel
approach but changing the spatial unit of analysis from amandi to a district. As before, the
results unequivocally indicate that monopsony power thwarts adaptation — a one stan-
dard deviation increase in competition helps a farmers alleviate between 15 and 37 percent
of the negative impact of extreme heat.

Next, in order to investigate the mechanisms underlying the relationship between mar-
ket power and adaptation, we build a simple agricultural householdmodelwith incomplete
input markets (Aragón et al. 2021). This allows us to derive predictions on how and when
farmers would invest in their adaptation portfolio in the event of an exogenous negative
shock. Subsequently, we provide evidence consistent with the predictions highlighted in
the model.

The model yields the following prediction — in the event of a negative weather shock,
farmers could increase their input usage if the output prices are expected to rise beyond
a certain threshold. This could happen, for instance, if extreme heat reduces yields and,
hence, aggregate supply. However, themagnitude of increase in prices is likely to be greater
in high competition areas as a large set of intermediaries now compete for lower output.
Lower spatial competition between intermediaries translates into lower farmer prices (Chat-
terjee 2019). We hypothesize that climate shocks interact with market power to further
exacerbate these pre-existing distortions, thereby incentivizing only the farmers in high
competition areas to adjust their input usage as a response to extreme heat. This, in turn,
helps alleviate the crop production losses associated with heat stress.

We find evidence consistent with the mechanisms highlighted in the model: (i) the
positive effect of higher competition on intermediary prices is compounded after a climate
shock, and (ii) farmers in high competition areas increase their input usage, indicating
post climate shock adaptation. Specifically, a one standard deviation increase in compe-
tition causes the pre-existing difference in crop prices to increase by 0.5 to 0.6 percentage
points, conditional on both areas being exposed to a week of extreme heat. Next, we use
household level survey data to show that this rise in prices incentivizes farmers to increase
their input use within the growing season. Our estimates suggest that a one standard de-
viation increase in competition leads to a 1.2 and 1.7 percent increase in land and labor
inputs, respectively, for each additional day of extreme heat. Furthermore, input costs as-
sociated with labor, irrigation, fertilizers, and farm equipment also experience a significant
increase. Consistent with the adaptation portfolio, we also find evidence of crop diversifi-
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cation at a macro-scale (i.e., district-level) in high competition areas, indicating crop-mix
as a potential avenue for increased resilience. In summary, productive adjustment, incen-
tivized by increasing prices, attenuates undesirable drops in output, but is limited to high
competition areas.

Oneway to counter themarket power distortions generated by archaic institutional poli-
cies is to remove the inter-state trade restrictions. However, the welfare impacts of such a
policy change cannot be deduced directly from the data, and require a structural model.
Specifically, our empirical strategy is inadequate in encapsulating three pivotal general
equilibrium effects. First, removing trade restrictions will not only affect prices in man-
dis near the state borders, but also have a knock-on effect on prices in markets that are
not in close proximity to state borders. Second, change in intermediary prices will incen-
tivize farmers to re-optimize their choice of crops, intermediate inputs, andmarket for sale.
This will alter supply, thereby impacting retail prices, which will eventually feed back into
mandi prices. Finally, andmore importantly, climate change will influence productivity dif-
ferences across crops and fields, altering comparative advantage between different regions
of India. This evolution of comparative advantage will interact with a change in market
power of intermediaries, shaping the adaptation portfolio of farmers. A model, therefore,
helps us understand how the policy change aids in mitigating the consequences of climate
change.

To estimate adaptation gains from removing interstate trade restriction, we develop a
spatial general equilibriummodel of trade in the agriculturalmarkets, drawing on thework
of Costinot et al. (2016) and Chatterjee (2019). In our framework, every state consists of a
large number of fields with heterogeneous productivity across multiple crops. Each field
is represented by a farmer who makes two decisions: (i) crop and input choice, and (ii)
intermediarymarket for sale post-harvest. The former decision is influenced by the relative
productivity differences across crops and fields, i.e. comparative advantage, which deter-
mines the pattern of specialization within and between states. The latter decision relies
on the farmers’ transportation costs between competing markets — each of which is repre-
sented by an intermediary — and determines the level of market power. In order to ensure
the model resembles reality, we add three key features. First, farmers cannot cross state
border. To incorporate these trade restrictions, we assume transportation costs are infinite
if the farm and market lie on different sides of the border. Second, intermediaries are price
makers. This is modeled through a Bertrand competition which ensures intermediaries act
strategically when purchasing crops, internalizing their market power. Third, intermedi-
aries are allowed to sell across state borders. Therefore, geography and trade restrictions
create spatial heterogeneity influencing farmers’ arbitrage opportunities, and consequently,
creating spatial variation in the monopsony power that intermediaries can exert.
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The competitive equilibrium of our model and any subsequent counterfactual analy-
sis will depend on five key parameters: (i) the elasticity of substitution between different
varieties of the same crop; (ii) the elasticity of substitution between different crops; (iii)
within-field heterogeneity in productivity; (iv) trade costs and; (v) dispersion of idiosyn-
cratic shocks to the trade cost. All these parameters are estimated using a rich micro-level
data set on field level crop productivity, inland trade data on agricultural commodities,
geolocation of markets, as well as prices and quantity arrivals of different crops in each
market. Finally we use the estimated parameters and information on the pattern of com-
parative advantage across fields and crops to simulate our model under the no–climate
change scenario, and compare it to two counterfactual scenarios. In the first, we study the
welfare consequences of a decline in crop and field productivity due to climate change, but
in the presence of trade restrictions on farmers. In the second counterfactual scenario, we
study the welfare consequences of climate change but without trade restrictions. The dif-
ference between the two counterfactual helps us ascertain the magnitude of mitigation that
transpires once trade restrictions are removed.

Ourmodel suggests that the welfare impact of climate change is substantially mitigated
once inter-state trade restrictions are lifted. Specifically, we find that climate change reduces
welfare in India by 2.1 percent of total GDP, assuming no policy change. However, increase
in competition arising out of abolishing trade barriers enables farmers to receive a higher
price, which changes the source andmagnitude of adjustment, allowing a 13.8 percent alle-
viation in thewelfare losses. This illustrates howmarket distortions created by government
policies could hinder adaptation, and how removing the same could expand the adaptation
portfolio of farmers, thus helping countries mitigate the negative consequences of climate
change.

Related Literature: This paper contributes to several strands of literature. First, it con-
tributes to the broader literature on the impact of market concentration on economic out-
comes. A large body of research shows that market power has negative consequences for
consumer surplus (Dafny et al. 2012, Miller & Weinberg 2017), economic inequality (Co-
manor & Smiley 1975), employee welfare (Prager & Schmitt 2021), as well as productiv-
ity and innovation (Aghion et al. 2001, 2005, Holmes et al. 2012). Interestingly, impeding
competition is also linked with anti-democratic outcomes like concentrated economic and
political power, political instability, and corruption (Becker 1958, Robinson & Acemoglu
2012). We instead focus on the role of market competition in incentivizing adaptation to
climate change. In line with previous studies, we find that (intermediary) market power
has harmful implications, and can put soft limits on adaptation in agriculture.

Second, this work relates to the literature on inefficiencies generated by government
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policies and institutional features. An extensive literature has documented the adverse ef-
fects of government regulations: labor regulations hurt output and productivity (Holmes
1998, Besley & Burgess 2004); licensing regulations which restrict firm entry lead to mar-
ket concentration, decelerate employment growth, and increase corruption (Djankov et al.
2002, Bertrand & Kramarz 2002); product market regulations (e.g. trade tariffs) adversely
impact competition, average firm size and profits (Blanchard & Giavazzi 2003), and; cost-
of-service regulations in the utilities sector reduce efficiency (Fabrizio et al. 2007, Cicala
2022). We complement this literature by finding evidence that regulations governing the
sale and purchase of agricultural products can distort competition and disincentivize adap-
tation. In this regard, our study is closest to Annan & Schlenker (2015) who find that
a highly subsidized crop insurance program in the United States, providing coverage to
farmers against crop losses, inhibits adaptation. However, the disincentive to adapt in their
setup is a result of moral hazard, while the disincentive in our setting is driven by govern-
ment induced distortions in market power of intermediaries. Thus, our paper documents
how government regulations, intended to protect farmers from exploitation bymiddlemen,
have inadvertently distorted competition and hindered adaptation, thereby exacerbating
the dead-weight loss arising from climate change.

Third, we contribute to the literature on adaptation to climate change, and the mecha-
nisms that underpin it. There is mounting evidence on the deleterious impact of climate
change on several economic indicators like productivity, education, health, etc. (Burgess
et al. 2017, Park et al. 2020, Somanathan et al. 2021).8 As a natural progression, subsequent
studies have focused on adaptation efforts, i.e. how these damaging effects can bemitigated.
Researchers have documented the positive role of air conditioners (Barreca et al. 2016, Zivin
&Kahn 2016), expansion of bank branches (Burgess et al. 2017), and relocation (Deschenes
& Moretti 2009) in combating mortality and productivity losses caused by climate change.
Agricultural adaptation has been linked with changing crop-mix (Auffhammer & Carleton
2018, Taraz 2018), using drought-tolerant seeds (Boucher et al. 2021), labor input adjust-
ments (Aragón et al. 2021), and migration (Feng et al. 2015, Hermans & McLeman 2021).
In a similar vein, this article finds that farmers rely on input adjustments and changing the
cropmix to attenuate losses arising from climate shocks. Importantly, however, this adapta-
tion portfolio is only accessible to farmers in high competition areas— on account of higher
expected prices — and not where government policies have distorted market power.

Finally, our paper is related to the growing body of literature focusing on trade and
adaptation to climate change (Reilly & Hohmann 1993, Randhir & Hertel 2000, Costinot

8There are numerous studies on the potential impact of climate change on agriculture in India (Guiteras
2009, Mall et al. 2006, Economic Survey of India 2018) and the United States (Mendelsohn et al. 1994, Schlenker
et al. 2005, Deschênes & Greenstone 2007, Fisher et al. 2012, Schlenker & Roberts 2009). A review of the impact
of global warming on agriculture in developing countries is provided by Mendelsohn (2009).
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et al. 2016). While the literature has focused on how international trade can help alleviate
climate change losses, we show that removing domestic trade barriers would also go a long
way in accelerating adaptation efforts. In this regard, we build on the quantitative spatial
general equilibriummodel of Costinot et al. (2016) bymoving away from the assumption of
perfectly competitive environment, and adding spatial variation in market power of inter-
mediaries. This allows us to quantify the welfare gains from adaptation to climate change
through a reduction in intermediary market power, an outcome of dismantling domestic
trade barriers.

Roadmap: The organization of the paper is as follows. Section 2 provides an overview
of the institutional background of agricultural trade in India, particularly the APMC mar-
kets. In Section 3, we describe our data sources and the construction of variables. Section 4
presents the empirical strategy and the results from our econometric analysis. A theoret-
ical model of climate change and trade is laid out in Section 5, its estimation in Section 6,
and the counterfactual analysis in Section 7. Conclusions and areas for future research are
discussed in Section 8.

2 Background on Agricultural Markets in India

To help understand howgovernment regulations concerning agriculturemarketing created
spatial competition distortions amongst intermediaries, i.e. the paper’s specific context, we
provide a detailed overview of the origin of these laws. Section 2.A delves into the history,
Section 2.B details the provisions, while Section 2.C provides insight into the unintended
consequences of these provisions.

A History

The regulation of agricultural marketing in India has its roots in pre-independence policies
introduced during the British Raj. The British government wanted to ensure sustained
supplies of cotton at reasonable prices for textile mills in the United Kingdom. In order to
facilitate this, the first regulated cottonmarketwas set up in Karanja (Maharashtra) in 1886.
Subsequently, theBerar Cotton andGrainMarket Act, 1887was introducedwhich empowered
the British to establish a trading supervisory committee and, thereafter, designate any place
as a market for sale and purchase of agricultural produce within a district.

In 1928, under the chairmanship of Lord Linlithgow,9 the British government’s Royal
9Lord Linlithgow was Governor General and Viceroy of India from 1936 to 1943.
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Commission on Agriculture in India expanded the scope of regulated markets. Simply, the
commission recommended: (i) extending regulation of marketing practices to all crops,
and (ii) establishment of regulated markets. To quote from the report:

“It is only in Berar that the constitution of markets is regulated by special legis-
lation and that the management is in the hands of elected committees. . . . The
most hopeful solution of the cultivator’smarketing difficulties seems to lie in the
improvement of communications and the establishment of regulated markets,
and we recommend for the consideration of other provinces, the establishment
of regulatedmarkets on the Berar system. . . . The Bombay Act is, however, defi-
nitely limited to cottonmarkets and the bulk of the transactions in Berarmarkets
is also in that crop. We consider that the system can conveniently be extended
to other crops. . . . We consider that the management of these markets should
be vested in a market committee.”

In pursuance of these ideals, the British Government in India circulated aModel Bill in 1931
to regulate trade practices and establish market yards in the countryside. However, only
a few provinces adopted these laws (Central Provinces, Madras, Baroda, Bombay, Punjab,
andMysore). At its core, however, the establishment of regulatedmarkets under the British
was intended to control the price, quantity, buyer, and type of goods sold, with the direct
aim of ensuring cheap supplies for England.

Post independence, the focus of the government shifted towards incentivizing farmers
to heighten agricultural production. Moreover, the government sought to protect cultiva-
tors from exploitative middlemen who often forced farmers to sell at low prices. In pursuit
of this objective, government regulation was seen as an effective instrument to facilitate fair
and competitive compensation for farmers. Consequently, a large number of states enacted
and enforced the Agriculture Produce Marketing Regulation (APMR) Acts from the late
1960s to the early 1980s.10 The provisions within these Acts, and how they create monop-
sony power for intermediaries, is explained in the following subsection.

B Agricultural Produce Market Committee: Regulations

Agriculture is a state subject under the Indian constitution, i.e. states have the power and
responsibility to legislate on agricultural marketing. In accordance with these legislative
powers, each state has enacted laws under the APMR Act to regulate agricultural trade
within its boundaries. These laws permit state governments to designate certain areas

10All states, except Kerala, Jammu and Kashmir and Manipur, enacted such laws.
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within the geographical confines of the state as market areas (mandis). Each market area
is governed by an Agricultural Produce Marketing Committee (APMC) — constituted of
elected traders, farmers, and government representatives from the area — which is tasked
with framing and enforcing the rules governing agricultural marketing. The committee is
also responsible for setting up market yards where agricultural trade takes place.

These state-specific Acts mandate that the sale or purchase of agricultural commodities
can only be executed in specified market areas, yards, or sub-yards located within the state
(see images in Figure 2). In particular, it requires that all food produce should be brought
by the farmers to a market yard in their region and then sold through an auction. Further-
more, intermediaries (buyers) who wish to trade in a certain market area are required to
obtain a license from the market committee. Additionally, the Act also mandates that sell-
ers and traders pay a market fee on all trade that takes place within the market area. This
institutional setup was designed to ensure that farmers had access to organized markets
operating under the supervision of the government; such oversight was intended to mini-
mize the risks of exploitation by traders andmiddlemen. However, the provisions distorted
market competition, which we discuss in detail below.

(a) APMCMarket in Bhatinda, Punjab (b) APMCMarket in Yavatmal, Maharashtra
Notes: Panel (a) and Panel (b) show two designated APMC market yards, also known as mandis, which were established
under the state-specific Agricultural Produce Marketing Committee (APMC) Acts. These yards are the first point of contact
between the farmers and intermediaries. All agricultural produce must be brought to thesemandis by farmers in that region,
and sales are made through auction. Intermediaries require a license to operate within a mandi, but are free to transport the
purchased produce and sell it across the country.

Figure 2: APMCMarket Yards orMandis in India

C Monopsony Power

Though noble in their intentions, the APMC laws introduced an unintended consequence:
monopoly power for market committees in their respective area. APMC legislation crim-
inalizes setting up competing markets and buying agricultural produce from outside the
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designated market yards. Importantly, as the APMC laws are state-specific, their jurisdic-
tion does not stretch beyond state boundaries. This, coupled with the requirement that
farmers can only sell their produce in the APMC of their region, implies that farmers can-
not cross state boundaries to sell their produce. In essence, jurisdictional boundaries and
strict market regulations distort competition. This negatively impacts farmers’ bargaining
power and, consequently, lowers the probability of receiving fair prices for their produce.

Along with between-market competition, within-market competition is also impacted
by collusion amongst traders. Market committees, responsible for granting licenses, are
usually dominated by the trader lobby. This creates a conflict of interest as existing traders
prevent market entry to preserve their profits. The licensing regime, therefore, artificially
reduces the number of buyers in themarket. Furthermore, since wholesalers, retail traders,
and large processors cannot buy directly from the farmers, they rely on licensed traders
to act as intermediaries. This behavior also impacts prices: various studies (Banerji &
Meenakshi 2004, Meenakshi & Banerji 2005) document non-transparent price discovery
processes resulting from trader collusion. This ultimately renders farmers subject to ex-
ploitation by intermediaries who act as financiers, information brokers, and traders. No-
tably, farmer exploitation creates further opportunities for rent-seeking as intermediaries
can buy low and sell high, capturing the difference as profits.

In summary, while the APMC laws were intended to protect farmer exploitation by
regulating agricultural marketing, many exploitative conditions have gradually resurfaced,
mostly as unintended consequences of these laws. They limit between-market competition
by creating legal barriers to entry, prohibiting farmers to sell outside APMC markets, and
restricting the set of buyers to licensed intermediaries within the state. One way to counter
this would be through within-market competition among intermediaries. However, collu-
sion among traders is rampant, with evidence of price manipulation and restricted buyer
entry, effectively creating a monopsony. The net result is an exploitative system of inter-
locked transactions that robs farmers of discretion across important selling decisions.

3 Data

Our goal is to study the extent of long-run adaptation, and the role of institution-led dis-
tortions in market competition on adaptation to climate change. To this end, we need four
main types of data, which we draw from varied sources: (i) estimates of yields for our
sample of crops; (ii)weather data to construct estimates of climate shocks; (iii) location of
intermediarymarkets (mandis) to construct the competitionmeasure, and; (iv) daily prices
and arrivals (quantity of crop brought to a mandi) data for the sample of crops. Below, we
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provide detailed information on all the data sources.

A Yields

Our agricultural data on yields comes from the International Crop Research Institute for
the Semi-Arid Tropics (ICRISAT 2018). In collaboration with the Tata Cornell Institute of
Agriculture and Nutrition (TCI), ICRISAT (2018) provides district level data on area (’000
ha), production (’000 tons), and yields (kg/ha) for 19 major crops in 313 districts of 20 states
of India at an annual level from the year 1966 to 2017.11 Our unit of analysis is, thus, the
crop-district-year. There were 313 districts in 16 states in 1966.12 Over the next 50 years,
four new states were created from the 16 states to make it 20 states, with the number of
districts in the 20 states increasing to 571. The database is, therefore, divided into 2 datasets:
apportioned and unapportioned. Apportioned includes only the 1966 base districts, with data
on districts formed after 1966 given back to their parent district. This has resulted in a
consistent and comparable time series data for all the districts since 1966. Unapportioned,
on the other hand, includes all the districts formed until 2015 in 20 states of India, but it
only spans the years 1990 to 2015. We, thus, use the apportioned dataset for our analysis
given its longer time horizon.13

We divide the crops based on the growing season, of which there are two main ones in
India: Kharif and Rabi. The Kharif cropping season is from July–October during the south-
west monsoon, with crops harvested from the third week of September to October. The
Rabi cropping season is from October–March during winter, with harvesting in the spring
months between April and May. The ICRISAT (2018) database does not separate the agri-
cultural data by growing season (except for sorghum or millets). Therefore, we do not
have estimates of what proportion of the crop was grown in each season. This is, however,
necessary to ascertain as otherwise there is a risk of yielding spurious estimates of the re-
lationship between climate variables and agricultural production. For instance, modeling
yearly yields of a crop as a function of annual number of extreme heat days will be invalid
if the production was, predominantly, limited to one growing season. Favorably for us, the
production of most crops is concentrated to one of the two seasons, with negligible culti-
vation in the other. Agricultural Statistics at a Glance (2020), released by the Directorate of
Economics and Statistics, Government of India, provides all India estimates of agricultural
production of crops by season, averaged between the years 2014 to 2019. We use the share of

11As of 2022, India is divided into 28 states and 8 union territories, with the states being further subdivided
into 776 districts. Year refers to the agricultural year, i.e. June 1st to May 31st (Sanghi et al. 1998).

12This excludes northeastern states (except Assam) and Jammu and Kashmir.
13For a description of the methodology for apportioning newly formed districts to their parent district, and

a list of districts formed after 1966, see Appendices 1 and 2 of ICRISAT (2018).

13



production in each season to classify commodities into either of the two cropping seasons.
For e.g., if a majority of the total production of a crop was condensed to the Kharif season,
we classify the crop asKharif. Of course, given India’s varied topography and climate, there
could be variation in the cropping season for the same crop across different regions. We
address this issue in Section 3.D.

B Weather

Our climate data are drawn from European Centre for Medium-Range Weather Forecasts
(ECMWF), an independent intergovernmental organisation and research institute head-
quartered in the United Kingdom. We use the fifth generation of ECMWF atmospheric
reanalyses of the global climate (ERA5-Land, 2021) dataset that provides gridded temper-
ature (Kelvin) and precipitation (depth in metres) data at a 0.1◦ × 0.1◦ (9km) horizontal
resolution.14 The data is made available at an hourly temporal resolution with coverage
from January 1950 to present.

There was a mismatch in spatial resolution between weather and agricultural data: the
former was available at a very high spatial resolution (9km × 9km grid cells), while the
resolution of the latter was coarser and aggregated to a bigger administrative unit (district
level). This implies that severalweather grid cells fell within the boundaries of each district.
To address this, we take a weighted mean of the temperature (weighted sum in case of
precipitation) across all cells within the district. In order to calculate weights, note first
that districts in India can be fairly large with heterogeneous geographical features, and
contain areas with little to no agricultural activity (e.g. Himalayas in North and East India,
or deserts in Gujarat and Rajasthan). Consequently, weather conditions in such parts of
the district may be irrelevant for agricultural production within that unit. Therefore, we
rely on fine scale land cover data to use as an aggregation weight. Specifically, we use the
Global Food Security-support Analysis Data at 30m resolution (GFSAD30, 2017) which
provides satellite-derived cropland extentmaps in collaborationwithNational Aeronautics
and Space Administration (NASA) and the United States Geological Survey (USGS) for
South Asia for the year 2015. The database divides land into three categories: water (ocean
and water bodies), non-cropland, and cropland. For our purpose, all weather variables
were aggregated based on weights proportional to the cropland extent (see Figure A.1).15

14Temperature of airmeasured at 2m above the surface of land, sea or in-landwaters. Temperaturemeasured
in Kelvinwas converted to degrees Celsius (◦C) by subtracting 273.15.

15Cropland extent was defined as lands cultivated with plants harvested for food, feed, and fiber, including
both seasonal crops (e.g., wheat, rice, corn, soybeans, cotton) and continuous plantations (e.g., coffee, tea,
rubber, cocoa, oil palms). Cropland fallows are lands uncultivated during a season or a year but are farmlands
and are equipped for cultivation, including plantations (e.g., orchards, vineyards, coffee, tea, rubber). Further
details are available at globalcroplands.org.
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Next, we provide details on the construction of the weather variables used in the em-
pirical analysis. Schlenker & Roberts (2009) have documented strong non-linearities in the
relationship between exposure to weather conditions and agricultural outcomes. To cap-
ture this, we use the concept of Growing Degree Days (GDD), which measures cumulative
temperature exposure between two temperature thresholds during a period of time. The
process of creating exposure bins for all district-month-year combinations involved the fol-
lowing steps. First, we use the hourly cropland-weighted weather data, aggregated to a
district level, to calculate the daily minimum and maximum temperature for each district
in India. Next, we derive how much time is spent at each temperature bin for all districts.
These bins were 1◦C wide, ranging from −10◦C to 50◦C. Finding the number of hours a
district is exposed to each 1◦C interval requires intra-daily distribution of temperature,
which required making assumptions about the temperature-time path. Specifically, the
distribution of temperatures within each day was approximated using a sinusoidal curve
(Ortiz-Bobea 2021), which generates a series of points at 15-minute intervals, betweenmin-
imum andmaximum temperatures of each day. Following this, we computed the exposure
bins (measured in hours) by determining the frequency of these 15-minute interval points
throughout the month.16 As a final step, we compute growing degree days from these ex-
posure bins by converting the number of hours in each exposure bin to days (divide by
24), and subsequently aggregating them between a low threshold h and a high threshold
h using the expression:

GDDh to h =

h−1∑
k=h

zk (1)

where zk is the exposure in days to the kth temperature bin. Essentially,GDDh to hmeasures
the amount of time a crop was exposed to temperatures between a given lower and upper
bound.

C Intermediary Markets

An empirical analysis of the impact of competition onmitigation of climate shocks requires
information on market power, which is a function of the number, size, and location of in-
termediary markets. Our primarymeasure of competition is defined at a wholesale market
level, and is calculated as an inverse distance weighted sum of total trade across all neigh-
boring markets in the same state (see Section 4.B for details). Given the spatial nature of
this statistic, it was important to determine the exact geospatial location of each market.
The steps employed to create this dataset are detailed below.

16By construction, summing over all bins across a month for a district equals the number of hours in that
month.
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First, we needed a comprehensive list of all wholesale intermediarymarkets in the coun-
try. For this purpose, we used the Directory of Wholesale Agricultural Produce Assembling
Markets in India published in 2004 by the Directorate of Marketing and Inspection (DMI),
Ministry of Agriculture, Government of India (Chimalwar et al. 2004).17 The directory
lists 5,983 markets in the country, and provides information on the name of the market,
name of and distance to the nearest railway station, district and state of each market, and
the commodities traded therewith. These 5,983 markets form our universe of wholesale
intermediaries (mandis) in India.

However, not all of thesemarkets observed active trade and/or reported the daily quan-
tities and prices of commodities arriving in the marketplace. Therefore, as a second step,
we remove from our initial sample the subset of markets for which there did not exist any
price or quantity data since 2001. The assumption here is that data does not exist because
these markets did not see any trade during this time period.18 For this exercise, we use
the Agmarknet dataset provided by the Ministry of Agriculture and Farmers Welfare in In-
dia, which collates data on daily arrivals and producer prices for all government-regulated
agricultural markets in India since 2001.19 Wematch the DMI list of 5,983 markets with the
list of markets in the Agmarknet data, and include a market in our sample if there was even
a single day of trading at the market for any of the 19 major commodities (selected from
ICRISAT (2018)) from 2001 onwards. Next, we remove all markets in the state of Bihar,
which dismantled the APMCmarkets in 2006, andmarkets in Kerala, Jammu and Kashmir,
and Manipur, which never enacted the APMC Act. We also remove markets in the north-
eastern states, certain Union Territories, and islands, where agriculture is not practiced on
any substantial scale.20 This gives us a final sample of 2,938 markets in 20 states.

The third step involved a significant undertaking of finding the exact geolocation of
these 2,938 markets. The problems with using a Google API to identify the coordinates of
a market in India are manifold. First, India’s linguistic diversity means APMCmarkets are
denoted on Google Maps by local names in different states.21 This implies that there does

17We used the latest version published in 2004. There are also three older directories published in the years
1963, 1992 and 2000.

18Mandis can be of three types: primary, secondary, and non-regulated (Chimalwar et al. 2004). The missing
trade data pertains to the latter two. Our analysis is focused on primary markets, which are large yards where
the first trade between farmers and intermediaries takes place. In essence, these yards are the first point of
contact with the farmers. Secondary and non-regulated markets are smaller with rarely, if any, farmers partic-
ipating. They are mostly used for further trading of the agricultural produce purchased by the intermediaries
from the primary markets. Given that our chief focus is on farmers, and we have data on quantities and prices
for all primary markets, the missing data for secondary markets is not a major concern.

19The Agmarknet data can be accessed at https://agmarknet.gov.in/.
20This includes Andaman and Nicobar Islands, Arunachal Pradesh, Chandigarh, Dadra and Nagar Haveli,

Daman and Diu, Lakshadweep, Meghalaya, Mizoram, Nagaland, Puducherry, Sikkim, and Tripura. The states
included in the final analysis are shown in Figure A.2.

21Examples of the most common names in each state include: Agricultural Market Committee, Agriculture Mar-
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not exist a uniform text string which could be used to search the latitude and longitude co-
ordinates of the markets. Second, though using the coordinates of the village centroid is a
potential proxy for the geolocation of markets, Indian towns and villages can be expansive,
and sometimes have multiple markets in the vicinity. Ignoring these distances andmarkets
could lead to an erroneous competition measure. Furthermore, various village names are
repeated, sometimes even within the same state, which could lead to inaccuracies in the
collation of spatial location data. Given these complications, we, therefore, conducted a
search on Google Maps using unique keywords for eachmarket. For eachmarket in a state,
our keywords included the market name, postal address, and district followed by the com-
monly used designation for wholesale markets in that state. We replaced the designation
with different monikers of APMC markets if our search did not turn up a valid result. In
case of uncertainty, we further refined our search by calculating the distance between the
market identified by our search results and the nearest railway station mentioned in the di-
rectory by DMI.We then compared our figure with the distance to the same railway station
given in the directory, and only if the difference was minuscule (less than 10 percent) was
the market selected.

As a final step, we corroborated our findings, wherever possible, with a dataset by the
Pradhan Mantri Gram Sadak Yojana (PMGSY) which provides information on approxi-
mately 770,000 geo-tagged rural facilities, 20 percent of which are agricultural.22 We did
not use this as our primary source for geolocation of markets because the dataset is only
available for rural India, and does not cover facilities in urban centers. Moreover, in most
states, it classifies smaller retail markets as also mandis, making it difficult to differentiate
wholesale markets from retail markets. However, it proved useful in validating — and
confirming in case of uncertainty — our Google Maps search results in rural areas.

Notwithstanding different searches involving various strings and the use of PMGSY
dataset, 13 percent (386 markets) of the markets could not be precisely geocoded. In such
cases, we used the centroid coordinates of the village or town. The geographic distribution
of all wholesale markets in the country is plotted in Figure 3.

ket Yard, Rythubazar, or Farmer Grain Market in Andhra Pradesh; Regulated Market Committee orNotified Mandi in
Assam andOrissa; Krishi UpajMandi orGallaMandi in Chhattisgarh, Rajasthan andMadhya Pradesh; Khetiwadi
Utpadan Samiti Market in Gujarat; Anaaj Mandi orGrainMarket in Haryana and Punjab; RMC Yard in Karnataka;
Krushi Utpanna Bazar Samiti inMaharashtra; RegulatedMarket orWeekly Shandi in Tamilnadu;GallaMandi Samiti
or Naveen Mandi Sthal in Uttar Pradesh; Krishak Bajar, Anaj Hat Tala or Kisan Mandi in West Bengal.

22The dataset is provided by the Online Management, Monitoring and Accounting System (OMMAS) arm
of PMGSY and is available at http://omms.nic.in/. The agricultural facilities include cold storages, collection
centres, mandis, warehouse, etc.
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Notes: Themap shows the geographic distribution of 2,938APMCmarkets by district and state. Each
dot represents an APMCmarket. Geographic coordinates were found through Google Maps, using
data from theDirectory of Wholesale Agricultural Produce AssemblingMarkets in India published by the
Directorate of Marketing and Inspection, Ministry of Agriculture, Government of India Chimalwar
et al. (2004), and further corroborated with a dataset on geo-tagged rural facilities provided by the
Pradhan Mantri Gram Sadak Yojana (PMGSY).

Figure 3: Geographic Distribution of APMCMarkets

D Quantity Arrivals and Prices

TheMinistry of Agriculture and Farmers Welfare aggregates commodity level, daily quan-
tity arrivals and producer prices received by farmers across government-regulated agri-
cultural markets in India. Information is available starting 2001 for 344 agricultural and
livestock commodities from approximately 4,000 markets spread across more than 650 dis-
tricts of India. Though this data is available on the government’s Agmarknet portal, we
downloaded the same from the portal maintained by the Centre for Economic Data and
Analysis (CEDA) of Ashoka University, as they have collated the data in a format that is
easily downloadable and also corrected for certain inconsistencies.23

Our sample is comprised of 52 major commodities which mirror the 19 crops in the
23The data from CEDA can be accessed at https://agmarknet.ceda.ashoka.edu.in/
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ICRISAT (2018) dataset.24 One potential concern with the latter dataset is that it does not
classify regional crop production based on season. However, growing season for the same
crop may differ across regions.25 For instance, if we classify an agricultural commodity
as a Kharif crop in a region where it is, in fact, grown in the winter months, the weather
conditions ascribed to the crop yields will be erroneous, leading to spurious results. In
this regard, high frequency arrivals data helps us attribute the right growing season for
crops traded in a market as we can deduce the time of harvest based on its arrival date
in an APMC market. Therefore, to correctly classify the growing season for each crop in
eachmarket, we use the following algorithm: for every crop-market pair, we first aggregate
all arrivals up to a monthly level, and compute the monthly average across all years (2001
onwards). This gives us the average quantity traded in a market for every month across
all years. Second, we use this monthly average to find the proportion of quantity traded
in each month. Finally, we determine the growing season based on the month with the
maximum proportion of arrivals. Accordingly, if the peak arrivals was between October to
February, we classify the crop as Kharif, if it was between March to June, we classify it as
Rabi, and Zaid (summer season) otherwise.

The market-wise growing season classification is then used to construct the price and
quantity traded variables at a market-crop-year level. For quantity in each year, we sum the
daily arrivals in a market across the agricultural season, while for prices, we use the modal
price of the crop in the market across the growing season.

4 Empirical Methods and Results

The empirical section is divided into three parts. We start with Section 4.Awhichmotivates
our question on the distortionary impact of market power on adaptation by examining if
there is any evidence of long-run yield-stabilizing adaptation to extreme heat in India. If
farmerswere able to neutralize the negative impact of institutional challenges over the long-
term, then studying their distortionary impact in the short-run would just be a cursory ex-
ercise. This is followed by Section 4.B, which estimates the effect of market competition in
mitigating the damaging impact of extreme heat. We approach this question using panel
data methods and then proceed to strengthen our identification strategy through a border

24ICRISAT (2018) tends to aggregate several crops under a single head. For instance, it containsminor pulses
as a crop, but this classification includes numerous pulses for which we have disaggregated data at the market
level in the Agmarknet database. This is the source of discrepancy between the number of crops in ICRISAT
(2018) and Agmarknet (19 versus 52).

25To give an example, rice growing season in India varies depending upon climatic conditions, soil types, and
water availability. Eastern and southern regions of the country have favorable temperature for rice cultivation
throughout the year, leading to two or three crops of rice every year. Northern and western regions, on the
other hand, grow only one crop of rice from May to November (Singh 2009).
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regression discontinuity design. Finally, in Section 4.C, we identify the potential mecha-
nisms driving the impact of market competition on adaptation.

A Effect of Climate Shocks on Yields

This subsection estimates the share of the negative short-run impacts of extreme heat that
are offset in the longer run. We run two separate regressions. First, Section 4.A.A.1 uses a
panel approach, akin to Deschênes & Greenstone (2007), to estimate the effect of random
year-to-year variation in district weather conditions on agricultural yields for the time pe-
riod from 1968 to 2017. Second, Section 4.A.A.2 uses a long-differences approach proposed
by Burke & Emerick (2016) to model long-run district-level changes in yields between two
different points in time as a function of long-run changes in temperature and precipitation.
Finally, in Section 4.A.A.3, we compare panel and long differences coefficients which offers
a test of whether the shorter run damages of climatic variation on agricultural outcomes
are mitigated in the longer run.

A.1 Panel Approach

The panel approach uses short-run variation in climate, which is plausibly random, within
a given area to estimate the effect of extreme heat on agricultural productivity. Our econo-
metric model takes the following form:

log(Y ields)cdsy = α +

6∑
j=1

βj GDD{j}dsy + θ Precipdsy + δ (Precipdsy)
2 + πcd +

γy + fs(y) + ξcdsy (2)

where log(Y ields)cdsy refers to the log of yields (in kg/ha) for crop c in district d of state s in
agricultural year y (July-June). The key explanatory variable isGDD{j}dsy, which captures
the daily distribution of daily temperatures in district d of state s in year y. It denotes
the number of days in district d of state s in agricultural year y on which the daily mean
temperature fell in the jth of the six temperature bins (in ◦C), namely< 15◦C,> 35◦C, and
four 5◦C wide bins in between. Precipdsy and (Precipdsy)

2 denote the linear and quadratic
polynomial function of total rainfall (inm of water equivalent per day) for district d in state
s and year y. For our main specification, we include crop-district, πcd, and agricultural
year, γy, fixed effects, while fs(y) refers to state-specific linear and quadratic time-trend.
The fixed effects imply that identification comes only from weather variation across years
within a particular district for each crop after differencing out any state-specific time trends
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and macro variations across all states in a year. ξcdsy denotes the error term. Note that the
model above is run separately for Kharif and Rabi crops, so agricultural year refers to the
particular cropping season in that agricultural year.26

We estimate separate coefficients βj for each of the temperature bin regressors. Since
the number of days in a particular standardized cropping season always sums to the same
amount, we have to use one bin as a reference category.27 We use 20−25◦C as the reference
category for Kharif crops, and 15− 20◦C as the reference category for Rabi crops, with the
coefficients for the reference categories consequently normalized to zero.28 Weuse two-way
clustered robust standard errors, with clustering at the crop-state and year level. Results
are presented in columns (1) and (2) of Table 1.

The results from the panel regression indicate that extreme heat has a significant nega-
tive impact on productivity, with each additional degree-day of heat above 35◦C reducing
yields by 1 percent and 1.8 percent for Kharif and Rabi crops, respectively. For Rabi crops,
an additional degree-day between 30− 35◦C is also detrimental, with yields experiencing
a sharp decline by 1 percent in comparison to the yields during the optimal temperature of
15− 20◦C degrees. The larger impact on Rabi crops is expected, as they are sown in winter
and harvested in early spring and, therefore, will be more sensitive to extreme heat.

Given that panel estimates capture within-year adjustments by farmers (Guiteras 2009)
— such as modification of inputs or cultivation techniques — the negative results indicate
that short-run adjustment are unable tomitigate the harmful effects of extremeheat.29 Next,
we estimate the effect of climate shocks over the long-run which allows for the possibility
of transformational adaptations, for e.g. crop switching or exit from farming.

A.2 Long Differences Approach

The Long Differences model uses the approach developed by Burke & Emerick (2016) to
identify the effect of climate change (as opposed to shocks) on agricultural productivity.

26Specifically, the weather variables for Kharif crops are defined as the sum of the growing degree days or
precipitation in the months of June, July, August, and September for a particular agricultural year, while the
weather variables forRabi crops pertain to themonths of October, November, December, January, and February
of the agricultural year.

27For Kharif season, the number is 122, calculated as the total number of days between June-September. For
Rabi season, the number is 151, calculated as the total number of days between October-February.

28Reference categorywas selected based on the optimal temperature during the ripening (grain filling) stage
for the key crop in the season — rice for Kharif, and wheat for Rabi. Grain filling is one of the most sensitive
temperature stages for rice and wheat, with a strong bearing on final yields (Krishnan et al. 2011). The mean
optimum temperature during this stage is between 21.2 to 24.2 for rice (Sánchez et al. 2014), and 15-20 for
wheat (Jenner 1991, Wardlaw 1974)

29The ability of panel models to capture long-run climatic adaptation remains a subject of active research.
See McIntosh & Schlenker (2006) and Mérel & Gammans (2021) for a discussion.
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Table 1: Effect of Temperature on Yields: Panel and Long Difference Estimates

Panel Long Differences

Kharif Rabi Kharif Rabi

(1) (2) (3) (4)

Bin <15dsy 0.005 0.001 0.016 −0.015
(0.005) (0.002) (0.039) (0.014)

Bin 15-20dsy 0.007 0.002
(0.004) (0.018)

Bin 20-25dsy −0.004 −0.012
(0.002) (0.012)

Bin 25-30dsy −0.001 −0.003 0.005 −0.016
(0.002) (0.002) (0.005) (0.012)

Bin 30-35dsy −0.005∗ −0.010∗∗∗ −0.004 −0.029∗∗∗

(0.002) (0.002) (0.008) (0.011)
Bin >35dsy −0.010∗∗ −0.018∗∗ −0.023∗∗∗ −0.027∗

(0.004) (0.004) (0.008) (0.015)

Fixed Effects
Crop × District ! !

Crop × State ! !

Year ! !

State Time-Trend ! !

Num. obs. 125,279 56,436 2,189 1,082
Adj. R2 0.743 0.809 0.563 0.580

Notes: Clustered robust standard errors are in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Columns (1) and (2) provide estimates of the effect of climate shocks on yields using a panel approach, as specified
in Equation (2). The dependent variable is the natural logarithm of yields (in kg/ha) for crop c in district d of state s
in agricultural year y. Columns (3) and (4) provide estimates of the effect of climate change on agricultural yields
from a long-differences approach (Burke & Emerick 2016), as specified in Equation (3). The dependent variable
is the change in logged value of yields for crop c in district d of state s between two periods, wherein the two
periods are 1970 and 2015, with endpoints calculated as five-year average. Data, sourced from ICRISAT (2018),
are for 313 Indian districts of 20 states at an annual level from the year 1966 to 2017. The independent variables,
Binh to h, measure the amount of time, in days, a crop was exposed to temperatures between a given lower and
upper bound. The coefficient of interest is the estimate on Bin >35dsy , which represents extreme heat. Columns
(1) and (3) provide estimates for Kharif crops (July–October), while columns (2) and (4) provide estimates for
Rabi crops (October–March). Standard errors for panel estimates are clustered at the crop-state and year level,
while standard errors for long-difference estimates are clustered at the district-level.

Long differencing uses variation in longer run climate change and, therefore, helps to ac-
count for long run adjustments to temperature. Specifically, we construct longer run yield
andweather averages at two different points in time for each location, and calculate changes
in average yields as a function of changes in average temperature and precipitation. The
model is as follows:

∆log
(
Y ields

)
cds

= α +
6∑

j=1

βj
(
∆GDD{j}ds

)
+ θ

(
∆Precipds

)
+ δ

(
∆Precipds

)2
+

πcs + ξcds (3)
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where∆log
(
Y ields

)
cds

is the change in logged value of yields for crop c in district d of state
s between two periods. In our main specification, the two periods are 1970 and 2015, with
endpoints calculated as five-year averages for each variable to smooth out any idiosyncratic
noise. ∆GDD{j}ds is the average difference in the number of growing degree days in the jth

temperature bin in district d between the two periods, while∆Precipds refers to the change
in average rainfall between the two periods in a given district. We also include crop-state
fixed effects, πcs, to account for any crop- and state-specific trends. The identifying varia-
tion, therefore, comes from temperature changes within different districts in a state after
differencing out crop-specific trends. The key coefficient of interest is β6, which measures
how yields are affected by exposure to extreme heat, i.e. > 35◦C. Like before, the analysis
is run separately for Kharif and Rabi crops, and the coefficients for the reference categories
are normalized to zero. Error terms are assumed to be correlated within districts, and con-
sequently, the standard errors are clustered at the district-level. Results are presented in
columns (3) and (4) of Table 1.

The long differences estimates are higher in magnitude than estimates from the panel
approach, and suggest that one unit increase in exposure to heat above 35◦C results in a
significant 2.3 and 2.7 percent decline in yields for Kharif and Rabi crops, respectively. As
before, exposure to degree days between 30− 35◦C are also damaging for crops in the Rabi
season, with yields dropping by 2.9 percent relative to one additional day in the reference
bin of 15 − 20◦C. Note that the magnitude of these effects is net of any transformational
adaptations made by farmers over the 45-year estimation period, for e.g. crop switching or
exit from farming.

A.3 Adaptation

We can compare panel and long differences coefficients, in the style of Burke & Emerick
(2016), to estimate adaptation to extreme heat in the long-run. The logic is as follows: panel
models identify the short-run responses to weather, while long differences models identify
the impact of long-run changes in climate, embodying any adaptation that farmers have
undertaken over the estimation period. Comparing the two estimates can, therefore, allow
us to test whether the shorter run detrimental effects of extreme heat on agricultural out-
comes are in factmitigated over a longer horizon. We quantify themagnitude of adaptation
as 1− βLDj /βFE

j , with j = 6, i.e. > 35◦C temperature bin, and it gives us the percentage of
the negative short-run impact of extreme heat on yields that is offset in the long-run. βLDj

here refers to the estimate of β{j=6}ds in the long differences model in Equation (3), and
βFE
j refers to the estimate of β{j=6}dsy in the panel model in Equation (2). A positive es-

timate would signify adaptation, with farmers demonstrating better adjustability to rising
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temperatures over the long-run, compared to shorter run heat shocks. Contrarily, a null or
negative result provides evidence of a failure to alleviate short-term yield losses from ex-
posure to extreme heat through adaptation in the long-run; worse still, this could indicate
mitigation measures available in the short-run prove untenable in the long term.

Given that βFE
j and βLDj are estimated using separate regressions, we need to quantify

the uncertainty in the adaptation estimate. We bootstrap our data 5,000 times, sampling
districts with replacement to preserve the within-cluster features of the error (Cameron
et al. 2008). Therefore, if the dth cluster (district) is selected, then all data (dependent
and regressor variables) in that cluster appear in the resample.30 This procedure is run
separately for Kharif and Rabi crops for two time periods: 1970-2015 and 1990-2015. We
then use the distribution of bootstrapped adaptation estimates to test, for each season and
time period of interest, the null hypothesis of ”no adaptation” to extreme heat—i.e., that
1− βLDj /βFE

j = 0. Results are presented in Figure 4.

Notes: Figure 4 shows the percentage of the short-run impacts of extreme heat on agricultural pro-
ductivity for Kharif and Rabi cropping seasons that are mitigated in the longer run. Each box plot
corresponds to a particular season and time period as labeled on the left, and represents 5,000 boot-
strap estimates of 1−βLD

j /βFE
j for that time period. The dark line in each distribution is themedian,

the blue dot the mean, the grey box the interquartile range, and the whiskers represent the fifth to
ninety-fifth percentile. The red dashed lines in each box plot represents the 2-sided confidence in-
tervals for the test that 1− βLD

j /βFE
j = 0.

Figure 4: Percentage of Short-Run Impacts Offset by Adaptation
30That is, we take a draw of districts with replacement, estimate both long differences and panel model for

those districts, compute the extreme heat coefficients for the two models, calculate the adaptation measure,
and repeat 5,000 times for a given time period.
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Results suggest that long-run adaptation to extreme heat has been absent, and in fact,
the deleterious impact of weather shocks over the long-run is higher relative to the short-
run when adaptation avenues could be more limited. Median estimates (dark black lines)
from the bootstrap distribution are negative for all the cases. Long-run point estimates are
higher than short-run estimates by 48 to 132 percent for Kharif crops, and by 45 to 85 per-
cent higher for Rabi crops. However, even though the estimates are negative, the 2-sided
confidence intervals (red dashed lines) for all cases span zero. Thus, longer run adap-
tations appear to have mitigated none of the large negative short-run impacts of extreme
heat on productivity. More likely, short-term adaptationmeasures mitigate a portion of the
damaging effects, but the same measures prove to be unsustainable over the long-run.

In summary, our results on adaptation in the long-run indicate that the bottlenecks
farmers face in adopting short-run strategies have a direct and cumulative impact on their
ability to adapt in the long-term. It should be noted that various studies document that
Indian farmers correctly perceive climatic changes, which makes the lack of adaptation we
find in the long-run puzzling (Datta et al. 2022). A clearer understanding of the effect of
distortionary policies on year-to-year adaptation is, therefore, crucial to assess their per-
sistent impact and also shed light on heterogeneity in adaptation across regions with high
and low competition.

B Effect of Competition on Mitigation of Climate Shocks

We start by constructing a local spatial competition measure in Section 4.B.B.1. This mea-
sure is then used in Section 4.B.B.2 to estimate, using a panel regression, the effect of com-
petition on adaptation. In our analysis thus far, adaptation has been measured by the mag-
nitude of the fall in district-wise yieldsmitigated by competition. Wemodify this definition
in Section 4.B.B.3, where we now use spatially disaggregated market arrivals data to mea-
sure adaptation. Finally, in Section 4.B.B.4, to address endogeneity concerns, we implement
a border discontinuity design with market pairs to causally identify these effects.

B.1 Measuring Market Power

We construct a measure of local competition at the market level, Comp1m, by taking a
weighted sum of the total value of trade at all other markets near the origin market site,
provided they are all in the same state. The weights are the inverse of distances of the
neighboring markets (n) to the origin market (m), while the total value of trade (Yn) refers
to the sum of the value of agricultural produce traded in the neighboringmarket n between
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the years 2000 to 2021. For any marketm,

Comp1m =
∑

n∈M\{m}

{
1

distancemn

}
Yn × 1 {state of m = state of n} (4)

whereM is the set of all markets in India. Competition in any marketm is driven by three
factors: the number of neighboring markets (n), a farmer’s ease of access to alternative
markets, which we incorporate through distancemn, and the size of the alternative mar-
kets, which we proxy using the value of trade over the last two decades (Yn). Therefore,
the Comp1m measure will assign a greater weight to a proximal market. Furthermore, a
neighboring market with large trade volumes will lead to a higher competition measure, as
opposed to a market with limited trade.

We also create an analogous local competition measure Comp2m, similar to Chatterjee
(2019), by taking an inverse distance weighted sum of other markets near a particular mar-
ket site but in the same state. The only difference between the two measures is that we
do not include the value of trade (Yn) in the latter, and competition is only defined by the
proximity of markets. Finally, since our unit of analysis is crop-district-year, we aggregate
competition to a district level by averaging the competition measure for all markets in a
district d of state s. This also gives us an opportunity to define a third, more crude measure
of competition, Comp3ds, which equals the density of markets, i.e. the number of markets
per square km in a district d of state s. The geographic distribution of competition using
the Comp1m measure, aggregated to a district level, is illustrated in Figure 5.

B.2 Panel Approach

We run a panel model to estimate how market competition, measured at a district level,
mitigates the adverse effects of extreme heat on crop yields. Our main specification takes
the following form:

log(Y ields)cdsy = α +

6∑
j=1

ηj GDD{j}dsy +

6∑
j=1

Ωj(GDD{j}dsy × Compds) +

ϕ Precipds + δ (Precipds)
2 + λcy + λdct + λsy + ξcdsy (5)

where Compds is the aggregate measure of competition at the district level, and equals
either the mean value of the market level competition measure, Compim∀ i ∈ {1, 2}, for
all markets m in district d, or the number of markets per square km in district d of state s
(Comp3ds). Since our baseline competition measure (Comp1m) is calculated as an inverse
distance weighted sum of total value of trade across all years in neighboring markets, and
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Notes: The map shows the geographic distribution of competition at a district level. Competition
is measured for each of the 2,938 APMC markets (represented by black dots) as the weighted sum
of the total value of trade at all other markets near the origin market site, provided they are all
in the same state (see Equation (4)). The weights are the inverse of distances of the neighboring
markets (n) to the origin market (m), while the total value of trade refers to the sum of the value
of agricultural produce traded in the neighboring market n between the years 2000 to 2021. Since
our unit of analysis is crop-district-year, we aggregate competition to a district level by averaging
the competition measure for all markets in a district d of state s.

Figure 5: Geographic Distribution of Competition Aggregated to District Level

we do not have data on the date of construction of markets, Compds is time invariant across
the length of our sample. c

To control for confounds, we include multiple fixed effects, including the following in
our most rigorous specification: a crop-year fixed effect, λcy, that controls for changes in
national or world prices of the commodity; a district-crop-decade fixed effect, λdct, that
controls for slow-moving changes in crop-specific costs, in the area allocated to the crop,
in preferences, or in technologies; and a state-year fixed effect, λsy, that controls for state-
specific cost or demand shocks common to all crops. Certain specifications also include
fs(y), which is a state-specific linear and quadratic time-trend. Note that the inclusion
of any form of district fixed effects implies that the level effect of time-invariant district
specific competition (Compds) is swept out and cannot, therefore, be estimated. Finally,
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we compute robust standard errors clustered at the state-year and crop level to account for
cropping decisions and other shocks which are likely to be spatially and serially correlated.
Results are presented in Table 2.

Table 2: Competition and Mitigation of Climate Shocks: Panel Approach with Yields

Dependent Variable: log(Yields)cdsy
(1) (2) (3) (4) (5) (6)

Bin 30-35dsy −0.004∗ −0.004∗ −0.011∗∗∗ −0.002 −0.013∗∗∗ −0.010∗∗∗

(0.002) (0.002) (0.003) (0.002) (0.003) (0.002)
Bin >35dsy −0.026∗∗∗ −0.025∗∗∗ −0.014∗∗ −0.033∗∗∗ −0.018∗∗∗ −0.015∗∗∗

(0.005) (0.006) (0.006) (0.007) (0.006) (0.004)
Bin <15dsy × Compds −0.002 −0.002 −0.000 −0.000 0.000 0.001

(0.001) (0.002) (0.001) (0.002) (0.001) (0.001)
Bin 15-20dsy × Compds 0.003 0.003 0.002 0.002 0.000 −0.000

(0.002) (0.002) (0.001) (0.002) (0.001) (0.001)
Bin 25-30dsy × Compds −0.000 0.000 0.002 −0.000 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Bin 30-35dsy × Compds −0.001 −0.001 0.001 −0.001 0.001 0.001

(0.001) (0.002) (0.001) (0.002) (0.001) (0.001)
Bin >35dsy × Compds 0.004∗∗∗ 0.004∗∗∗ 0.003∗∗ 0.005∗∗ 0.003∗∗ 0.002∗

(0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

Fixed Effects
Crop !

District ! !

Year ! !

Crop × District !

Crop × Year ! ! ! !

District × Year !

State × Year !

District × Crop × Decade ! !

Effect Mitigated (in %) 18.5 20.9 31.7 18.8 20.5 15.1

Num. obs. 59,593 59,593 59,593 59,593 59,593 59,593
Adj. R2 0.624 0.615 0.805 0.635 0.829 0.844

Notes: Clustered robust standard errors are in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Columns (1) to (6) provide estimates of how market competition, measured at a district level, mitigates the adverse effects of extreme heat on crop yields (Equation (5)).
The dependent variable, log(Yields)cdsy , refers to the log of yields (in kg/ha) for crop c in district d of state s in agricultural year y (July-June). Data, sourced from ICRISAT
(2018), are for 313 Indian districts of 20 states at an annual level from the year 1966 to 2017. Compds is the aggregate measure of competition at the district level. For
this purpose, we first calculate competition for each of the 2,938 APMC markets as the weighted sum of the total value of trade at all other markets near the origin market
site, provided they are all in the same state. The weights are the inverse of distances of the neighboring markets (n) to the origin market (m), while the total value of
trade refers to the sum of the value of agricultural produce traded in the neighboring market n between the years 2000 to 2021. Second, we aggregate competition to a
district level by averaging the competition measure for all markets in a district d of state s. The independent variables related to temperature, Binh to h, measure the
amount of time, in days, a crop was exposed to temperatures between a given lower and upper bound. The coefficient of interest is the estimate on the interaction term
between Bin > 35dsy (extreme heat) and Compds. It can be interpreted as the supplementary impact of an additional degree day of extreme heat for a given level of
competition. The antepenultimate row, titled Effect Mitigated (in %), provides estimates of the impact of extreme heat mitigated by a one standard deviation increase in
district competition. Coefficients related to the effect of temperatures less than 30◦C on yields have been omitted for brevity. Standard errors are clustered at the state-year
and crop level.

Our results suggest that there is significant mitigation of the effect of extreme heat ow-
ing to increased competition. Depending on the specification, each additional degree-day
of heat above 35◦C reduces yields by 1.4 to 3.2 percent. Importantly, in areas with lower
intermediary market power, this effect is attenuated, with the coefficient on the interaction
term between extreme heat and competition significantly positive and ranging from 0.001
to 0.003. To interpret the scale of this number, we can compute the impact of a one standard
deviation increase in competition on the effect of heat shocks on yields. Dividing this by ηj
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gives us the percentage of impact mitigated. We find that a one standard deviation increase
in market competition can help farmers mitigate the impact of extreme heat by 13.2 percent
in our most rigorous specification in column (6) with crop-year, state-year and district-
crop-decade fixed effects. The effect is substantially larger in column (3), where we control
for crop-district and year fixed effects and add in state time trends, with one standard de-
viation increase in competition leading to an attenuation of 31.3 percent. The rest of the
specifications give us a number between these two extreme values.

B.3 Panel Approach: Arrivals Data

To this point in our paper, we have used the attenuation in district-wise crop-specific yields
as a measure of adaptation. However, potential concerns could arise regarding mismea-
surement of the district level competition variable as the same was constructed by averag-
ing themarket competition across allmandis in the district. Particularly, if farmers regularly
cross district borders within the state boundaries to sell their produce, then the average
competition across district mandis may not be a true indicator of the monopsony power
faced by farmers. Therefore, we address this by using microdata on the daily quantity ar-
rivals of each crop at a market. Arrivals reflect the daily quantity traded of a crop in a partic-
ular mandi, and the sum across the growing season acts as a proxy for the total production
of the crop during the agricultural year.

Our econometric specification closely follows Equation (5), except that our unit of anal-
ysis is now market-crop-year, and we replace yields at the district level with quantity ar-
rivals at each market. Specifically,

log(Arrivals)cmdsy = α +

6∑
j=1

ηj GDD{j}dsy +

6∑
j=1

Ωj(GDD{j}dsy × Compmds) +

ϕ Precipds + δ (Precipds)
2 + λm + λcy + λdt + λsy + ξcmdsy (6)

where log(Arrivals)cmdsy refers to the natural logarithm of the quantity of crop c arriving
in market m situated in district d of state s in agricultural year y. Compmds is the market
level measure of competition, calculated as either the weighted sum of the total value of
trade at all other markets in the same state near the origin market site (Comp1m), or the
inverse distance weighted sum of other markets in the same state near a particular market
site (Comp2m). We include crop-year fixed effects (λcy) to account for changes in national
or world prices of commodities, and district-decade fixed effects (λdt) to factor out slow
moving district-specific technological changes. We also control for state-specific cost or de-
mand shocks common to all crops by including state-year fixed effects (λsy), and individual
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market time-invariant idiosyncrasies by adding individual market fixed effects (λm). The
inclusion ofmarket fixed effects implies that the level effect of time-invariantmarket specific
competition (Compmds) is swept out and cannot, therefore, be estimated.

η6 can nowbe interpreted as the effect of an additional degree-day of extreme heat in the
district on quantity arrivals, while the coefficient of interest, Ω6, indicates the magnitude
of impact mitigated by competition. We cluster our standard errors two-way, both at the
state-decade level and the crop level. Results are presented in Table 3.

Table 3: Competition and Mitigation of Climate Shocks: Panel Approach with Arrivals

Dependent Variable: log(Arrivals)cmdsy

(1) (2) (3) (4)

Bin 30-35dsy 0.001 0.001 0.002 0.001
(0.006) (0.006) (0.006) (0.006)

Bin >35dsy −0.023∗ −0.023∗ −0.030∗ −0.023∗

(0.013) (0.013) (0.016) (0.014)
Bin <15dsy × Compmds −0.000 −0.000 −0.001 −0.000

(0.002) (0.002) (0.002) (0.002)
Bin 15-20dsy × Compmds 0.002 0.002 0.002 0.002

(0.001) (0.001) (0.002) (0.001)
Bin 25-30dsy × Compmds 0.000 −0.000 0.000 −0.000

(0.001) (0.001) (0.001) (0.001)
Bin 30-35dsy × Compmds −0.000 −0.000 −0.001 0.000

(0.001) (0.001) (0.002) (0.001)
Bin >35dsy × Compmds 0.002∗∗∗ 0.002∗∗∗ 0.003∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)

Fixed Effects
Market ! !

Crop × Year ! ! ! !

District × Decade !

Market × Decade !

Market × Year !

State × Year ! ! ! !

Effect Mitigated (in %) 36.9 35.4 29.6 36.2

Num. obs. 148,814 148,814 148,814 148,814
Adj. R2 0.433 0.450 0.450 0.437

Notes: Clustered robust standard errors are in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Columns (1) to (4) provide estimates of how market competition mitigates the adverse effects of extreme heat on quantity ar-
rivals at each market (Equation (6)). The dependent variable, log(Arrivals)cmdsy , refers to the natural logarithm of the quantity
of crop c arriving inmarketm situated in district d of state s in agricultural year y. Data, sourced fromCentre for Economic Data
and Analysis (CEDA) of Ashoka University, comprises of quantity arrivals of 52 major commodities in 2,938 APMC markets
from 2001 to 2021. Compmds is the measure of competition at the market level, and equals the weighted sum of the total value
of trade at all other markets near the origin market site, provided they are all in the same state. The weights are the inverse of
distances of the neighboring markets (n) to the origin market (m), while the total value of trade refers to the sum of the value
of agricultural produce traded in the neighboring market n between the years 2000 to 2021. The independent variables related
to temperature, Binh to h, measure the amount of time, in days, a crop was exposed to temperatures between a given lower
and upper bound. The coefficient of interest is the estimate on the interaction term between Bin > 35dsy (extreme heat) and
Compmds. It can be interpreted as the effect of an additional degree-day of extreme heat in the district on quantity arrivals.
The antepenultimate row, titled Effect Mitigated (in %), provides estimates of the impact of extreme heat mitigated by a one
standard deviation increase in market competition. Coefficients related to the effect of temperatures less than 30◦C on quantity
arrivals have been omitted for brevity. Standard errors are clustered at the state-decade and crop level.

The results mirror the estimates from the previous subsection — in fact, the mitigation
effects are larger. Depending on the specification, each additional degree-day of heat above
35◦C reduces quantity arrivals by 2.3 to 3.0 percent. However, as before, this effect is sig-
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nificantly allayed in high-competition areas. A one standard deviation increase in market
competition can help farmers mitigate the impact of extreme heat by 36.2 percent in our
most rigorous specification in column (4) with market, crop-year, state-year, and district-
decade fixed effects. In the remaining columns, the effect sizes range from 29.6 to 36.9 per-
cent. This suggests that our results using district-level yields as a measure of adaptation
were biased downwards, and using arrivals data as a proxy helps correct this bias.

B.4 Hybrid Border Discontinuity Design

Although our results are consistent across different empirical specifications, one can still
be concerned about other forms of unobserved heterogeneity. For example, if a large num-
ber of markets were set up in regions where farmers had a higher potential for innovation,
then the coefficient on the interaction between competition and weather could just be cap-
turing the effect of farmer ingenuity. To overcome this issue, we implement a hybrid border
discontinuity design with market pairs. We match all markets which are less than x kilo-
meters apart (bandwidth) but lie on different sides of a state boundary. We try different
values of the bandwidth ranging from 25 kms to 50 kms, and all multiples of five therein.
For each bandwidth, we obtain a sample of market pairs, with markets belonging to a pair
lying in close proximity spatially but divided by a state border. The empirical strategy in-
volves regressing — for each market pair — the difference in arrivals on: (i) the difference
in competition; (ii) the average weather conditions across the two markets, and (iii) the in-
teraction between the two. We call it hybrid because even though there is a discontinuity in
competition at the border, the regression involves weather variables which are continuous.

The basic rationale behind employing the border discontinuity design is that other de-
terminants of arrivals like demand, weather, productivity via soil quality, farmer ingenu-
ity, and transportation costs will vary continuously across a state boundary. This should,
therefore, help to assuage concerns about unobserved heterogeneity. One could be con-
cerned that geographical conditions change discontinuously at the border. However, post
independence in 1947, Indian states were redrawn along linguistic principles, rather than
administrative, economic, or geographic factors (Chari 2016, Samaddar 2020).31 Neverthe-
less, an important determinant of farmer adaptation which could change discontinuously
at the state border is each state’s policy on weather shocks. To address this confounding
effect, we addmarket pair-year fixed effects. Thus, the only remaining discontinuity across

31The Government of India appointed the States Reorganisation Commission in December 1953 which advo-
cated the following: To consider linguistic homogeneity as an important factor but not to consider it as an exclusive and
binding principle (Parameswaran & Chattopadhyay 2014). In August 1956, the Indian Parliament enacted the
States Reorganisation Act, which remains India’s largest collective administrative reorganisation. While due
consideration was given to administrative and economic factors, it recognized for the most part the linguistic
principle and redrew state boundaries on that basis (Kumar 2019).
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state borders which could potentially aid in attenuating the impact of extreme heat is local
competition, as farmers are not allowed to sell their output across state borders.32

In essence, the advantage of this design is that we can difference out unobserved factors
other than competition that affect adaptation by choosing market pairs in close geograph-
ical proximity to each other. To better illustrate the design, Figure 6 presents a graphical
representation of our hybrid border discontinuity design. Along the same state border, we
have two market pairs (Pair 1 and Pair 2), with markets in each pair within 25 kms of each
other but lying on different sides of the border. For Pair 1, there is no difference in com-
petition, while for Pair 2, market C has a higher competition than market D. Now, in the
event of extreme heat (bad weather), the difference in arrivals should not change for Pair 1,
as both markets have the same competition and will be equally affected. However, for Pair
2, the difference in arrivals should increase because farmers in Market C have been able to
attenuate some of the impact through higher competition. The spatial feature of the design
is illustrated in Figure 7, which presents the geographical distribution of all 652 markets
selected using the bandwidth of 50 kms.33 Note that only markets less than 50 kms apart
and situated in different states will be considered as a pair. This results in 1,210 market
pairs for the said bandwidth.

The hybrid border discontinuity model linking difference in arrivals to the interaction
between differences in competition and weather variables is as follows:

∆log(Arrivals)cmm′y = α +
6∑

j=1

ηj GDD{j}cmm′y+
6∑

j=1

Ωj(GDD{j}cmm′y×∆Compmm′) +

ϕ Precipmm′y + δ (Precip)2mm′y + λcy + λmm′y + λbct + ξcmm′y (7)

where ∆log(Arrivals)cmm′y is the difference in the natural log of arrivals of crop c in agri-
cultural year y betweenmarketsm andm′ which lie on different sides of the state boundary
b. ∆Compmm′ is the time-invariant difference in competition measure Comp1m between
markets m and m′. GDD{j}cmm′y denotes the number of days in the cropping season, for
crop c in year y, on which the daily mean temperature fell in the jth of the six temperature
bins (in ◦C) at the district border betweenm andm′. To arrive at this variable, we average
the GDD’s in the districts containing the markets which, by design, lie on either sides of
the state border. The precipitation variables, too, are constructed in a similar manner.

32As Chatterjee (2019) mentions, Indian languages change gradually over distance. Therefore, farmers and
intermediaries in close geographical proximity but settled on different sides of a state border should be able to
communicate with each other.

33Our preferred bandwidth is 25 kms. We illustrate the geographical distribution of markets selected with
the 50 kms bandwidth as that leads to more market pairs, offering a vivid visualization.
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Market A
(low comp)

Market B
(low comp)

Market C
(high comp)

Market D
(low comp)

Pair 1 Pair 2
State Border

Distance ≤ 25km

∆ Comp= 0 ∆ Comp> 0

Good Weather : ∆Arrivals= x Good Weather : ∆Arrivals= y

Bad Weather : ∆Arrivals= x Bad Weather : ∆Arrivals> y

Notes: Figure 6 presents a graphical representation of the hybrid border regression discontinuity
design in Equation (7); see text for details.

Figure 6: Interpreting the Border Discontinuity Design

We control for confounding factors by adding three fixed effects in our most stringent
specification: a crop-year fixed effect (λcy) that controls for changes in global or national
prices of the crop c; a market pair-year fixed effect (λmm′y) that controls for differences
in market specific infrastructure, policies and cost or demand shocks that are common to
all crops; and a state border-crop-decade fixed effect (λbct) that accounts for differences in
slowmoving changes in crop-specific costs, in the area allocated to the crop, in preferences,
or in technology. As an aside, we can include market pair-year fixed effects as there are
multiple crops within that dimension. Importantly, these different crops within the same
market pair-year level are not subjected to the same weather. For example, kharif and rabi
arrivals in amarket will be exposed to different weather conditions in the same agricultural
year.34 Also note that the data for eachmarket pair only includes crops which had the same
cropping season across bothmarkets. Therefore, if rice in market A is a Kharif crop and rice
in Market B is a Rabi crop, we dropped rice as a commodity for market pair A-B. Hence,
the identifying variation comes from the differing weather conditions that different crops
within amarket pair and yearwere exposed to, after differencing out any crop specific fixed
effect. Finally, the inclusion of any form of market pair fixed effects implies that the level

34The identification of cropping season for eachmarket-crop ismade possible using the time series on arrivals
data, and is explained in detail in Section 3.D.
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Notes: Themap shows the geographic distribution ofmarkets used in the hybrid border discontinuity
designwith a bandwidth of 50 kms. The dots represent the sample of market pairs which lie in close
spatial proximity but are divided by a state border. There are 652 markets for the distance threshold
of 50 kms. The empirical strategy involves regressing — for each market pair — the difference in
arrivals on: (i) the difference in competition; (ii) the average weather conditions across the two
markets, and (iii) the interaction between the two. Competition refers to the weighted sum of the
total value of trade at all other markets near the origin market site, provided they are all in the same
state (see Equation (4)). The weights are the inverse of distances of the neighboring markets (n) to
the origin market (m), while the total value of trade refers to the sum of the value of agricultural
produce traded in the neighboring market n between the years 2000 to 2021.

Figure 7: Geographical Distribution of Markets Selected Using 50 kms Bandwidth

effect of time-invariant difference in market competition (∆Compmm′) is swept out and
cannot, therefore, be estimated.

The interpretation of the coefficients changes slightly as compared to previous speci-
fications. Though previously ηj measured the effect of spending an additional day in the
jth temperature bin on arrivals, it now measures the effect on the difference in arrivals.
If our discontinuity in competition assumption is correct, then the only thing impacting
the difference in arrivals during extreme heat should be competition, which is captured by
the coefficient Ωj . In other words, η6 should not be significantly different from 0. If that
is not the case, it would indicate the presence of extraneous factors affecting arrivals dur-
ing extreme heat which, if correlated with competition, could bias our results. Thus, the
coefficient on η6 acts as a placebo check. However, this implies that we cannot calculate
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the percentage of impact mitigated by competition, as we do not obtain an estimate of the
marginal effect of climate shocks on arrivals. We cluster our standard errors two-way, both
at the border-year level and crop level. Results are presented in Table 4 for our preferred
bandwidth of 25 kms.

Table 4: Competition and Mitigation of Climate Shocks: Border Discontinuity

Dependent Variable: ∆log(Arrivals)c{mm′}by

Markets ≤ 25km Apart

(1) (2) (3) (4)

Bin 30-35cmm′y −0.029 −0.016 0.016 0.011
(0.048) (0.016) (0.030) (0.031)

Bin >35cmm′y 0.029 0.037 0.025 0.036
(0.034) (0.026) (0.031) (0.027)

Bin <15cmm′y ×∆Compmm′ 0.005 0.012 0.012 0.014∗

(0.008) (0.008) (0.008) (0.008)

Bin 15-20cmm′y ×∆Compmm′ 0.012 0.010 0.010 0.007
(0.014) (0.009) (0.012) (0.012)

Bin 25-30cmm′y ×∆Compmm′ 0.011 0.012 0.013 0.012
(0.008) (0.008) (0.009) (0.009)

Bin 30-35cmm′y ×∆Compmm′ 0.003 0.007 0.006 0.006
(0.006) (0.006) (0.006) (0.007)

Bin >35cmm′y ×∆Compmm′ 0.015∗∗ 0.018∗∗ 0.018∗∗ 0.017∗∗

(0.007) (0.006) (0.008) (0.008)

Fixed Effects
Market-Pair × Year ! ! ! !

Border × Crop ! !

Crop × Year ! !

Border × Crop × Decade !

75th — 25th Percentile (in%) 4.5 5.2 5.2 5.1

Num. obs. 2,899 2,899 2,899 2,899
Adj. R2 0.454 0.545 0.536 0.534

Notes: Clustered robust standard errors are in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Columns (1) to (4) provide estimates, using a 25 kms hybrid border discontinuity approach, of howmarket competition
mitigates the adverse effects of extreme heat on quantity arrivals at eachmarket (Equation (7)). The dependent variable,
∆log(Arrivals)c{mm′}by , refers to the difference in the natural log of arrivals of crop c in agricultural year y between
markets m and m’ which lie on different sides of the state boundary b. Data, sourced from Centre for Economic Data
and Analysis (CEDA) of Ashoka University, comprises of quantity arrivals of 52 major commodities in 2,938 APMC
markets from 2001 to 2021. ∆Compmm’ is the time-invariant difference in competition measure between markets m
and m’. GDD{j}cmm′y denotes the number of days in the cropping season, for crop c in year y, on which the daily
mean temperature fell in the jth of the six temperature bins (in ◦C) at the district border between m and m′. The
coefficient of interest is the estimate on the interaction term between Bin >35cmm′y (extreme heat) and∆Compmm′ .
The antepenultimate row, titled 75th — 25th Percentile (in %), provides estimates of the higher yield experienced by a
farmer selling in the 75th percentile of competition compared to one that faces the 25th percentile of competition for an
additional degree-day of extreme heat. Coefficients related to the effect of temperatures less than 30◦C on yields have
been omitted for brevity. Standard errors are clustered two-way at the border-year and crop level.

Our results with the border discontinuity design are in harmony with our previous
specifications and deliver the same message: competition helps in fostering adaptation to
climate shocks. All estimates of the interaction term between extreme heat and difference
in competition are positive and significant, irrespective of the fixed effects used. A farmer
selling in the 75th percentile of competition compared to one that faces the 25th percentile of
competition achieves a 4.5 to 5.2 percent higher yield on average for an additional degree-
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day of extreme heat. Reassuringly, the estimates on the temperature bins themselves are
insignificant, as was expected if the regression was correctly specified. To test the robust-
ness of the adaptation results, we also present the coefficient on Ω6 from regressions using
different bandwidths in Figure 8. Like before, the effect sizes are positive and significant,
although smaller in magnitude. One additional degree day in the highest temperature bin
leads to a difference in the range of 1.9 to 3.6 percent in yields between farmers in the 75th

percentile of competition relative to farmers in the 25th percentile. Note that the confidence
intervals for the 25 kms bandwidth are larger, which is expected given the low number of
market pairs due to the shorter distance.

Notes: Figure 8 provides estimates, using a hybrid border-discontinuity design with different
distance bandwidths, of howmarket competition mitigates the adverse effects of extreme heat
on quantity arrivals at each market. The distance thresholds used for each estimate are la-
beled on the X-axis. The point estimates (red dots) on the Y-axis correspond to the coefficient
of interest — the estimate on the interaction term between Bin >35cmm′y (extreme heat) and
∆Compmm′ — in Equation (7). ∆Compmm′ is the time-invariant difference in competition
measure between markets m and m’. GDD{j}cmm′y denotes the number of days in the crop-
ping season, for crop c in year y, on which the daily mean temperature fell in the jth of the
six temperature bins (in ◦C) at the district border between m and m′. To interpret the point
estimates, we calculate the difference in yields experienced by a farmer selling in the 75th per-
centile of competition compared to one that faces the 25th percentile of competition, for each
additional degree-day of extreme heat. This is indicated by the labels next to the red dots. The
whiskers represent the 90th percentile confidence intervals, with standard errors clustered two-
way at the border-year and crop level.

Figure 8: Impact of Extreme Heat Offset by Competition: Border Discontinuity
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C Mechanisms

Given the result thatmarket competition leads to higher adaptation, we now turn our atten-
tion towards ascertaining themechanisms behind our findings. Section 4.C.C.1 presents an
analytical framework that uses a simple agricultural model to derive predictions on input
usage post a climate shock. We then test empirically whether these predictions hold in the
data, the results of which are presented in Section 4.C.C.2 and Section 4.C.C.3.

C.1 Analytical Framework

In this subsection, we present a simple agricultural household model to examine how sub-
sistence farmers would adjust their input decisions in the event of an exogenous heat shock.
Closely following the work of Taylor & Adelman (2003) and Aragón et al. (2021), we
present a framework where production and consumption decisions are linked. This tran-
spires because the farmer is both a producer, choosing the allocation of inputs to crop-
production, and a consumer, choosing the allocation of income to consumption.

We start with an agricultural production function with two inputs, land (T ) and labor
(L). The household has an endowment of land T e, which can be used for production or
non-productive activities like leisure.35 Household utility U(c, t) is a function of consump-
tion of a market good (c) and land used for leisure (t). Households are price takers and
obtain income by renting their land, and selling their produce in the market at price p. The
production function is defined by F(A,L, T ), where A is farmer’s total factor productivity.
Specifically, we use A to capture the productivity shock due to exposure to extreme heat.
Consistent with our results on the relationship between crop yields and temperature, we
assume that extreme heat has a detrimental effect on productivity. Each growing season,
the household maximizes utility by choosing simultaneously the amount of land allocated
to productive and nonproductive uses, and the labor to be employed. Finally, we assume
that both the utility and the production functions are increasing and strictly concave.

Under the extreme assumption that all input markets exist and are well functioning, the
household’s production and consumption decisions can be decoupled (Benjamin 1992).
This separation result is driven by the possibility of trade in complete markets. In this sce-
nario, the farmer’s optimal input usage can simply be inferred by solving the profit maxi-

35We follow Aragón et al. (2021) in this regard. The inclusion of land directly in the utility function is a
modeling device to create a positive shadow price (i.e., an opportunity cost of using land) and should not
be taken literally. Since land cannot be sold or rented out, without this device, the model would predict that
farmers will always use all available land. This prediction is inconsistent with the empirical observation that
as a proportion of cultivable area, 13.4 percent of the land was left fallow in 2010–2011, an increase from 10.6
per cent in 1970–1971 (Ranganathan & Pandey 2018).
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mization problem, max
{T,L}

π = pF (A, T, L)− rK − wL, where r and w refer to input prices.

Under such a setting, a negative productivity shock, such as extreme heat, would always
reduce input usage.36

Theprediction above changes in the case of incompletemarkets, which is amore realistic
setting in the context of India (Rosenzweig & Wolpin 1993). To illustrate this, we consider
a mixedmarket scenario. Specifically, we assume that there is no input market for land, but
there is a well-functioning input market for labor. In this simplified setting, the farmer’s
problem becomes:

max
{T,L}

U(c, t)

subject to

c ≤ pF (A, T, L)− wL

T + t ≤ T e (8)

The two first order condition are Ut = pUcFt and pFL = w. Taking total derivatives of
the first order conditions with respect to A, followed by some algebra, we obtain:

dT

dA
=

(FLAFTLUc/FLL) + FAUtc − pFAFTUcc − FTAUc

pF 2
t Ucc − 2FTUct + FTTUc + (Utt/p)− (F 2

TLUc/FLL)
(9)

Assuming a Cobb-Douglas technology F (A, T, L) = ATαLβ , we can show that the nec-
essary and sufficient condition for dT/dA < 0, i.e. land usage increases with a negative
productivity shock, is:

p >
1

αF

[
T
Utc

Ucc
− Uc

Ucc

]
(10)

Intuitively, the inequality suggests that, in the presence of incomplete markets, farmers
could increase their input usage post a negative weather shock if the output price is ex-
pected to rise. The increase in output prices could occur because of two reasons: first, a
negative effect on aggregate supply coupled with inelastic demand could increase prices;
and second, local competition in the markets could interact with a fall in supply to drive
the prices even higher. The former effect will be common to all areas, but the latter would
be restricted to high competition areas.

36Assuming a Cobb-Douglas technology f = ATαLβ , the optimal T equals
[
p A

(
α
r

)1−β ( β
w

)β]1/γ , while

the optimal L equals
[
p A

(
α
r

)α ( β
w

)1−α
]1/γ

, where γ = (1 − α − β). Differentiating these two terms with

respect to A, we get dT
dA

=
[
p Aα+β

(
α
r

)1−β ( β
w

)β]1/γ
/γ, and dL

dA
=
[
p Aα+β

(
α
r

)α ( β
w

)1−α
]1/γ

/γ. Both of
these are positive as long as α+ β < 1.
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Another alternative, but not mutually exclusive, mechanism that could cause this phe-
nomenon is high risk aversion amongst farmers. This can be seen in Equation (10) where
an increase in the coefficient of absolute risk aversion, −Ucc/Uc, increases the probability
of satisfying the inequality. In this context, high risk aversion would imply that farmers
are more likely to use supplementary inputs to attenuate the fall in agricultural output and
minimize the drop in consumption. This response is analogous to coping mechanisms to
smooth consumption, such as selling disposable assets. The key distinction is that it in-
volves adjustments in productive decisions.

The model predicts that an increase in land usage post a negative productivity shock
also increases the likelihood of an increase in the use of labor inputs. To see this, note that
the necessary and sufficient condition for labor inputs to increase post a weather shock is:

dT

dA
< − T

αA
(11)

Therefore, if the increase in land usage following a negative productivity shock is large
enough, labor inputs on the farm will also rise.

With this framework in mind, our empirical analysis focuses on examining the effect
of competition on prices, and how the same varies across different weather conditions. We
subsequently testwhether input usage increases in areaswhich experience price rise during
heat stress, as predicted by the model.

C.2 Effect of Competition on Prices: Heterogeneous Impact by Weather

This subsection aims to causally identify the effect of competition on prices during in-
clement weather. Besides its intrinsic interest, the heterogeneous effect of weather on the
correlation between competition and prices could also help inform the mechanism behind
the adaptive behavior documented in previous sections. The econometric specification
takes the following form:

log(Prices)cmdsy = α +

6∑
j=1

ηj GDD{j}dsy +

6∑
j=1

Ωj(GDD{j}dsy × Compmds) +

ϕ Precipdsy + δ (Precipdsy)
2 + λm + λcy + λdt + λsy + ξcmdsy (12)

where log(Prices)cmdsy refers to the natural logarithm of the price of crop c in market m
situated in district d of state s in agricultural year y. This is the price during the main agri-
cultural season pertaining to the crop-market pair, and is calculated as the mean of the
daily modal price. The regressors and fixed effects have the exact same definition as in
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Equation (6). η6 can now be interpreted as the effect of an additional degree-day of ex-
treme heat in the district on prices in markets with low competition, while the coefficient
of interest, Ω6, indicates the supplementary impact of high competition on prices during
heat stress. As before, the inclusion of market fixed effects (λm) implies that the level effect
of time-invariant market specific competition (Compmds) is swept out and cannot, there-
fore, be estimated. However, Chatterjee (2019) shows, in a similar setting, that increasing
spatial competition by one standard deviation causes prices received by farmers to increase
between 2.7 and 6.4 percent. Though not shown here, we also calculate the difference in
prices between high and low competition areas and our results are similar, with a one stan-
dard deviation increase in competition leading to a 5.8 to 6.6 percent increase in prices.
Thus, there is a positive effect of competition on farmer prices on average, holding con-
stant the weather. Our aim is to establish how this relationship changes during inclement
weather. Results on heterogeneous impact by weather are presented in Table 5.

Our results indicate that the positive effect of local competition on prices is exacerbated
during periods of extreme heat. The estimate ofΩ6 is positive and significant: markets with
higher level of competition experience a larger gain in pricewith each additional degree day
of extreme heat. If the effect was being driven solely by a fall in supply, we would expect
prices in low competition markets during heat stress to also increase relative to prices in
the same markets during good weather. Nevertheless, as indicated by the coefficient on
Bin > 35dsy, the effect sizes are positive but not significant, irrespective of the specification.
Notably, the effect sizes are large, but the lack of significance most likely stems from low
power caused by very few markets with competition tending to zero.

To interpret the coefficients, we calculate the difference in prices between high and low
competition areas when exposed to the mean number of extreme heat days during the
growing season (7.3 days). Note that this is in addition to the positive difference in prices
that exists during good weather. We find that a one standard deviation increase in compe-
tition causes the difference in prices to increase by 0.53 to 0.57 percentage points, given that
both areas were exposed to a week of extreme heat. Therefore, monopsony power tends to
aggravate the already existing price distortions. A simple back of the envelope calculation
suggests that this translates to an extra yearly income in the range of |172 ($3) and |31,642
($608), depending on the crop being grown by the average farmer.37 This is equivalent
to an increase of 0.4-69 percent in yearly net receipts from crop production for an average
agricultural household in India.

We have shown that during extreme heat, the prices received by farmers in high com-
petition areas increase, while prices in low competition areas do not. The analytical frame-

37The | to $ conversionwas based on the historical averageUSD-INR exchange rate of 52.004 from 1st January,
2000 to 31st December, 2020, as published by Investing.com.
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Table 5: Effect of Competition on Prices Post Climate Shocks

Dependent Variable: log(Price)cmdsy

(1) (2) (3) (4)

Bin 30-35dsy 0.297 0.248 0.295 0.251
(0.827) (0.828) (0.923) (0.835)

Bin >35dsy 1.180 1.323 1.563 1.297
(0.758) (0.796) (1.071) (0.774)

Bin <15dsy × Compmds −0.131 −0.134 −0.150 −0.124
(0.205) (0.209) (0.214) (0.206)

Bin 15-20dsy × Compmds 0.188 0.186 0.176 0.190
(0.117) (0.114) (0.122) (0.118)

Bin 25-30dsy × Compmds 0.124 0.125 0.120 0.128
(0.079) (0.079) (0.085) (0.082)

Bin 30-35dsy × Compmds 0.026 0.022 −0.009 0.020
(0.120) (0.121) (0.125) (0.121)

Bin >35dsy × Compmds 0.227∗∗ 0.220∗∗ 0.230∗ 0.236∗∗

(0.111) (0.106) (0.115) (0.107)

Fixed Effects
Market ! ! !

Crop × Year ! ! ! !

District × Decade !

District × Year !

Market × Decade !

State × Year ! ! !

Increase in Prices (in pp) 0.555 0.538 0.563 0.577

Num. obs. 147, 005 147, 005 147, 005 147, 005
Adj. R2 0.877 0.879 0.879 0.878

Notes: Clustered robust standard errors are in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Columns (1) to (4) provide causal estimates of the effect of competition on prices following a period of extreme heat (Equation (12)).
The dependent variable, log(Price)cmdsy , refers to the natural logarithm of the price of crop c in market m situated in district d of
state s in agricultural year y. Data, sourced from Centre for Economic Data and Analysis (CEDA) of Ashoka University, comprises
of prices of 52 major commodities in 2,938 APMCmarkets from 2001 to 2021. Compmds is the measure of competition at the market
level, and equals the weighted sum of the total value of trade at all other markets near the origin market site, provided they are all
in the same state. The weights are the inverse of distances of the neighboring markets (n) to the origin market (m), while the total
value of trade refers to the sum of the value of agricultural produce traded in the neighboring market n between the years 2000 to
2021. The independent variables related to temperature, Binh to h, measure the amount of time, in days, a crop was exposed to
temperatures between a given lower and upper bound. The coefficient of interest is the estimate on the interaction term between
Bin > 35dsy (extreme heat) andCompmds. It can be interpreted as the supplementary impact of high competition on prices during
heat stress. The antepenultimate row, titled Increase in Prices (in pp), provides estimates of the effect of a one standard deviation
increase in competition on the difference in prices, given that both areas were exposed to a week of extreme heat. Coefficients related
to the effect of temperatures less than 30◦C on prices have been omitted for brevity. All coefficients have been multiplied by 1000 for
illustrative purposes. Standard errors are clustered at the state-decade and crop level.

work presented in Section 4.C.C.1 predicts that this increase in prices should lead to higher
input usage in high competition areas, which in turn could help alleviate the crop produc-
tion losses associated with heat stress. The next section tests this hypothesis.

C.3 Changes in Input Use

We examine changes in input use as a potential margin of adjustment to high temperatures,
and how this differs between low and high competition areas. We combine household
survey with spatial weather and competition data to construct a comprehensive dataset
containing agricultural, socioeconomic, competition, and weather variables. The unit of
observation is the household-year. The household data is a repeated cross section from the
India Human Development Survey (IHDS), a nationally representative multi-topic survey
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conducted in 2005 and 2011-12 (Desai et al. 2005, 2012). Our primary focus is on the income,
social capital and agricultural part of the survey, which asks questions on input usage and
expenditure in the last one year. Using the date of interview, we can construct household
specific weather variables, i.e. the number of growing degree days in each temperature bin
and precipitation over the last 12 months is specific to each household.38

The generic estimating equation is as follows:

Yhdsy = α +
6∑

j=1

ηj GDD{j}hdsy +
6∑

j=1

Ωj(GDD{j}hdsy × Compds) +

ϕ Precipdsy + δ (Precipdsy)
2 + ψZhdsy + λd + λsy + ξhdsy (13)

where Yhdsy refers to either input usage or input costs of household h situated in district d of
state s in agricultural year y,GDD{j}hdsy refers to the number of growing degree days in the
jth temperature bin which the household was exposed to over the course of the 12 months
prior to the interview, Precipdsy is the analogous rainfall counterpart, and Compds denotes
the mean value of the market level competition measure across all mandis in the district.
Zhdsy is a vector of household characteristics, and includes religion, caste, main income
source, total land endowment, and permanent fallow land of the household, in addition to
the occupation and education of the household head. Finally, we control for district and
state-year fixed effects to account for, first, district specific determinants of TFP as well as
other drivers of input, and second, changes in agricultural prices at the state level. Standard
errors are clustered at the state-year level to allow for spatial dependence. If the model
prediction is accurate, then we expect the interaction term between high temperature and
competition (Ω6) to be positive and significant, indicating increased input usage in high
competition areas during heat stress. Results are presented in Table 6.

As predicted by the model, input usage and expenditure increases in high competition
areas during periods of high temperature. Columns (1) and (2) focus on changes in land
and labor inputs. For each additional degree day of extreme heat, a one standard devia-
tion increase in competition increases the land cultivated and labor employed by 1.2 and
1.7 percent, respectively. This estimate already controls for household endowments and
permanent fallow land, and thus is not simply picking up changes in the size composition
of farmers. Columns (3) to (6) relate to input costs, specifically expenditure on labor, ir-
rigation, equipment, and fertilizers over the past 12 months. For each of these categories,
the effect sizes on Ω6 are positive and significant, indicating farmers in high competition
areas expendmore when faced with inclement weather. A one standard deviation increase

38Households in the same district and interviewed in the same month-year will have identical values for the
weather variables.
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in competition would cause a farmer, experiencing an additional day in the extreme tem-
perature bin, to increase their labor expenditure by |122 ($2.3), irrigation expenditure by
|31 ($0.6), expenditure on farm equipment by |98 ($1.9), and expenditure on fertilizers by
|157 ($3.0).

In addition to adjustments in input usage and costs, we also find evidence of crop di-
versification at a macro-scale (i.e., district-level) in high competition areas, indicating crop-
mix as a potential avenue for increased resilience. To measure crop diversity, we follow
Auffhammer & Carleton (2018) and construct an indicator of concentration, the Herfind-
ahl–Hirschman Index (HHI), based on area planted to different crops in a given year and
district. The HHI for district d and year y is defined as follows:

HHIdy =

C∑
c=1

s2dcy (14)

where sdcy = adcy/
C∑
c=1

adcy is the share of total planted area in district d dedicated to crop

c in year y. C is the total number of crops, which in our data set comprises the 19 ma-
jor and minor crops available in ICRISAT (2018). The regression specification in Equa-
tion (13) changes slightly, with the unit of observation now district d and agricultural year
y. Furthermore, the regressand Ydsy now denotes the crop-mix, while we dispense with the
household control variables. Results presented in column (7) imply that each additional
day of extreme heat reduces the HHI significantly in areas with higher competition, indi-
cating higher crop diversity. The point estimates suggest that for each additional day of
extreme heat, a one standard deviation increase in competition leads to a 0.13 percent fall
in HHI. Coupled with the evidence that farmers adjust their land during the growing sea-
son, we interpret these findings as suggestive evidence that the additional land is planted
with distinct crops in order to diversify the weather risk.

Our main results suggest that farmers adjust input use within the growing season as a
mechanism to copewith the negative effects of extreme temperatures, but only in high com-
petition areas. Farmers in these areas adjust their use of land, both in terms of area planted
and crop composition, as a response to extreme heat. Furthermore, they increase labor us-
age, reflected both in the number of workers hired and total wages paid. Additionally, the
expenditure on irrigation, equipment hired to work on the farm, and fertilizer and manure
also rises. These margins of adjustment attenuate undesirable drops in output and con-
sumption caused by heat. Importantly, the mechanism for these productive adjustments
are prices, which rise in high competition areas during heat stress, further inflating the
pre-existing monopsony distortions. In this sense, our findings are consistent with models
of subsistence farmers in a context of incomplete markets (De Janvry et al. 1991, Taylor &
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Adelman 2003), which predict a rise in input usage if prices increase following a negative
productivity shock.
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Table 6: Heterogeneous Impact of Climate Shocks on Input Usage and Crop Mix

Inputs Input Costs (|) Crop Mix

log(Land)hdsy log(Labor)hdsy Laborhdsy Irrigationhdsy Equipmenthdsy Fertilizershdsy HHIdsy
(1) (2) (3) (4) (5) (6) (7)

Bin 30-35dsy −0.007 −0.026 −186.367 −10.872 67.362 −110.610∗ 0.511∗

(0.012) (0.021) (134.622) (19.305) (124.858) (63.290) (0.294)
Bin >35dsy −0.020 −0.014 −137.790 −16.740 −60.710 −176.421∗ 0.480

(0.012) (0.015) (101.053) (16.826) (89.583) (92.065) (0.481)
Bin <15dsy × Compds 0.012 0.021 100.256∗∗ 9.924 −46.148 −76.222 0.000

(0.009) (0.013) (44.907) (29.171) (89.536) (127.411) (0.000)
Bin 15-20dsy × Compds 0.014∗∗ 0.018 −16.132 21.854 8.843 46.186 −0.197

(0.005) (0.012) (48.905) (26.599) (90.759) (105.920) (0.155)
Bin 25-30dsy × Compds 0.005 0.026∗∗ 109.807∗∗ 44.160 56.101 −13.769 −0.194

(0.006) (0.011) (55.445) (29.828) (67.600) (100.552) (0.133)
Bin 30-35dsy × Compds 0.008 0.025∗∗ 125.444∗ 23.881∗ −28.514 −98.107 −0.039

(0.006) (0.011) (66.089) (13.473) (79.673) (56.889) (0.087)
Bin >35dsy × Compds 0.009∗∗ 0.014∗ 93.363∗ 24.120∗ 73.561∗ 122.220∗∗ −0.267∗

(0.004) (0.008) (51.790) (13.887) (41.445) (46.165) (0.142)

Fixed Effects
District ! ! ! ! ! ! !

State × Year ! ! ! ! ! ! !

Num. obs. 25,592 20,517 24,652 27,654 28,256 21,179 4,624
Adj. R2 0.580 0.352 0.243 0.187 0.187 0.380 0.944

Notes: Clustered robust standard errors are in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
All columns represent estimates from different versions of the estimating Equation (13), which examines changes in input use or crop-mix as a potential margin of adjustment to high
temperatures, and how this differs between low and high competition areas. The dependent variable in Columns (1) and (2) represents land and labor inputs used by household h situated
in district d of state s in agricultural year y, respectively. The dependent variable in columns (3) to (6) relates to input costs, specifically expenditure (in |) on labor, irrigation, equipment,
and fertilizers over the past 12 months. The dependent variable in column (7) represents an indicator of crop concentration, the Herfindahl–Hirschman Index (HHI), based on area planted
to different crops in a given year and district (Equation (14)). The independent variable related to competition intensity, Compds, is the measure of competition at the district level. For this
purpose, we first calculate competition for each of the 2,938 APMC markets as the weighted sum of the total value of trade at all other markets near the origin market site, provided they
are all in the same state. The weights are the inverse of distances of the neighboring markets (n) to the origin market (m), while the total value of trade refers to the sum of the value of
agricultural produce traded in the neighboring market n between the years 2000 to 2021. Second, we aggregate competition to a district level by averaging the competition measure for all
markets in a district d of state s. The independent variables related to temperature, Binh to h, measure the amount of time, in days, a crop was exposed to temperatures between a given
lower and upper bound. The coefficient of interest is the estimate on the interaction term between Bin > 35dsy (extreme heat) and Compds. It can be interpreted as the supplementary
impact of high competition on household input usage (for columns (1)-(6)), or crop mix (for column (7)), during heat stress. The household data is a repeated cross section from the India
Human Development Survey (IHDS), a nationally representative multi-topic survey conducted in 2005 and 2011-12 (Desai et al. 2005, 2012). Data for crop mix is sourced from ICRISAT
(2018), which has data on area under cultivation for 19 crops in 313 Indian districts of 20 states at an annual level from the year 1966 to 2017. Coefficients related to the effect of temperatures
less than 30◦C on the dependent variable have been omitted for brevity. Standard errors are clustered at the state-year level to allow for spatial dependence.
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5 Theory

A Basic Environment

Our setup closely follows the environment assumed by Costinot et al. (2016). We consider
a national economy comprising multiple states, indexed by i ∈ I ≡ {1, . . . , I}. Within
each state there are two factors of production, labor and land, which can be used to produce
multiple crops, indexed by k ∈ K ≡ {1, . . . , K}, and an outside good. The outside good
can be thought of as a composite of manufactured goods and services. Labor is homoge-
neous, perfectly mobile within a state, and immobile across states. The term Ni denotes
the total endowment of labor, and wit denotes the wage in state i at time t. Land comes in
the form of heterogeneous fields, indexed by f ∈ Fi ≡ {1, . . . , Fi}, each comprising a
continuum of heterogeneous parcels, indexed by ω ∈ [0, 1]. We let sfi denote the area in
hectares of field f in state i.

Preferences—Each state i at time t has a representative agent who derives utility from
consuming the outside good, C0

it, and a composite of all crops, Cit:

Uit = C0
it + βi ln (Cit) (15)

The quasi-linear form of the utility function in Equation (15) implies that there are no in-
come effects. Moreover, the total demand for crops depends only on a state-specific and
time-invariant demand shifter, βi ≥ 0. Assuming that the crops in our analysis account for
a small fraction of consumers’ expenditure across states, the absence of income effects acts
as a minor limitation of our study.

Aggregate crop consumption at time t, Cit, depends on the consumption of each crop,
Ck
it, which itself depends on the consumption of varieties from different origins, Ck

jit:

Cit =

[∑
k∈K

(βki )
1/φ(Ck

it)
(φ−1)/φ

]φ/(φ−1)

(16)

Ck
it =

∑
j∈I

(βkji)
1/σ(Ck

jit)
(σ−1)/σ

σ/(σ−1)

(17)

where φ > 0 denotes the elasticity of substitution between different crops (e.g., rice vs
wheat), and σ > 0 denotes the elasticity of substitution between different varieties of a
given crop (e.g., West Bengal vs Punjab rice). Finally, βki ≥ 0 denotes crop and state specific
demand shocks, whereas βkji ≥ 0 denotes crop and origin-destination specific demand
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shocks. The functional form implies that all states export each crop that they produce to all
other states (as long as βkji > 0).

Technology—The outside good is produced under constant returns to scale using labor
only. The term A0

it > 0 denotes labor productivity in state i’s outside sector at time t. In
the agriculture sector, we assume that labor and parcels of land are perfect complements in
the production of each crop. Combining Lfk

it (ω) hectares of parcel ω with Nfk
it (ω) workers

enables a representative farmer to produce:

Qfk
it (ω) = Afk

it (ω) min{Lfk
it (ω), N

fk
it (ω)/νfi (ω)} (18)

where Afk
it (ω) ≥ 0 denotes the total factor productivity (TFP) of parcel ω in field f if allo-

cated to crop k in state i at time t, and νfi (ω) > 0measures the time-invariant labor intensity
of the production process. Inspired by Eaton & Kortum (2002) gravity model of trade, we
assume that TFP and labor intensity are independently drawn for each (i, f, ω, t) from a
Fréchet distribution:

Pr{Af1
it (ω) ≤ a1, . . . , AfK

it (ω) ≤ aK , νfi (ω) ≤ ν}

= exp

{
−γ

[∑
k∈K

(ak/Afk
it )

−θ + (ν/νi)
−θ

]}
(19)

where the constant γ is set such that Afk
it = E[Afk

it (ω)] and νi = E[νfki (ω)].39 The term
Afk

it ≥ 0 captures the average productivity of field f for growing crop k in state i at time t
and is, thus, shared by all plots ω ∈ f . A highAfk

it implies that on average all plots in farm f

have high productivity for growing crop k. In otherwords, itmeasures the comparative and
absolute advantage of a field in producing particular crops. The parameter θ > 1measures
the extent of technological heterogeneity within each field. A higher value of θ will imply
higher specialization across different farms. Since we do not have access to disaggregated
data on labor intensity, we require average labor intensity νi > 0 to be identical across crops,
fields, and time. However, agriculture is allowed to be more labor intensive in some states
than in others.

Market Choice—This part of themodel takes inspiration from themarket setup of Chat-
terjee (2019). Upon harvest, farmers optimally choose the market where they want to sell,
indexed by m ∈ M ≡ {1, . . . , M}. We assume that farmers are subject to iceberg trade
costs, such that the quantity of crop k actually reaching any marketm from farm f at time

39Formally, we set γ ≡ Γ

(
θ − 1

θ

)−θ

, where Γ(·) denotes the gamma function; i.e.,

Γ(t) =
∫ +∞
0

ut−1 exp(−u)du for any t > 0.
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t is:

Qfk
mit(ω) =

Qfk
it (ω)

τ fmt

(20)

Trade costs between farm f and market m at time t are constant for all parcels ω ∈ f ,
and are defined as:

τ fmt = (1 + ζdfm) · ξfmt (21)

where dfm is the geodesic distance between farm f and market m, and ζ is a scale param-
eter. The shock term, ξfmt, represents origin farm-market specific costs like broken roads,
availability of a truck, or a strike among intermediaries, which are not observable to the
econometrician but are known to the farmers. We follow Barjamovic et al. (2019), and
assume for tractability that ξfmt is drawn from a Weibull distribution such that:

Pr
[
ξfmt ≤ ξ

]
= 1− exp

(
−Υξλ

)
(22)

λ > 0 is the shape parameter and can be interpreted as an inversemeasure of the dispersion
of shocks. Υ > 0 is the scale parameter and controls the efficiency of transporting goods
to a market. The distribution of shocks is i.i.d. across crops and over time, and shocks are
independent across markets. To incorporate trade restrictions, τ fmt is set to∞ if farm f and
marketm lie in different states.

Intermediary—Eachmarketm can be thought of as an intermediary, a chain linking the
farmer to the consumer. Though each market can have multiple intermediaries, only a few
are active and cartelization among intermediaries is common. Incumbent intermediaries
also prevent new entrants (Chand 2012). This fact makes our simplifying assumption that
each market is served by a single intermediary not too unrealistic.

An intermediarym in state i can purchase multiple crops k ∈ K at time t, and sells the
same to retailers/consumers at price Prk

it . Unlike the farmer, the intermediary is allowed
to cross state borders. However, interstate trade in crops may be subject to iceberg trade
costs. In order to sell one unit of a crop k in state j, intermediaries from state i must ship
Ψk

ij units. Non-arbitrage therefore requires the price of a crop k produced in state i and
sold in state j to be equal to

Prk
ijt = Ψk

ijPrk
it (23)

where Prk
it denotes the local price of the domestic variety of crop k in state i.
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B Competitive Equilibrium

In a competitive equilibrium, all consumers maximize their utility, all farmers and interme-
diaries maximize their profits, and all markets clear.

Farmer Profit Maximisation—In the outside sector, profit maximization requires that
wit = A0

it whenever the outside good is produced. Throughout this model, we assume that
labor endowments, Nit, are large enough for the outside good to be produced in all states.
Thus, we can use A0

it in place of the wage wit and treat it as an exogenous parameter.

In the agricultural sector, profit maximization requires that the farmer first choose a
crop k, and subsequent to harvest, choose a marketm to sell. The price that farmers get in
market m for crop k at time t is denoted by Pk

mit. We can use backward induction to solve
for the farmer’s choice. Let

Ωfk
mit ≡ Pr{Pk

mitQ
fk
mit(ω) = max{Pk

1itQ
fk
1it(ω), . . . ,P

k
MitQ

fk
Mit(ω)}} (24)

denote the probability that a farmer, tilling parcelω of a field f located in state i andgrowing
crop k at time t, chooses marketm. Given distributional assumptions:40

Ωfk
mit =

(
Pk
mit

1 + ζdfm

)λ

∑
m′∈M

(
Pk
m′it

1 + ζdfm′

)λ
(25)

This expression has an intuitive explanation. The probability of choosing a market m
for crop k depends on how large the distance adjusted price of the crop in m is relative to
the distance adjusted price index of the crop. A higher price of crop k inmarketm increases
the probability of farmers selling their output inm, whereas an increase in the price in other
marketsm′ relative tom reduces this probability. Similarly, if the distance tom is large, that
will depress the probability of choosing m. Currently, the farmers in state i only take into
account the prices in markets situated in i. An opening of trade borders would lead the
farmer to also factor in the prices in all other states j ∈ I.

Conditional on choosing marketm, the farmer decides the crop k to grow at time t. Let
πfkit (ω) denote the profits from parcel ω ∈ f in state i when farmer decides to grow k at

40See Appendix C.C.2 for derivation.
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time t. It can be expressed as:41

πfkit (ω) = Afk
it (ω)L

fk
it (ω)P

fk
it − witN

fk
it (ω) (26)

where

Pfk
it =

∑
m′∈M

Ωfk
m′itP

k
m′it =

∑
m′∈M

(Pk
m′it)

λ+1(
1 + ζdfm′

)λ
∑

m′∈M

(
Pk
m′it

1 + ζdfm′

)λ
(27)

denotes a probability weighted price of crop k for farmer f at time t, aggregated across all
markets. Profit maximisation requires that all parcels of land are (i) allocated to the crop
that maximizes the value of their marginal product if such value is greater than the wage
bill associated with operating that parcel, or (ii) left unused if the maximum value of their
marginal product is less than thewage bill. Given the production function in Equation (18),
the land allocation can be solved as a simple discrete choice problem.42 Let

∆fk
it ≡ Pr{Afk

it (ω)P
fk
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

f1
it , . . . , A

fK
it (ω)PfK

it }} (28)

denote the probability that a parcel ω of a field f located in state i is allocated to crop k at
time t. Since there is a continuum of parcels within each field,∆fk

it also corresponds to the
share of parcels allocated to that crop.

Given our distributional assumptions, standard algebra implies:43

∆fk
it =

(Afk
it P

fk
it )

θ

(αit)θ +
∑
k′
(Afk′

it Pfk′

it )θ
(29)

whereαit ≡ A0
itνi parameterizes cross-state differences in labor costs, because of differences

in either wages or labor intensity. The higher αit is, the more costly it is to hire workers to
produce crops, and the smaller the share of a field f allocated to any given crop k. Like-
wise, the higher the average value of the marginal product of land, Afk

it P
fk
it , the higher the

share of field f allocated to crop k. In our model, the extent of technological heterogene-
ity, θ, determines the elasticity of the relative supply of land to various crops. When θ is
higher, parcels aremore homogeneouswithin a field, whichmakes the supply of landmore

41See Appendix C.C.3 for derivation.
42See Appendix C.C.4 for derivation.
43We use the property that given n draws {z1, ..., zn}, where zi is distributed Fréchet with Fi(z) =

exp{−(Tiz
−θ)}, the probability that zi = max{z1, ..., zn} is∆i = Ti/

n∑
j=1

Tj (Turner 2019).
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sensitive to changes in prices, Pfk
it , or productivity, A

fk
it .

Let Qk
mit =

∑
f∈Fi

Ωfk
mit

∫ 1
0 Q

fk
it (ω)dω denote the total output of crop k supplied to market

m in state i at time t. Intuitively, it is the expected output of crop k across all parcels of
land in f , weighted by the probability of choosing market m, and this expression is then
summed across all the fields f in state i. Using the production function in Equation (18)
and the law of iterated expectations, we must have:44

Qk
mit =

∑
f∈Fi

sfi ∆
fk
it Ω

fk
mitE[A

fk
it (ω)|A

fk
it (ω)P

fk
it

= max{A0
itν

f
i (ω), A

f1
it (ω)P

f1
it , . . . , A

fK
it (ω)PfK

it }] (30)

Given our distributional assumptions, one can also check that:45

E[Afk
it (ω)|A

fk
it (ω)P

fk
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

f1
it , . . . , A

fK
it (ω)PfK

it }]

= Afk
it × (∆fk

it )
−1/θ (31)

Note that because of the endogenous selection of fields into crops, the average productivity
conditional on a crop being produced is strictly greater than the unconditional average, i.e.
Afk

it × (∆fk
it )

−1/θ > Afk
it

Combining the above two equations, we obtain the following expression for the supply
of crop k in marketm in state i at time t:

Qk
mit =

∑
f∈Fi

sfi A
fk
it Ω

fk
mit(∆

fk
it )

(θ−1)/θ

=
∑
f∈Fi

sfi A
fk
it


(

Pk
mit

1 + ζdfm

)λ

∑
m′∈M

(
Pk
m′it

1 + ζdfm′

)λ


 (Afk

it P
fk
it )

θ

(αit)θ +
∑
k′
(Afk′

it Pfk′

it )θ


(θ−1)/θ

(32)

The quantity supplied of crop k at market m is, thus, a function of the average TFP of
the crop, the price of the crop in other markets within the state, and also the productivity
and price of crops other than k.

Intermediary Price Setting—Each intermediarym can purchase multiple crops k′ ∈ K,
offering price Pk′

mit. They purchase Qk′
mit units of crop k′ from the farmer, and sell the same

44See Appendix C.C.5 for derivation.
45See Appendix C.C.6 for derivation.
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to retailers/consumers in different parts of the country at a pricePrk′
ijt . We assume that there

is no restriction on where the intermediary can sell, but transportation costs are incurred
only if the produce is sold outside the state.

Every intermediary exerts market power over farmers, which we model as Bertrand
competition for crops.46 When deciding what price to offer for a crop, intermediaries form
expectations about how farmers respond. In otherwords, they internalize the upward slop-
ing crop supply curve in Equation (32): each additional unit they purchase increases the
price of every other unit. Zavala (2020) has a similar setting but models exporters instead
of local intermediaries. Additionally, he assumes that each exporter only buys a single crop,
whereas in our case, we assume that an intermediary can purchase all crops supplied in
the market.

An intermediarymmaximises the following profit function

max
{Pk′

mit∀ k′}

∑
k′∈K

(
Prk′
it − Pk′

mit

)
Qk′

mit (33)

subject to the supply curve in Equation (32), where Prk′
it represents the retail price of com-

modity k′ in state i at time t. The first order condition for price Pk
mit can be expressed as:

(
Prk
mit − Pk

mit

)∑
f∈Fi

Qfk
mit

[
λ

(
1− Ωfk

mit

Pk
mit

)
+ (θ − 1)Ωfk

mit

(
λ+ 1

Pfk′

it

−
λ

Pk
mit

)]
︸ ︷︷ ︸

∂Qk
mit/∂Pk

mit

−

(θ − 1)
∑
k′∈K

∑
f∈Fi

(
Prk′
mit − Pk′

mit

)[
Qfk′

mitΩ
fk
mit∆

fk
it

(
λ+ 1

Pfk′

it

−
λ

P k
mit

)]
︸ ︷︷ ︸

−∂Qk′
mit/∂Pk

mit

= Qk
mit (34)

Rubens (2021) states that the extent of oligopsony power of an intermediarym over an
input k can be parametrized through an inverse input supply elasticity ηkmit, defined as:

ηkmit ≡
∂Pk

mit

∂Qk
mit

×
Qk

mit

Pk
mit

If an intermediary has oligopsony power over input k, the input pricePk
mit increases if more

inputs are purchased. This, thus, has the interpretation of an input price ‘markdown ratio’.
46Market power can also be modeled as Cournot competition, but Equation (32) does not lend itself to a

closed form inverse supply curve.
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Also, we can define inverse cross input supply elasticity as:

ηkk
′

mit ≡
∂Pk

mit

∂Qk′
mit

×
Qk′

mit

Pk
mit

which reflects how the price of commodity k in market m changes if there is a change in
the supply of commodity k′ to the said market.

Additionally, we define markup µ as the ratio of retail prices over marginal costs:

µkmit ≡
Prk
mit

Pk
mit

Using these three definitions, Equation (34) can be rewritten as:

Pk
mit =

∑
k′ ̸=k

(
µk

′
mit − 1

ηkk
′

mit

)
Pk′
mitQ

k′
mit

[ ηkmit

1 + ηkmit − µkmit

]
1

Qk
mit

(35)

Thus, the price for crop k paid by an intermediarym is a function of the markdown for
not only k, but also the markdown for k caused by quantity supplied of other crops. It also
depends on the markup the intermediary may expect to receive in the retail market.

Finally, the intermediaries sell the produce to the consumer/retailer, with the retail price
of crop k in state i, Prk

it , set such that all the intermediaries selling in state i (including from
state j ̸= i) sell at the same price, i.e. Prk

jit = Prk
it ∀j ∈ I. Utility Maximisation—Given

equations (15), (16), (17) and (23), utilitymaximization by the representative agent in each
state requires that:47

Ck
jit = βi

βki (P̂
rk
it )

1−φ∑
l∈K

βli(P̂
rl
it)

1−φ

βkji(Ψ
k
jiPrk

jt )
−σ∑

n∈I
βkni(Ψ

k
niPrk

nt )
1−σ

∀ i, j ∈ I, k ∈ K (36)

where

P̂rk
it ≡

[∑
n∈I

βkni

(
Ψk

niPrk
nt

)1−σ
]1/1−σ

(37)

denotes the CES retail price index associated with crop k in state i at time t.

Market Clearing—Define Qk
it as the total output of crop k produced in state i at time

t. Since farmers are only allowed to sell their produce in state i, Qk
it =

∑
m∈M

Qk
mit. Trade in

47See Appendix C.C.7 for derivation.
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crops is subject to iceberg trade costs, which implies market clearing for all varieties of all
crops requires

Qk
it =

∑
j∈I

Ψk
ijC

k
ijt ∀ {i, j} ∈ I and k ∈ K (38)

Parcels of land may remain idle if the value of their marginal product is below the labor
cost required to produce on these parcels. Thus, by construction, land demand is weakly
less than land supply at all locations. Finally, under the assumption that the outside good
is produced in all states, the amount of labor demanded by the outside sector adjusts to
guarantee labor market clearing at the wage equal to A0

it.

DEFINITION 1. Given parameters βi, βki , βkji (demand shifters), φ, σ (elasticities of
substitution), λt, ζ,Ψk

ij (trade cost for farmers and intermediaries), θ (technological het-
erogeneity), and µ (intermediary markup), a competitive equilibrium consists of, for each
state i ∈ I ≡ {1, . . . , I} and each time period t:

1. inputs for crops {Lfk
it (ω), N

fk
it (ω)}k∈K,f∈Fi

, and outside good {N0
it},

2. output of crops {Qfk
it (ω)}k∈K,f∈Fi

, and outside good {Q0
it},

3. optimal market choice at each farm {m(f)},

4. domestic trade flows {Xk
ijt}k∈K,j∈I , which is the total value of exports of crop k ∈ K

from state i to state j, expressed in |,

5. consumer prices {Prk
it }k∈K, intermediary prices, {Pk

mit}k∈K,m∈M, and outside good
price {P0

it},

6. final crop consumption {Ck
it}k∈K and outside good consumption {C0

it},

such that :

1. farmers maximise their profits by choosing the optimal crop (Equation (29)) and
market (Equation (25));

2. intermediaries maximise their profits according to Equation (34)

3. consumers maximise their utility to solve Equation (36)

4. market for all crops clears, which requires:∑
f∈Fi

Qfk
it =

∑
j∈I

Ψk
ijC

k
ijt ∀ i ∈ I and k ∈ K : (39)
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In the remainder of this paper we will use the model outlined in this section to study
the consequences of climate change. Wewill compute competitive equilibria for states with
contemporary agricultural productivities and trade restrictions, compute competitive equi-
libria for counterfactual economieswith post–climate change productivities and open trade
borders, and then compare welfare levels across equilibria. However, we first need to esti-
mate the unknown structural parameters of ourmodel, andwe describe below themethod-
ology and data used.

6 Estimation

To simulate the model described in Section 5 and run counterfactual, we require estimates
of demand- and supply-side parameters. Section 6.A details the estimation methodology
for demand side parameters, while Section 6.B focuses on the supply side parameters.

A Demand

We follow Costinot et al. (2016) closely for our demand side estimation. Similar to their
methodology, it involves three steps, each pertaining to a different level of the nested de-
mand system. The first step uses data on bilateral shipment flows (total quantity and not
total value) of crops between states (Nk

ijt), retail prices (Prk
it ), and crop yields at the dis-

trict level (Ak
dit) to estimate the elasticity of substitution between different state varieties of

a given crop, σ. In addition, it allows us to estimate a composite of the lower-level demand
shifters (βkijt) and trade costs for intermediaries (ψk

ijt). Second, we use the estimates from
the previous step to construct crop-specific retail price indices, P̂rk

it . This, combined with
data on crop quantity,Nk

jt =
∑
i∈I

Nk
ijt, allows us to estimate φ— the elasticity of substitution

between different crops — and mid-level demand shifters, βkjt. Finally, we construct data
on total crop expenditures, Xjt =

∑
Xk

jt, to estimate the upper-level demand shifters, βjt.

Step 1—Define the value of exports of crop k at time t from state i to state j, Xk
ijt =

P rk
ijtC

k
ijt. Using the non-arbitrage condition in Equation (23), we can rewrite the value of

exports as:

Xk
ijt =

(
Ψk

ijtP
rk
it

)
Ck
ijt

= βjt
βkjt

(
P̂rk

jt

)1−φ

∑
l∈K

βljt

(
P̂rl

jt

)1−φ

βkijt

(
Ψk

ijtPrk
jt

)1−σ

∑
n∈I

βknjt

(
Ψk

njtPrk
nt

)1−σ ∀ {i, j} ∈ I and k ∈ K (40)
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When estimating the lower level of our demand system, we consider the cases of zero and
nonzero inter-state trade flows separately. If Xk

ijt = 0, we simply set βkijt
(
Ψk

ijt

)1−σ
= 0. If

Xk
ijt > 0, we take logs and rearrange equation Equation (40) as:

ln
(
Xk

ijt/X
k
jt

)
=Mk

jt + (1− σ) ln
(
Prk
it

)
+ εkijt (41)

where the first term on the right-hand side,

Mk
jt ≡ −ln

 ∑
n∈I;Xk

njt>0

βknjt

(
Prk
ntΨ

k
njt

)1−σ


can be treated as an importer-crop-year fixed effectwhile the final term εkijt ≡ ln

[
βkijt

(
Ψk

ijt

)1−σ
]

reflects idiosyncratic year-specific demand shocks across varieties of different crops as well
as trade costs. Without loss of generality, we normalize these shocks such that∑

i∈I;Xk
ijt>0

εkijt = 0 (42)

Equilibrium retail prices of crop (Prk
it ) depend on demand shocks, εkijt. To address this en-

dogeneity in Equation (41), we need exogenous supply shocks that are correlated with Prk
it

but uncorrelated with εkijt. We construct the following instrument based on the ICRISAT
(2018) data,

Zrk
it = ln

 1

Di

∑
d∈Di

Ak
dit

 (43)

which corresponds to the log of the arithmetic average of crop k’s yields across all districts
in state i at time t. Our exclusion restriction is that E

[
Zrk
it ε

k
ijt

]
= 0.

Note that our data contains information on quantity of crops traded between states,
and not their value. However, our use of the Eaton & Kortum (2002) model allows us to
overcome this missing data problem. This is because their model predicts that the fraction
of quantity imported by j originating from i, Nk

ijt∑
i∈I

Nk
ijt

, should equal the fraction of j’s value

of imports from i, Xk
ijt∑

i∈I
Xk

ijt

, in expectation. This implies that we can replace the left-hand

side of Equation (41) with ln

(
Nk

ijt

/∑
i∈I

Nk
ijt

)
to estimate the model.

The results from the instrumental variable regression are reported in xxx. Our estimate
of the elasticity of substitution between different varieties of the same crop, σ, is 25.66,
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with a standard error of 14.6 when clustered at the crop-importer and crop-exporter levels.
Furthermore, our instrument has a strong first stage (F-stat of 34.28) and has the expected
negative sign with a coefficient of -0.052— implying a one percent increase in yields leads
to a 5.2 percent fall in retail prices. Though our elasticity estimate is higher than Costinot
et al. (2016), this is expected givenwe are looking at substitution between different varieties
of a crop but produced in the same country. Therefore, the quality differentiation across
varieties will be lower, making it easier to substitute between them.

Having estimated σ, we subsequently solve for βkijt
(
Ψk

ijt

)1−σ
as residuals. Specifically,

we find βkijt
(
Ψk

ijt

)1−σ
for all i, j ∈ I and k ∈ K for which Xk

ijt > 0 so that equations (41)
and (42) simultaneously hold for all crops, states and years. This estimation procedure
does not allow us to identify separately lower-level demand shifters, βkijt , from trade costs,

Ψk
ijt. However, the composite shock, βkijt

(
Ψk

ijt

)1−σ
, is sufficient to construct equilibria in

Section 7.

Step 2—The second step of our demand estimation is similar to the first one: the retail
price index, P̂rk

jt , plays the role of the individual crop price,Prk
it , whereas crop expenditure,

Xk
jt, plays the role of bilateral trade flows, Xk

ijt. Note that unlike Prk
it , we do not observe

P̂rk
jt in the data and construct it as

P̂rk
jt =

[∑
i∈I

βkijt

(
Ψk

ijtPrk
it

)1−σ
]1/1−σ

using data on crop prices, Prk
it , as well as our estimates of σ and βkijt

(
Ψk

ijt

)1−σ
from Step 1.

For all crops and states with positive quantity traded in year t, Xk
jt > 0, we can again

use Equation (40) and take logs to get

ln
(
Xk

jt/Xjt

)
=Mjt + (1− φ) ln

(
P̂rk

jt

)
+ εkjt (44)

where the first term on the right-hand side,

Mjt ≡ −ln

 ∑
l∈K;Xl

jt>0

βljt

(
P̂rl

jt

)1−φ


can now be treated as an importer-time fixed effect, and the final term, εkjt ≡ ln

(
βkjt

)
,

reflects idiosyncratic year-specific demand shocks across crops. Without loss of generality,
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we again normalize these shocks such that∑
k∈K;Xk

jt>0

εkjt = 0 (45)

There still exists endogeneity issues between demand shocks (εkjt) and prices (P̂rk
jt ) at

this higher level of aggregation, which could potentially bias our estimates of φ. To address
this, we now instrument P̂rk

jt withZrk
jt . The exclusion restriction nowequalsE

[
Zrk
jt ε

k
jt

]
= 0.

As before, since we do not have data on either the value of specific crops imported from all
exporters or the total value of crops imported, we replace ln

(
Xk

jt/Xjt

)
with ln

(
Nk

jt/Njt

)
.

Results, reported in xxx, indicate that the IV estimate for the elasticity of substitution
between crops, φ, equals 9.39 with standard errors of 2.3 when clustered at the importer
level. Also, the first stage estimate equals -0.055, which can be interpreted as a one percent
increase in yields leading to a 5.5 percent fall in prices. As in Step 1, once the elasticity of
substitution, φ, is known, we can solve for βkjt for all j ∈ I and k ∈ K such that Xk

jt > 0, as
residuals using equations (44) and (45).

Step 3—The final step of our procedure estimates the upper-level demand shifters, βjt.
The assumption of log preferences at the upper level implies that βjt’s can be read directly
from data on total expenditure across crops. Specifically, using Equation (40), we can show
that βjt = Xjt for all j ∈ I at time t.

Since we only have data on the quantity of crops imported, and not on the value of
imports, we need a proxy for the price of imports to constructXjt. To this end, we assume
that the value of exports of crop k from i to j,Xk

ijt, equals the average price of k across all the
markets m within state i, multiplied by the quantity exported from i to j, Nk

ijt. Summing
this value across all i ∈ I and k ∈ K for state j provides us with Xjt for year t.

B Supply

There are four supply side parameters we need to estimate: the inverse measure of the dis-
persion of shocks (λ), the scale parameter for the trade costs (ζ), the extent of technological
heterogeneity (θ), and the state-specific labor cost shifters (αi). We proceed in two steps.
First, we use data on crop prices in different markets (Pk

mit), distance between farms and
markets (dfm), and crop quantity produced in each state (Qk

it) to estimate λ and ζ using a
generalized method of moments (GMM) estimation procedure. Then, we use the previous
estimates along with data on farm productivity (Afk

i ) in a nonlinear least squares (NLS)
framework to estimate θ and αi.
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Step 1—We know thatΩfk
mit from Equation (25) represents the probability that a farmer

f located in state i and growing crop k at time t, chooses marketm. This probability can be
used to calculate the share of crop k produced in state i that reaches a market m at time t.
Denoting the same by Sk

mit, we can calculate it as the share of crop k that each farmer takes
to marketm at time t (Qfk

it ), summed across all farmers, and divided by the total quantity
of crop k produced in state i at time t (Qk

it). The expression takes the following form:

Sk
mit =

∑
f∈Fi

Ωfk
mitQ

fk
it

Qk
it

=
∑
f∈Fi


(

Pk
mit

1 + ζdfm

)λ

Qfk
it

∑
m′∈M

(
Pk
m′it

1 + ζdfm′

)λ


/

Qk
it (46)

Now, we use Equation (46) to carry out aGMMprocedure to estimate λ and ζ. In partic-
ular, we chooseΘ = {λ, ζ}, with true parameter valueΘ0, tominimize the distance between
moments of the data and their estimated counterparts. Let g(Ym, θ) be a continuous and
continuously differentiable function of θ and Ym, where the latter is amarket-specific vector
of parameters like prices and distance to farms. Then the population moment conditions
are such that:

E [g(Ym,Θ0)] = E

Sk
mit −

∑
f∈Fi

Ωfk
mitQ

fk
it

Qk
it

 = 0

The corresponding sample moments are given by:

gm(Θ) =
1

M

∑
m∈M

g(Ym,Θ) = 0

Our GMM estimator can, therefore, be written as:

Θ̂ = arg min
(Θ)

(
1

M

∑
m∈M

g(Ym,Θ)

)T

Ŵ

(
1

M

∑
m∈M

g(Ym,Θ)

)
(47)

where Ŵ is the optimal weighting matrix. We use numerical methods to find the required
gradients. Note that we do not have data on total crop produced per farm in any year,
so we proxy that using ICRISAT (2018) data on district level yearly output of crops (Qk

dit).
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Specifically, we assume that all the farms f that fell within the district had the same output,
which we can calculate as follows:

Qfk
it =

Qk
dit

Fi

Finally, Qk
it is the sum of output of crop k across all districts d in state i at time t.

Our estimates of λ and ζ equal 1.84 and 0.07, respectively. Since λ is inversely related to
the dispersion of transportation cost shocks, a low value of λ implies that farmers face sub-
stantial heterogeneity in trade costs across different states. To interpret the scale parameter
ζ, we use Equation (21) to calculate the elasticity of trade costs with respect to distance:

∂τ

∂d
× d

τ
=

ζd

1 + ζd
.

The equation above implies that the change in trade costs with respect to change in distance
is not uniform, and depends on the original distance being traversed. For instance, if the
distance between the farm and the market is 10 kms, a 10 percent increase in distance — or
1 km— leads to a 4.1 percent increase in trade costs for the farmer. On the other hand, if the
distance was 100 kms, increasing the same by 10 percent will increase the transportation
costs by approximately 8.7 percent.

Step 2—The remaining supply-side parameters that need to be estimated are the extent
of technological heterogeneity, θ, as well as the state-specific labor cost shifters in different
years, αit. We do not need to estimate the productivity of fields for different crops, Afk

i

— the main variable that changes in our model under a climate change scenario — as it
is directly observable in the GAEZ data. However, GAEZ data is not available at a yearly
level; rather there is only one observation per field for the time period 1980-2010. Therefore,
we only use data pertaining to the year 2010 for estimating the supply parameters in this
step.48 Naturally, the labor cost shifters too will only pertain to the year 2010. Henceforth,
we remove the time subscript (t) in this subsection.

Using Equation (32), we candenote the predicted supply of crop k in state i as a function
of the unknown parameters θ and αi:

Qk
i (θ, αi) =

∑
m∈Mi

∑
f∈Fi

sfi A
fk
i


(

Pk
mi

1 + ζdfm

)λ

∑
m′∈M

(
Pk
m′i

1 + ζdfm′

)λ


 (Afk

i Pfk
i )θ

(αi)θ +
∑
k′∈K

(Afk′

i Pfk′

i )θ


(θ−1)/θ

(48)
48We could have used yields data from ICRISAT (2018) but GAEZ is more accurate and spatially disaggre-

gated (district versus farm).
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Next, let Li(θ, αi) denote the predicted land allocated to all crops in state i as a function
of θ and αi. This is calculated as the share of field f which is allocated to crop k (∆fk

i

from Equation (28)), multiplied by the field size, sfi , and sum across all crops and fields.
Specifically,

Li(θ, αi) ≡
∑
k

∑
f

sfi

 (Afk
i Pfk

i )θ

(αi)θ +
∑
k′∈K

(Afk′

i Pfk′

i )θ

 (49)

To estimate θ and αi, we follow the same procedure as Costinot et al. (2016), i.e. choose
a value of θ, and conditional on it, find the vector of labor cost shifters, αi, such that the to-
tal amount of land allocated to crops as predicted by the model, Li(θ, αi), exactly matches
the total amount of land allocated to crops in the data, Li, for all states. Next, given the
vector of labor cost shifters (αi) for all states, we search for θ such that the difference be-
tween the output predicted by the model, Qk

i (θ, αi), and output observed in the data, Qk
i ,

is minimised. This algorithm can be formally expressed as the following non-linear least
squares problem:

min
θ,αi

∑
i∈I

∑
k∈K

[
lnQk

i (θ, αi)− lnQk
i

]2
subject to

Li(θ, αi) = Li for all i ∈ I.

Our estimate of θ equals 1.82, which suggests that within-field, within-crop productiv-
ity dispersion in Indian agriculture is large. This is reassuringly close to the estimate of
Sotelo (2020), who finds a value of 1.658 for θ using data from Peru.

7 Counterfactual Analysis

Wenowuse the estimated parameters to simulate ourmodel and runpolicy counterfactuals
that involve climate change, with and without inter-state trade barriers. Specifically, we
can use the model to run the following two counterfactuals: (i) welfare impact of climate
change under a policy with inter-state trade restrictions, and; (ii)welfare impact of climate
change under a policy without inter-state trade restrictions. Under both counterfactuals,
we allow for production and trade patterns to fully adjust.

To run either of these counterfactuals, we first need to solve for the competitive equilib-
riumbefore climate change. This equilibrium is characterized by themarket supply curve in
Equation (32), and the following three conditions: (i) intermediary profit maximization in
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Equation (34); (ii) consumer utility maximisation in Equation (36), and; (iii)market clear-
ing in Equation (38). Crop productivity for different farms,Afk

i , is the structural parameter
which will change under the climate change scenario. Therefore, for the first equilibrium,
we use pre-climate change GAEZ data. Subsequently, for the counterfactual equilibrium
with climate change, we use the exact same equations and structural parameters except for
crop yields, which is replaced with post-climate change productivity, (Afk

i )′, as measured
by GAEZ.

The key mechanism driving any differences between the equilibriumwith and without
climate change is the change in productivity across different farms and crops caused by
global warming. Climate change will affect comparative advantage in crop yields across
different regions of the country. This, in turn, alters supply as farmers change the use of
intermediate inputs and substitute between crops, which then impacts mandi and retail
prices — an effect that feeds back into the prices farmers can get.

It is worth noting that the welfare consequences of changes in comparative advantage
will also depend crucially on the spatial competition faced by farmers, as it directly in-
centivizes farmer adaptation. To see this, consider the following example: a farmer near
a state border grows rice, but climate change shifts their comparative advantage towards
wheat. The price offered to wheat farmers in the nearbymandi, however, is not competitive
due to intermediary market power. Thus, despite rice yields falling, the farmer does not
substitute. Lifting border restrictions would necessarily improve the welfare outcome by
increasing the farmer’s choice set, both in terms of accessible markets and crop choices.

The channel for this welfare improvement is intuitive. First, opening state borders di-
rectly impacts the probability of the farmer choosing a market, as seen in Equation (25).
This occurs because reducing distance — and, thus, transportation costs — between farms
and potential markets increases farmers’ arbitrage opportunities. Second, the change in
market choice probability subsequently affects farmers’ probability of allocating land to
a crop through changes in the average value of the marginal product of the field (Equa-
tion (29)). These changes in farmer input decisions, in turn, change quantities supplied to
each market (Equation (32)). Now, the prices received by farmers will be affected through
two sources: the change in quantity, and the change in bargaining power, as the intermedi-
ary faces increased competition now from across the border. This increase in competition
affects each intermediaries share in the market, which will affect the markdowns. Impor-
tantly, the changes in intermediary market power near the borders has ripple effects across
interior markets through this change in quantity Equation (34). Finally, changes in pro-
duction, market choice of farmers and intermediary market power could also adjust retail
priceswhich in turnwill feed back into the prices farmers’ receive. This changewould even-
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tually incentivize the farmer at the border to substitute from rice to wheat, as predicted by
comparative advantage. Therefore, change in production and incomes brought about by
opening trade borders could aid in mitigating the climate change impact.

Our assumption of quasi-linear preferences allows us to compute welfare changes as
changes in social surplus, expressed as a fraction of GDP in the initial equilibrium:

∆Wi =
(Yi)

′ − Yi + (β lnCi − PiCi)
′ − (β lnCi − PiCi) + (π)′ − π

Yi
(50)

where Yi and πi are the GDP and intermediary profits in the initial equilibrium, respec-
tively, while primes denote the analogous variable in the counterfactual equilibrium.

We find that climate change reduces welfare in India by 2.1 percent of total GDP, assum-
ing border restrictions for farmers remain in place. Note that up until now, we have set the
distance between farms in state i and markets in state j, for i ̸= j, as ∞. In the subsequent
counterfactual where we remove the trade barriers, the distance is set to the actual geodesic
distance, similar to if farms and markets were in the same state. Under this counterfactual,
where farmers can access markets across state borders, the country still experiences a 1.81
percent fall in GDP. However, this is 13.8 percent lower, implying a mitigation of the nega-
tive impacts. This illustrates how market distortions created by government policies could
hinder adaptation, and how removing the same could expand the adaptation portfolio of
farmers, thus helping countries mitigate the negative consequences of climate change.

8 Discussion and Conclusion

Extreme and frequent heat events, induced by climate change, are predicted to accelerate
crop failures, leading to increased food prices and greater food insecurity (IPCC 2022).
Given this portentous scenario, a higher magnitude and rate of farmer adaptation are cru-
cial to flatten the slope of the climate damage function. However, to what extent does the
effectiveness of adaptation responses depend on a country’s institutional framework? We
offer an insight into this question by studying the impact of institution-led distortions in
market competition on farmer climate-change adaptation in India. Using spatial varia-
tion in intermediarymarket power— an unintended consequence of regulations governing
agricultural marketing — we show that higher competition among buyers of agricultural
produce helps farmers alleviate the detrimental impact of extreme heat. This effect is pri-
marily driven by an increase in input usage in more competitive areas, a response to higher
expected prices post climate shocks. Subsequently, we structurally estimate a spatial trade
equilibrium model to test the implications of eliminating these market distortions under a
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climate change scenario. Our results indicate that there is potential for substantial welfare
gains if government policies distorting market competition are removed, highlighting the
positive role of free markets in facilitating adaptation.

Though our setting — distortions in intermediary competition emanating from Indian
agricultural laws — is a specific one, we believe that many of its characteristics, and the
lessons derived from it, apply more broadly. First, we show that well-intended govern-
ment policies can distort adaptation behavior. A similar result is outlined by Annan &
Schlenker (2015), who show that federal crop insurance can lead tomoral hazard, and thus,
discourage private adaptation efforts. Similarly, Kahn & Lall (2021) hypothesize that gov-
ernment investment in resilience infrastructure can encourage migration into risky areas,
increasing the population’s overall risk exposure. Second, intermediary power in agricul-
tural value chains is ubiquitous in developing economies, for e.g. Ecuador (Zavala 2020),
Kenya (Dhingra & Tenreyro 2020), and Rwanda (Macchiavello & Morjaria 2021), among
others. Our results indicate that adaptation to climate change in such countries will there-
fore, be renderedmore challenging as farmers would also need to overcome the distortions
to adaptation incentives caused by market power.

While State intervention in case of market failures is valuable, there needs to be recog-
nition that government and private individuals respond to each other (Kousky et al. 2006).
Therefore, these strategic interactions need to be internalized when designing policies, else
the resulting distortions arising from unintended consequences could have negative impli-
cations in a world afflicted by climate change.
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Appendices

A Figures

Notes: The cropland shares are computed based on 30m land cover data from the Global Food
Security-support Analysis Data 2015 (GFSAD30, 2017).

Figure A.1: Fraction of Cropland in each ECMWF (Weather) Gridcell
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(a) Districts in Sample for Analysing Effect of Extreme Heat (b) States in Sample for Analysing Effect of Competition
Notes: Panel (a) shows the 313 districts (filled in goldenrod color) covered in ICRISAT (2018)’s Apportioned database, which provides yields for 25 major crops district-wise from
1966-2017. The district boundaries pertain to the year 1966. There were a total of 349 districts in 1966. Therefore, the 36 districts not included in the ICRISAT (2018) database
are filled in grey. Panel (b) shows the 19 states (filled in goldenrod color) which constitute the sample used to analyse the effect of competition on various economic outcomes.
These states include 2,938 wholesale intermediary Mandis geolocated within their boundaries, which forms our final sample of markets. The state boundaries pertain to the
year 2020. 9 States and 8 Union Territories not included in the sample are filled in grey.

Figure A.2: ICRISAT Districts and APMC States in Sample
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(a) Effect of Extreme Heat on Yields: Kharif (b) Effect of Extreme Heat on Yields: Rabi

(c) Growing Season Distribution: Kharif (d) Growing Season Distribution: Rabi

(e) Map of Extreme Heat Exposure: Kharif (f) Map of Extreme Heat Exposure: Rabi

Notes:

Figure A.3: Coefficient Plot, GDD Distribution, and Extreme Heat Exposure by Season
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Table B.1: Effect of Temperature on Yields (Panel Approach): Robustness Tests

Dependent Variable: log(Yields)cdsy
Kharif Rabi

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Bin <15dsy 0.010∗∗∗ 0.002 0.011 0.004 0.004 0.002 0.004∗ 0.002 0.004∗∗∗ 0.003∗

(0.003) (0.006) (0.007) (0.003) (0.004) (0.001) (0.002) (0.003) (0.001) (0.001)
Bin 15-20dsy 0.007∗∗ 0.000 0.008 0.004 0.003

(0.003) (0.004) (0.005) (0.003) (0.003)
Bin 20-25dsy −0.002 −0.001 −0.004 0.000 0.001

(0.002) (0.001) (0.003) (0.001) (0.002)
Bin 25-30dsy −0.001 −0.003∗∗ −0.002 −0.004∗∗∗ −0.004∗∗ −0.001 −0.002 −0.002 −0.002∗ −0.001

(0.002) (0.001) (0.003) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)
Bin 30-35dsy −0.005∗∗ −0.005∗∗∗ −0.005 −0.006∗∗∗ −0.006∗∗∗ −0.009∗∗∗ −0.005∗∗ −0.009∗∗∗ −0.006∗∗∗ −0.006∗∗∗

(0.003) (0.002) (0.003) (0.001) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)
Bin >35dsy −0.011∗∗∗ −0.011∗∗∗ −0.011∗∗ −0.011∗∗∗ −0.011∗∗∗ −0.017∗∗∗ −0.014∗∗ −0.018∗∗∗ −0.014∗∗∗ −0.014∗∗∗

(0.004) (0.002) (0.004) (0.002) (0.002) (0.004) (0.004) (0.004) (0.004) (0.004)

Fixed Effects
District ! ! ! ! ! !

Crop × Year ! ! ! ! ! ! ! ! ! !

Crop × State ! !

State × Year ! ! ! ! ! !

District × Decade ! !

District × Crop × Decade ! !

State Time-Trend ! !

Num. obs. 125,279 125,279 125,279 125,279 125,279 60,429 60,429 60,429 60,429 60,429
Adj. R2 0.599 0.622 0.701 0.628 0.836 0.724 0.742 0.754 0.754 0.871

Notes: two-way clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table B.2: Effect of Temperature on Yields (Long-Differences): Robustness Tests

Dependent Variable: log(Y ields)cds
Cross Section 2-Period Panel 3-Period Panel

Kharif Rabi Kharif Rabi Kharif Rabi

Bin <15dst −0.038∗ −0.006 −0.007 −0.019∗ 0.036 0.006
(0.021) (0.018) (0.018) (0.010) (0.027) (0.015)

Bin 15-20dst −0.003 0.016 0.027
(0.019) (0.012) (0.022)

Bin 20-25dst −0.005 −0.039∗∗∗ −0.015
(0.012) (0.009) (0.009)

Bin 25-30dst −0.001 −0.008 −0.006 −0.035∗∗∗ −0.018∗∗∗ 0.001
(0.008) (0.016) (0.005) (0.010) (0.005) (0.012)

Bin 30-35dst −0.016∗∗ −0.011 −0.017∗∗∗ −0.031∗∗∗ −0.021∗∗∗ 0.000
(0.008) (0.014) (0.006) (0.007) (0.005) (0.008)

Bin >35dst −0.017∗ −0.034∗ −0.019∗∗∗ −0.037∗∗∗ −0.044∗∗∗ −0.050∗∗∗

(0.009) (0.019) (0.006) (0.013) (0.006) (0.017)

Time Period
Period 1 1990-2015 1990-2015 1970-1990 1970-1990 1970-1980 1970-1980
Period 2 1995-2015 1995-2015 1985-1995 1985-1995
Period 3 2000-2015 2000-2015

Fixed Effects
Crop × State ! ! ! ! ! !

Time Period ! ! ! !

Num. obs. 2,636 1,267 4,877 2,397 7,283 3,547
Adj. R2 0.510 0.382 0.219 0.227 0.185 0.121

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table B.3: Effect of Out-of-State Competition on Mitigation of Climate Shocks

Dependent Variable: log(Yields)cdsy
(1) (2) (3) (4) (5) (6)

Bin 30-35dsy −0.004∗∗ −0.004 −0.011∗∗∗ −0.002 −0.014∗∗∗ −0.010∗∗∗

(0.001) (0.003) (0.003) (0.002) (0.003) (0.003)
Bin >35dsy −0.022∗∗∗ −0.020∗∗∗ −0.011∗ −0.029∗∗∗ −0.015∗∗ −0.014∗∗∗

(0.004) (0.005) (0.006) (0.006) (0.006) (0.004)
Bin <15dsy × Comp’ds −0.000 −0.000 −0.000 −0.000 −0.000 −0.000

(0.000) (0.001) (0.000) (0.001) (0.000) (0.000)
Bin 15-20dsy × Comp’ds 0.000 0.001 0.000 0.000 0.000 −0.000

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000)
Bin 25-30dsy × Comp’ds −0.000 −0.000 0.001 −0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Bin 30-35dsy × Comp’ds −0.000 −0.000 0.000 −0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Bin >35dsy × Comp’ds 0.000 0.000 0.001 0.001 0.000 0.000

(0.001) (0.000) (0.000) (0.001) (0.000) (0.000)

Fixed Effects
Crop !

District ! !

Year ! !

Crop × District !

Crop × Year ! ! ! !

District × Year !

State × Year !

District × Crop × Decade ! !

Num. obs. 59,593 59,593 59,593 59,593 59,593 59,593
Adj. R2 0.623 0.614 0.805 0.635 0.829 0.844

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table B.4: Competition and Mitigation of Climate Shocks: Robustness Tests

Dependent Variable: log(Yields)cdsy
Comp2m Comp3ds

(1) (2) (3) (4) (5) (6) (7) (8)

Bin 30-35dsy −0.002 −0.002 −0.001 −0.006∗ −0.002 −0.003 −0.001 −0.011∗∗∗

(0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Bin >35dsy −0.038∗∗∗ −0.037∗∗∗ −0.043∗∗∗ −0.023∗∗ −0.034∗∗∗ −0.032∗∗∗ −0.040∗∗∗ −0.021∗∗

(0.010) (0.006) (0.009) (0.009) (0.007) (0.007) (0.006) (0.007)
Bin <15dsy × Compds −0.004 −0.003 −0.001 −0.005 −2.752 −2.399 −0.874 −0.723

(0.003) (0.003) (0.003) (0.004) (2.416) (2.394) (2.847) (2.055)
Bin 15-20dsy × Compds 0.005 0.005 0.004 0.000 3.383 2.851 3.571 1.456

(0.004) (0.003) (0.004) (0.002) (2.918) (2.954) (3.692) (2.545)
Bin 25-30dsy × Compds −0.002 −0.001 −0.001 −0.003 −1.209 −1.327 0.683 −3.176

(0.003) (0.003) (0.003) (0.003) (2.781) (2.817) (3.638) (2.189)
Bin 30-35dsy × Compds −0.003 −0.004 −0.003 −0.004 −2.321 −2.544 −2.490 −0.957

(0.004) (0.004) (0.003) (0.003) (1.957) (1.971) (2.401) (1.829)
Bin >35dsy × Compds 0.014∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.007∗ 9.973∗∗∗ 9.926∗∗∗ 11.719∗∗∗ 5.048∗

(0.005) (0.004) (0.005) (0.004) (2.733) (2.752) (3.185) (2.843)

Fixed Effects
Crop ! !

District ! ! ! !

Year ! !

Crop × Year ! ! ! ! ! !

District × Year ! !

District × Crop × Decade ! !

State Time-Trend ! ! ! ! ! !

Effect Mitigated (in %) 24.5 26.2 23.2 19.6 22.3 23.6 21.9 18.2

Num. obs. 59,783 59,783 59,783 59,783 59,783 59,783 59,783 59,783
Adj. R2 0.627 0.618 0.637 0.831 0.626 0.617 0.636 0.831

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table B.5: Competition and Mitigation of Climate Shocks—Arrivals:
Robustness Tests

Dependent Variable: log(Arrivals)cmdsy

(1) (2) (3) (4)

Bin 30-35dsy −0.009 −0.008 −0.013 −0.007
(0.008) (0.010) (0.012) (0.010)

Bin >35dsy −0.035∗ −0.036∗∗ −0.056∗∗ −0.030∗

(0.019) (0.016) (0.023) (0.015)
Bin <15dsy × Compmds 0.003 0.003 0.008 0.002

(0.004) (0.005) (0.006) (0.004)
Bin 15-20dsy × Compmds 0.012∗ 0.012 0.019∗∗ 0.009

(0.006) (0.007) (0.008) (0.007)
Bin 25-30dsy × Compmds 0.008∗∗ 0.008∗∗ 0.013∗∗ 0.006

(0.004) (0.004) (0.006) (0.004)
Bin 30-35dsy × Compmds 0.006∗ 0.006 0.010 0.004

(0.004) (0.004) (0.007) (0.004)
Bin >35dsy × Compmds 0.013∗ 0.013∗∗ 0.023∗∗ 0.010∗

(0.007) (0.006) (0.010) (0.006)

Fixed Effects
Market ! !

Crop × Year ! ! ! !

District × Decade !

Market × Decade !

Market × Year !

State × Year ! ! !

Effect Mitigated (in %) 65.2 65.4 74.8 60.2

Num. obs. 156,724 156,724 156,724 156,724
Adj. R2 0.434 0.451 0.449 0.429

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

C Derivations

C.1 Joint Distribution of TFP and Labor Intensity

Assume that the total factor productivity (TFP) of parcel ω in field f if allocated to crop k
in state i at time t, Afk

it (ω) ≥ 0, is Fréchet distributed with

Pr[Afk
it (ω) ≤ ak] = exp

{
−
(
ak/sk

)−θ
}

∀ k ∈ K (51)

where θ > 0 is a shape parameter, and s > 0 is the scale parameter. Denote E
[
Afk

it (ω)
]
=

Afk
it , which is given by
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Table B.6: Effect of Out-of-State Competition on Mitigation—Arrivals

Dependent Variable: log(Arrivals)cmdsy

(1) (2) (3) (4)

Bin 30-35dsy 0.001 0.001 0.001 0.001
(0.006) (0.006) (0.006) (0.006)

Bin >35dsy −0.019 −0.019 −0.025∗ −0.019
(0.012) (0.012) (0.014) (0.012)

Bin <15dsy × Comp’mds 0.000 0.000 −0.000 0.000
(0.001) (0.001) (0.001) (0.001)

Bin 15-20dsy × Comp’mds 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Bin 25-30dsy × Comp’mds −0.000 −0.000 −0.000 −0.000
(0.000) (0.000) (0.000) (0.000)

Bin 30-35dsy × Comp’mds −0.000 −0.000 −0.000 0.000
(0.000) (0.000) (0.001) (0.000)

Bin >35dsy × Comp’mds 0.001 0.000 0.000 0.000
(0.001) (0.000) (0.001) (0.001)

Fixed Effects
Market ! !

Crop × Year ! ! ! !

District × Decade !

Market × Decade !

Market × Year !

State × Year ! ! !

Num. obs. 148,814 148,814 148,814 148,814
Adj. R2 0.433 0.450 0.449 0.437

Notes: clustered robust standard errors in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

Afk
it = skΓ ((θ − 1)/θ) for θ > 1, ∀ k ∈ K

where Γ(·) denotes the Gamma function, i.e. Γ(t) =
+∞∫
0

ut−1 exp(−u)du for any t > 0.

Using the above definition, and setting γ ≡ Γ ((θ − 1)/θ)−θ, Equation (51) becomes

Pr[Afk
it (ω) ≤ ak] = exp

{
−γ
(
ak/Afk

it

)−θ
}

∀ k ∈ K (52)

Also, assume labor intensity, νfi (ω), which is constant across crops and time, is dis-
tributed Fréchet such that

Pr[νfi (ω) ≤ ν] = exp
{
−γ (ν/νi)−θ

}
(53)
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where νi denotes E
[
νfi (ω)

]
. Given that TFP and labor intensity are independently drawn

for each (i, f, ω, t), and using Equation (52) and (53), the joint CDF can, therefore, be writ-
ten as

Pr{Af1
it (ω) ≤ a1, . . . , AfK

it (ω) ≤ aK , νfi (ω) ≤ ν}

=
∏
k∈K

exp

{
−γ
(
ak/Afk

it

)−θ
}
· exp

{
−γ (ν/νi)−θ

}
= exp

{
−γ

[∑
k∈K

(ak/Afk
it )

−θ + (ν/νi)
−θ

]}

C.2 Probability of Choosing Market

Derivation of probability of choosing marketm for crop k, Equation (24) in text.

A farmer in state i chooses marketm ∈ M at time t if:

Pk
mitQ

fk
mit(ω) ≥ Pk

m′itQ
fk
m′it(ω) ∀ m′ ∈ M\{m} (54)

Our assumption of iceberg trade costs for farmers (Equation (20) in text) implies that
Qfk

mit(ω) = Qfk
it (ω)/τ

f
mt. Using this, we can rewrite the condition above. Therefore, a farmer

chooses marketm ∈ M at time t if:

τ fmt

Pk
mit

= min

{
τ f1t

Pk
1it

, . . ,
τ fmt

Pk
mit

, . . . ,
τ fMt

Pk
Mit

}
(55)

Our assumption of Weibull distributed trade cost shocks (Equation (22)), and the dis-
tribution’s property of being closed under scale transformations implies:

τ fmt

Pk
mit

∼ Weibull
(
λ,

Υ−1/λ(1 + ζdfm)

Pk
mit

)

Let Gf
mt denote the c.d.f. of

τ fmt

Pk
mit

. Then:

Gf
mt(ϵ) = Pr

[
τ fmt

Pk
mit

≤ ϵ

]

= 1− exp

(
−Υϵλ

(
Pk
mit

1 + ζdfm

)λ
)
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The probability of choosing marketm for crop k can now be written as:

Ωfmk
it = Pr

[
τ fmt

Pk
mit

≤ min
m′

{
τ fm′t

Pk
m′it

}]
= Pr

[
τ fmt

Pk
mit

≤ min
m′ ̸=m

{
τ fm′t

Pk
m′it

}]

=

∫ ∞

0

∏
m′ ̸=m

(
1−Gf

m′t(ϵ)
)
dGf

mt(ϵ)

We can use the c.d.f. Gf
m′t(ϵ) = 1 − exp

(
−Υϵλ

(
Pk
m′it

1+ζdf
m′

)λ
)
, and the corresponding

p.d.f. dGf
mt(ϵ) = λϵλ−1Υ

(
Pk
mit

1+ζdfm

)λ
exp

(
−Υϵλ

(
Pk
mit

1+ζdfm

)λ)
dϵ to get,

Ωfk
mit = λΥ

(
Pk
mit

1 + ζdfm

)λ ∫ ∞

0

∏
m′

exp

−Υϵλ

(
Pk
m′it

1 + ζdfm′

)λ
 ϵλ−1dϵ

= λΥ

(
Pk
mit

1 + ζdfm

)λ ∫ ∞

0
exp

−

∑
m′

(
Pk
m′it

1 + ζdfm′

)λ
Υϵλ

 ϵλ−1dϵ

= λΥ

(
Pk
mit

1 + ζdfm

)λ


− exp

(
−

(∑
m′

(
Pk
m′it

1+ζdf
m′

)λ
)
Υϵλ

)

λΥ
∑
m′

(
Pk
m′it

1+ζdf
m′

)λ


∞

0

=

(
Pk
mit

1 + ζ · dfm

)λ

∑
m′∈M

(
Pk
m′it

1 + ζ · dfm′

)λ

C.3 Profit Function of Farmer

Derivation of profits for a farmer growing crop k in farm f at time t, Equation (26) in text.

Given the production function in Equation (18), the profit for a farmer from parcel
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ω ∈ f in state iwho grows crop k at time t is given by:

πfkit (ω) = (Pk
1itA

fk
it (ω)L

fk
it (ω)− witN

fk
it (ω)) · Ωfk

1it + . . .

+ (Pk
MitA

fk
it (ω)L

fk
it (ω)− witN

fk
it (ω)) · Ωfk

Mit

=

( ∑
m′∈M

Ωfk
m′itP

k
m′it

)
(Afk

it (ω)L
fk
it (ω))−

( ∑
m′∈M

Ωfk
m′it

)
︸ ︷︷ ︸

=1

(witN
fk
it (ω))

Using the expression for the probability of choosing a market (Ωfk
mit) in Equation (25), we

can write the above as:

πfkit (ω) = Afk
it (ω)L

fk
it (ω)



∑
m′∈M

(Pk
m′it)

λ+1(
1 + ζdfm′

)λ
∑

m′∈M

(
Pk
m′it

1 + ζdfm′

)λ


︸ ︷︷ ︸

=Pk
it

− witN
fk
it (ω) (56)

C.4 Land Allocation Problem

Derivation of probability that a parcel ω of a field f located in state i is allocated to crop k at time t,
Equation (28) in text.

Conditional on choosing to grow a crop, farmer in farm f and state i chooses crop k at
time t if:

πfkit (ω) > πfk
′

it (ω) ∀ (k′ ̸= k) ∈ K

We can use the profit function in Equation (56) to write the above condition as:

Afk
it (ω)L

fk
it (ω)P

k
it − witN

fk
it (ω) > Afk′

it (ω)Lfk′

it (ω)Pk′

it− witN
fk′

it (ω) (57)

∀ (k′ ̸= k) ∈ K

The Leontief production function in Equation (18) impliesLfk
it (ω) =

Nfk
it (ω)

νfi (ω)
∀k ∈ K. Also,

once a farmer decides to grow a crop, they will use the entire land area available since
profits are an increasing function of production inputs. Thus, Lfk

it (ω) = Lfk′

it (ω) ∀ k′ ∈ K.
Equation (57) can then be written as:

Afk
it (ω)P

k
it > Afk′

it (ω)Pk′

it ∀ (k′ ̸= k) ∈ K (58)
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The farmer in state i also has an outside option which entails working in state i’s outside
sector and producing the outside good. With labor productivity denoted by A0

it, and pro-
duction under constant returns to scale using only labor, the profit maximisation problem
of state i’s outside sector can be written as:

max
{N0

it}
π0it = A0

itN
0
it − witN

0
it

Differentiating the above w.r.t. {N0
it}, we find that profit maximisation in state i’s outside

sector requires wit = A0
it. Therefore, a farmer chooses to grow crop k over working in state

i’s outside sector if:
Afk

it (ω)P
k
it > A0

itν
f
i (ω) (59)

Combining Equation (58) and Equation (59), we can deduce that a farmer in state i will
grow crop k in parcel ω ∈ f at time t if:

Afk
it (ω)P

k
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it } (60)

C.5 Quantity Supplied to Market

Derivation of quantity of crop k supplied to marketm in state i at time t, Equation (30) in text. Let
Qk

mit denote the quantity of crop k supplied to marketm in state i at time t. Then

Qk
mit =

∑
f∈Fi

Ωfk
mit

∫ 1

0
Qfk

it (ω)dω (61)

Assume that ω ∼ U[0, 1]. Thus, the probability density function of ω is:

f(ω) =

1 for 0 ≤ ω ≤ 1

0 for ω < 0 or ω > 1

Also, by law of iterated expectations,

E[Qfk
it (ω)] = Ek[E[Q

fk
it (ω)|A

fk
it (ω)P

k
it

= max{A0
itν

f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }]]
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Equation (61) can, therefore, be written as

Qk
mit =

∑
f∈Fi

Ωfk
mit∆

fk
it E[Qfk

it (ω)|A
fk
it (ω)P

k
it

= max{A0
itν

f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }] (62)

Furthermore, note that

E[Lfk
it (ω)|A

fk
it (ω)P

k
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }]

= E[Lfk
it (ω)]

=

∫ 1

0
Lfk
it (ω)f(ω)dω

= sfi

Using (i) the production function in Equation (18); (ii) the fact that conditional on choos-
ing crop k, Afk

it (ω) ⊥ Lfk
it (ω), and; (iii) the previous expression, Equation (62) can be

expressed as:

Qk
mit =

∑
f∈Fi

sfi Ω
fk
mit∆

fk
it E[Afk

it (ω)|A
fk
it (ω)P

k
it

= max{A0
itν

f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }] (63)

C.6 Average Conditional Productivity

Derivation of average productivity conditional on a crop being produced, Equation (31) in text.

Using the definition of a c.d.f. and formula for conditional probability, we can write:

Pr{Afk
it (ω) ≤ a|Afk

it (ω)P
k
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }}

=
1

∆fk
it

Pr{Afk
it (ω) ≤ a,A0

itν
f
i (ω) ≤ Pk

itA
fk
it (ω),P

l
itA

fl
it (ω) ≤ Pk

itA
fk
it (ω) ∀ l ̸= k}

=
1

∆fk
it

Pr

A0
itν

f
i (ω)

Pk
it

≤ Afk
it (ω) ≤ a,

P l
it

Pk
it

Afl
it (ω) ≤ Afk

it (ω) ≤ a ∀ l ̸= k
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Define Afk
it (ω) = χ as a Fréchet distributed random variable. Then,

Pr{Afk
it (ω) ≤ a|Afk

it (ω)P
k
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }}

=
1

∆fk
it

∫ a

0
Pr

A0
itν

f
i (ω)

Pk
it

≤ χ,
P l

it

Pk
it

Afl
it (ω) ≤ χ ∀ l ̸= k

 f(χ)dχ

=
1

∆fk
it

∫ a

0

∏
l ̸=k

Pr

P l
it

Pk
it

Afl
it (ω) ≤ χ

Pr

{
A0

itν
f
i (ω)

Pk
it

≤ χ

}
f(χ)dχ (64)

Given the p.d.f. for Fréchet distributed TFP and labor intensity in Equation (19), we can
derive the following c.d.f’s :

Pr
(
Afk

it (ω)P
k
it ≤ x

)
= exp

{
−γ
[
x/Afk

it P
k
it

]−θ
}

Pr
(
A0

it(ω)ν
f
i (ω) ≤ ν

)
= exp

{
−γ
[
ν/A0

itνi
]−θ
}

Using the above, Equation (64) can be written as

Pr{Afk
it (ω) ≤ a|Afk

it (ω)P
k
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }}

=

∫ a

0
exp

{
−γχ−θ

(Afk
it )

θ

∆fk
it

}
θγ

∆fk
it

(χ)−1−θ(Afk
it )

θdχ

= exp

−

[
a

Afk
it (∆

fk
it )

−1/θγ1/θ

]−θ


Thus, the c.d.f. is Fréchet distributed with shape parameter θ and scale parameter equiva-
lent to Afk

it (∆
fk
it )

−1/θγ1/θ. Then,

E[Afk
it (ω)|A

fk
it (ω)P

k
it = max{A0

itν
f
i (ω), A

f1
it (ω)P

1
it, . . . , A

fK
it (ω)PK

it }

= Afk
it (∆

fk
it )

−1/θγ1/θ Γ

(
1−

1

θ

)
= Afk

it × (∆fk
it )

−1/θ

where Γ(·) denotes the gamma function
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C.7 Consumers Utility Maximisation

Derivation of representative consumers’ consumption of crop k, imported from j to i, at time t;
Equation (36) in text.

Consumer solves the following maximisation problem:

max
{Cit,Ck

it,C
k
jit}

Uit = C0
it + βi lnCit

subject to

Cit =

[∑
k∈K

(βki )
1/φ(Ck

it)
(φ−1)/φ

]φ/(φ−1)

Ck
it =

∑
j∈I

(βkji)
1/σ(Ck

jit)
(σ−1)/σ

σ/(σ−1)

Eit ≥
∑
k∈K

∑
j∈I

[
Prk
jitC

k
jit

]
+ C0

it

Prk
jit = Ψk

jiPrk
jt

where Eit is household income for the representative consumer in state i at time t.

Setting up the Lagrangian and solving, we get

Ck
jit = (βi)

σ
(Cit)

(1−φ)σ/φ(
Ck
it

)(σ−φ)/φ

(
βki
)σ/φ

βkj i(
Ψk

jiPrk
jt

)σ (65)

Defining the CES price index associated with crop k in state n at time t as:

P̂rk
it ≡

[∑
n∈I

βkni

(
Ψk

niPrk
nt

)1−σ
]1/1−σ

(66)

Using Equation (65) and (66) in Equation (17) gives us:

Ck
it = (βi)

φ βki
(Cit)

1−φ(
P̂rk

it

)φ (67)
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Substituting Equation (67) in Equation (16) implies:

Cit = βi

[∑
k∈K

βki

(
P̂rk

it

)1−φ
]1/(φ−1)

(68)

Finally, use Equation (66), (67) and (68) in Equation (65) to get:

Ck
jit = βi

βki (P̂
rk
it )

1−φ∑
l∈K

βli(P̂
rl
it)

1−φ

βkji(Ψ
k
jiPrk

jt )
−σ∑

n∈I
βkni(Ψ

k
niPrk

nt )
1−σ

∀ i, j ∈ I, k ∈ K
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