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ABSTRACT: Wildfires at the wildland-urban interface (WUI) are increasingly common. The impacts
of such events are likely distinct from those that occur strictly in wildland areas, as we would expect an
elevated likelihood of soil contamination due to the combustion of anthropogenic materials. We
evaluated the impacts of a wildfire at the WUI on soil contamination, sampling soils from residential
and nonresidential areas located inside and outside the perimeter of the 2021 Marshall Fire in
Colorado, USA. We found that fire-affected residential properties had elevated concentrations of some
heavy metals (including Zn, Cu, Cr, and Pb), but the concentrations were still below levels of likely
concern, and we observed no corresponding increases in concentrations of polycyclic aromatic
hydrocarbons (PAHs). The postfire increases in metal concentrations were not generally observed in
the nonresidential soils, highlighting the importance of combustion of anthropogenic materials for
potential soil contamination from wildfires at the WUI. While soil contamination from the 2021
Marshall Fire was lower than expected, and likely below the threshold of concern for human health, our
study highlights some of the challenges that need to be considered when assessing soil contamination
after such fires.
KEYWORDS: soil contamination, wildfire, 2021 Marshall Fire, wildland-urban interface, PAH, heavy metals, mercury

■ INTRODUCTION
Wildfire risk at the wildland-urban interface (WUI) is expected
to increase in the future due to expansion of the WUI and
increased wildfire activity.1,2 The WUI, defined as the area
where houses meet or intermingle with undeveloped wildland
vegetation,3 is expanding in many regions across the globe.
This expansion is particularly evident in the United States,
where home construction from 1990 to 2010 increased the
WUI area from 581,000 km2 to 770,000 km2 and increased the
number of houses at the WUI from 30.8 million to 43.4
million.4 The frequency and size of WUI wildfires are expected
to increase as many wildland-urban regions become hotter,
drier, and experience more frequent drought events due to
climate change.2,5−7 The increased risk of catastrophic WUI
wildfire events is exacerbated by the elevated potential for
human-driven ignition, barriers to fire prevention and
suppression,8 and the high flammability of structures.2,9

Compared to wildland fires, WUI fires can be particularly
damaging to public health and costly for local economies, with
potentially larger societal repercussions. Unfortunately, there
are numerous global examples of the devastation wrought by
WUI wildfires, including multiple fires in Greece and Portugal
in 2023, the 2018 Camp Fire that destroyed Paradise,
California, and the 2023 Lahaina fire in Maui, one of the
deadliest wildfires in US history.

The impacts of wildland fires on air, water, and soil quality in
nonresidential areas have been relatively well-studied.10−13 In

contrast, the environmental impacts of wildfires that occur at
the WUI have received far less attention, a point highlighted in
a recent U.S. National Academies report.14 Addressing this
knowledge gap is crucial because the impacts of WUI wildfires
on soil quality are likely distinct from those of wildland fires,
including a greater potential for soil contamination. Whereas
wildland fires are typically fueled solely by vegetation
combustion, WUI fires can also be fueled by the partial or
complete combustion of structures, vehicles, and other
components of urban infrastructure. These anthropogenic
fuels often contain materials with high concentrations of toxic
compounds. These compounds include toxic metals and
polycyclic aromatic hydrocarbons (PAHs) that can be released
into soil after a fire event.15−21 In fact, studies that have
investigated soil contamination after fires fueled entirely, or in
part, by structures have often found evidence for significant
postfire soil contamination.16,22−25 This potential for postwild-
fire soil contamination could have long-term impacts on the
health of people, animals, and plants living in or near burned
areas of the WUI.14
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The primary objective of this study was to determine the
existence and extent of soil contamination following the 2021
Marshall Fire in Colorado, USA, a particularly catastrophic
example of the types of wildfire events that can occur at the
WUI. The fire started on December 30, 2021, and quickly
spread into suburban neighborhoods due to unseasonably
warm, dry, and exceptionally windy conditions. This resulted in
the most destructive wildfire in terms of structure loss in
Colorado history with over 1000 homes being destroyed across
a ∼2500 ha area. In fact, more homes were destroyed in the
Marshall Fire than in the two largest wildfires in recorded
Colorado history, both of which were ∼80,000 ha in size.7

We conducted an extensive and systematic sampling of soils
from burned and unburned residential properties that were
within or adjacent to the perimeter of the 2021 Marshall Fire.
In addition, we collected soils from nonresidential sites
(grasslands) inside and outside of the burn perimeter to
provide samples representative of a wildland wildfire. We
hypothesized that, given the presence of anthropogenic
materials in residential areas, burned residential soils would
have significantly higher concentrations of metals and PAHs
than unburned residential and nonresidential soils. Ultimately,
we sought to use this study of the 2021 Marshall Fire to better
assess how wildfires at the WUI may uniquely impact soil
quality, building the knowledge base needed to safeguard the
reestablishment and repopulation of impacted and adjacent
residential areas after WUI wildfire events.

■ MATERIALS AND METHODS
Study Area. The Marshall Fire began on 30 December

2021 in the semiarid Colorado Front Range urban corridor
situated in the foothills east of the Rocky Mountains at an
elevation of ∼1650 m (Figure 1). The climate in the region is
characterized by mean monthly temperatures typically ranging
from 1 to 23 °C (NOAA 2023a) and mean monthly
precipitation amounts between 20 and 80 mm (NOAA
2023b). The vegetation in the study area is mainly grasslands
interspersed with patches of Ponderosa pine (Pinus ponderosa)
forests. This land cover is mostly intact at the western to
central part of the study area, but an urban landscape
dominates the eastern area. Prior to the wildfire event,
conditions were unusually dry and warm for that time period,
and the fire moved rapidly from west to east with wind speeds
often exceeding 160 km h−1. The fire was contained on 31

December 2021 due to fire-fighting activities, a decrease in
wind speeds, and a snowfall event that occurred. For additional
details on the fire event and associated conditions, see Fovell et
al.26 and the NOAA Boulder Web site27 which also includes
images and videos taken from the area during and after the fire
event.
Site Selection. In March 2022, we developed a survey to

identify homeowners within the wildfire-affected area who
were willing to participate in this project. The survey was
distributed by the Cooperative Institute for Research in
Environmental Sciences (CIRES, University of Colorado
Boulder) and received nearly 300 responses. We selected 58
properties within or adjacent to the fire perimeter for sampling
(Figure 1), 29 properties that were completely burned and 29
properties that were completely unburned (noting that these
“unburned” properties may have received some wind-deposited
ash during the fire event, but were outside the fire perimeter
and were not directly damaged by the fire). We selected
properties that minimized geographic distances and other
potentially confounding landscape characteristics (including
topography and vegetation cover). We also did not select
properties where there was evidence of substantial postfire
debris removal or surface soil scraping. In addition to sampling
from these residential locations, we also selected burned and
unburned locations distributed across the Marshall Fire
footprint in neighboring, undeveloped (nonresidential) grass-
lands for comparable sampling of wildland conditions (Figure
1).
Field Sampling. Sampling sites were visited over a three-

week period in April 2022, four months after the Marshall Fire
with multiple rain and snow events occurring during this
period between the fire event and the soil sampling. Soil
samples were collected from four different locations at each of
the 59 residential properties selected for this study. Specifically,
lawns and landscaped areas were sampled at these properties,
avoiding any structural debris, nonsoil surfaces, or areas where
any alteration to the soil surface (including mulching or
scraping) was evident. For each soil sample, rocks and loose
plant material were scraped off the soil surface, and eight soil
cores (0-5 cm depth) were collected from four separate ∼1 m2

areas per property to obtain sufficient material for chemical
analyses (total of 32 soil cores from each property). These
sampling areas were selected without considering whether they
were on the windward or leeward side of the main structure

Figure 1. Map of the sampling area. Residential properties (triangles) and nonresidential grassland (circles) sampling locations are plotted with the
outline of the Marshall Fire (shaded in light orange). Burn status of sampling locations indicated with red (burned) and blue (unburned) symbols.
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during the fire event as this was often difficult to determine and
many properties did not have soil on all sides of the main
structure. In nearly all cases, the sampling areas were within 20
m of the main structure on each property. The eight soil cores
collected within each individual ∼1 m2 area were combined,
yielding four composited soil samples per residential property.
Each composited sample was sieved to ≤2 mm to remove
rocks and larger debris and then stored at 4 °C until further
analysis. In total, we collected 118 soil samples from the
residential properties for chemical analyses: 50% from burned
properties and 50% from unburned properties. We note that
there was no visible ash on the surface of the sampled soils. We
presume that any ash had been transported away from the
sampling site via wind or transported deeper into the soil
profile via rainfall or melting snow over the four-month period
between the fire event and the soil sampling.

Soil cores from 33 nonresidential, grassland locations were
also collected inside and outside of the fire perimeter (Figure
1). Soils from these grassland sampling sites were collected in
the same manner as described above with eight soil cores (0-5
cm) collected and composited per sampling location. This
effort yielded a total of 17 fire-affected nonresidential,
grassland soil samples collected from sites within the fire
perimeter and a corresponding 16 grassland soil samples
collected from neighboring sites outside the fire perimeter. No
ash was visible at the surface of these soils but we did note the
presence of partially combusted vegetation (shrubs, grass,
trees) in close proximity to all of the grassland sampling sites
located within the fire perimeter.
Bulk Soil Chemical Analyses. For measuring pH, total

nitrogen (TN), total carbon (TC), total inorganic carbon
(TIC), and total organic carbon (TOC), soils were air-dried
for 1 week and then ground using a roller mill for 24 h. A
subsample of each soil (100 ± 0.01 mg) was combusted at
>1000 °C within a CN 802 Carbon Nitrogen Elemental
Analyzer (VELP Scientific, Deer Park, NY) to determine TC
and TN content (LOD = 0.5% TC and 0.001 mg TN). TIC
was calculated using a modified pressure-calcimeter method.28

Total TOC was calculated by subtracting TIC from the TC.
Soil pH was measured in a 1:1 soil/water slurry.29

Soil Metal Analyses. EPA Method 620030 was used for X-
ray fluorescence (XRF) measurements of bulk soil concen-
trations of common metals. Air-dried, ground soil samples
were packed tightly into plastic XRF sampling cups (SC-4331-
32 mm) and covered with a 4 μm thick plastic film
(SpectroMembrane, Chemplex Industries). A hand-held XRF
analyzer (Olympus Delta) was used in a secure tabletop setup
to maximize accuracy of total metal concentrations with the
analyzer calibrated using a certified XRF reference material
before conducting analyses on the soil samples. We focused
our analyses only on elements that are potentially toxic (Zn,
Pb, Cu, Ni, Cr, As) or generally nontoxic elements that are
important soil nutrients (Ca, Fe, K, P, S, Mn, Cl).

A subset of the soil samples collected from the burned and
unburned residential properties (43 samples in total) were also
analyzed via inductively coupled plasma-mass spectrometry
(ICP-MS) to provide a better indication of metal bioavail-
ability. This subset was selected from 19 soils for which the
XRF results indicated high concentrations of metals of human
health concern and an additional 24 soils collected from six
properties (4 samples per property) which were heavily
impacted by the fire event. The air-dried and ground soil
samples were extracted using the Mehlich 3 method: a

nondigestion method that is more representative of metal
bioavailability than total digestion.31 The extractant solution
utilized trace metal-grade quality chemicals and all clean
glassware was thoroughly washed with pH 2 HCl. The extracts
were diluted with 2% nitric acid and then analyzed with an
ICP-MS instrument (NexION 350D, PerkinElmer, Waltham,
MA) following EPA Method 602032 with 6 calibration
standards and multiple internal standards run alongside the
soil samples.
Soil Polycyclic Aromatic Hydrocarbon (PAH) Anal-

yses. We selected a subset of 20 soil samples for PAH analyses
with one randomly chosen sample from each of 10 burned and
10 unburned properties. The ten burned samples were selected
from residential properties located in the center of
neighborhoods with extensive fire damage. The ten unburned
samples were selected from nearby residential properties that
were unaffected by the fire. PAH extraction was conducted
following a cyclohexane/acetone extraction using a Soxhlet
distillation extractor following a protocol described previ-
ously.33 A mixture of standards containing 5 ppm of
phenanthrene, fluoranthene, anthracene, naphthalene, chrys-
ene, acenaphthylene, pyrene, perylene, benzo[a]pyrene, benzo-
[a,h]anthracene, 9-methylanthracene, 9,10-dimethylanthra-
cene, 1-phenylnaphthalene, 2-ethylnaphthalene, and 1-methyl-
naphthalene. and a nitrobenzene-d5 (15 ppm) internal
standard was prepared for accurate quantification. This mixture
was serially diluted to 2.5, 1, 0.5, 0.1, and 0.05 ppm. Singular
standards were also made to confirm retention times. These
PAH compounds were selected since they are all known to be
toxic and are likely present in the WUI fire-impacted soils.

PAH concentrations in the Soxhlet extracts were quantified
using atmospheric pressure gas chromatography (APGC)
coupled with Waters Xevo G2 quadrupole time-of-flight
(QTOF) mass spectrometer (Milford, MA). One microliter
of each sample was injected and compounds separated using
an Agilent DB-5MS (30m × 250 μm × 0.25 μm) column. The
chromatography temperature gradient was set to 18 °C/min
with a final temperature of 330 °C resulting in a run time of
16.89 min. The inlet was split/splitless using a pulsed splitless
mode. The pulse time was 0.50 min. The mass spectrometer
was run in positive mode with 0.1 s of scan time at a collision
energy of 4 V. The analyzer was set to sensitivity mode with an
API source. The scan range was 50-1200 Da.
Soil Mercury Analyses. A subset of 31 soil samples from

both burned and unburned areas were analyzed for their
mercury concentrations on a Milestone Direct Mercury
Analyzer (DMA) at AIRIE, Fort Collins, Colorado. The
detection limit is about 5 ppb, and the external precision is
<5% at one standard deviation. AIRIE routinely verifies
external precision through analysis of an in-house organic-
rich garden soil and the NIST SRM 1632e. Standard data and
analytical details including stepwise temperature tests are
available at https://www.airieprogram.org. Whole soil samples
(full organic plus clastic components) were used for this study.
Sample sizes were between 50 and 200 mg of soil, optimized to
yield 3-12 ng total Hg for DMA analysis. Samples were
combusted at 650 °C to release all Hg.
Statistical Analyses. All statistical analyses were per-

formed in R (4.2.1). The XRF data and soil chemistry data
were based on a hierarchical experimental design with four
sampling locations per residential property. Thus, we used
linear mixed effects models to determine differences in metal
concentrations and soil characteristics between burned and
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unburned residential soils with property as a random effect in
the lme4 package.34 For each response variable, we
implemented a mixed effects model using the Gaussian error
distribution. When necessary, we used a log transformation of
the response variable to meet assumptions of the linear model.
Values that were beyond three absolute deviations from the
median value were considered outliers and were removed.35,36

Elemental concentrations below detection limits were adjusted
to the limit of detection divided by the square root of two. For
analyses where a hierarchical experimental design was not used
(including soil metal concentrations as determined by ICP-MS,
soil Hg and PAH concentrations, and analyses of the
nonresidential, grassland soils from burned and unburned
locations) we used parametric t tests and Wilcoxon rank-based
tests, depending on the distribution of the data.

■ RESULTS
Measured total soil nitrogen (TN), total inorganic carbon
(TIC), total organic carbon (TOC), and soil pH were not
statistically different between burned and unburned residential
properties (linear mixed effects models, p-value >0.05)
(Supplementary Table 1). However, TN concentrations in
burned nonresidential grassland soils (0.31 ± 0.13%) were
significantly lower as compared to unburned grassland soils
(0.36 ± 0.19%, linear mixed effect model, t = 2.25, p-value =
0.02) (Supplemental Table 2).

The results of the XRF analyses show that the fire-impacted
residential properties had significantly higher concentrations of
total soil Cr, Cu, Pb, and Zn (Figure 2, Supplemental Table 3)
which are typically considered toxic contaminants.37,38 Fire-
impacted properties had significantly lower concentrations of
Cl and K (Figure 3, Supplemental Table 3). For the
nonresidential grassland soils, total metal concentrations were
not significantly different between burned and unburned soils
(Supplemental Figure 1, Supplemental Table 4) with the
exception of Cl concentrations which were significantly lower
in the fire-impacted nonresidential grassland soils (Supple-
mental Figure 1, linear mixed effect model, t = 3.017, p-value =
0.003).

ICP-MS analyses of the bioavailable fraction demonstrated
that Zn, As, and P concentrations were significantly higher in
fire-impacted residential properties (Supplemental Figure 2,
Supplemental Table 5). We also measured mercury concen-
trations in a subset of samples and found that mercury
concentrations do not appear to be significantly different
between soils from burned and unburned residential properties
(Supplemental Figure 3, Supplemental Table 7).

Concentrations of the 12 targeted PAHs were not
statistically different between burned and unburned soils
from the residential properties (Supplemental Table 6).
Importantly, the concentrations of the five PAHs of most
concern for human health (anthracene, pyrene, benzo[a]-

Figure 2. Comparison of metal concentrations in unburned and burned soils from residential properties as measured by XRF, with the statistical
significance of the differences indicated for each element (ns = not significant). Note different scales on y-axes. These soil metal concentrations,
regardless of burn status, are all well below the concentrations typically considered to pose a risk to human health (see Discussion).

Figure 3. Comparison of the concentrations of generally nontoxic elements in soils from burned and unburned residential properties as measured
by XRF with the statistical significance of the differences indicated for each element (ns = not significant). Note different scales on y-axes.
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pyrene, fluoranthene, and napthalene, shown in Figure 4) were
not different between burned and unburned properties.

■ DISCUSSION
Some of the toxic metals measured, namely Cr, Cu, Pb, and Zn
were more concentrated in soils from burned residential
properties compared to soils from unburned properties (Figure
2). However, the concentrations of these metals were not
elevated in nonresidential grassland areas (Supplemental
Figure 1), highlighting the likely importance of anthropogenic
material combustion (including structures and vehicles) to
postfire soil contamination. These results are consistent with
previous studies which have also documented increases in soil
metal concentrations after fire events driven in part by the
burning of structures and other urban infrastructure.15,18,21−23

While other studies of wildland fires have observed increases in
soil PAH concentrations postfire,17,20 such increases were not
observed in this study (Figure 4, Supplemental Table 6).
However, it is difficult to place our PAH results in the context
of the broader literature given the lack of studies examining
WUI fire-driven soil PAH concentrations.

Given the elevated concentrations of some toxic metals in
burned residential properties, we sought to determine if soil
contamination from WUI wildfires could pose a threat to
human health. To determine the human health risk of the
quantified concentrations of the PAHs and metals, we used the
threshold concentration for dermal exposure to children in
residential soils using a Target Hazard Quotient (THQ) = 0.1,
a conservative approach to estimating toxicity/carcinogenicity
risk when exposed to multiple contaminants.39 We determined
that dermal exposures were the most plausible exposure
pathway for metal contaminants since it is unlikely that
residential soil would be ingested or inhaled in amounts of any
concern to human health. Although concentrations of toxic
metals did increase in fire-impacted residential soils (Figure 2),
their concentrations were well below the estimated thresholds
of concern. More specifically, we note that the concentrations
of Zn, Cr, As, Cu, and Pb measured in the collected soils, even
soils from burned residential properties, are all well below
thresholds commonly considered to pose a risk to human
health through dermal exposure.39

We acknowledge there are still unquantified risks associated
with these postfire changes in soil metal concentrations since
our analysis only quantified elemental concentrations. Thus,
we cannot exclude the possibility that the fire event mobilized

or transformed metals to increase their bioavailability/toxicity
and, perhaps, elevate their risk to human health. For instance,
even at low concentrations, methylmercury and hexavalent
chromium can threaten human health.40,41 Finally, we are
hesitant to define risk with specific threshold values for soil
metal concentrations given that the risk is context dependent.
Health risks associated with exposure to metals in wind-blown
soil (dust) could be very different from risks associated with
growing and consuming crops in fire-impacted soils or risks
associated with the movement of metals from soils into
aquifers.42 We need additional studies of soil contamination
after WUI wildfires to specifically examine how the
bioavailability of metals or other contaminants are affected
by wildfires and the potential for the transport of soil
contaminants into the atmosphere and water sources.

All wildfire events are unique, and the effects of wildfires on
soils will always be context dependent. The specific effects of
fire events on soil chemistry will vary depending on the
intensity and duration of the fire event, soil properties, and the
characteristics of the combusted materials.18,21 Thus, we need
to be careful not to extrapolate the results from this single
wildfire event to all wildfire events, including those in other
WUIs. The high winds associated with this fire event may have
dispersed contaminants away from the fire perimeter, reducing
the potential for local soil contamination. Likewise, the
dominant grassland vegetation type in the sampled area
could lead to distinct fire characteristics (faster moving, lower
intensity) than wildfire events that may occur in more forested
WUI areas. Also, we sampled soils four months after the fire
event, making it possible that contaminants were transported
away from surface soils by wind, surface water runoff,43 postfire
debris removal, or movement of contaminants deeper into the
soil profile with melting snow or rainfall. Similarly, we note
that we only collected soils from a small fraction of the
residential properties located within or adjacent to the fire
perimeter and we only collected soil from four locations per
property. Clearly there is a high degree of spatial variation in
soil PAH and metal concentrations (Figures 2−4). This
variation, which is likely a product of soil heterogeneity,
landscape position, ash transport and deposition, land-use
practices, proximity to combusted structures or vehicles, and
other factors, needs to be accounted for in future studies,
particularly in highly heterogeneous residential areas. Sampling
soils from fire-impacted residential areas is not trivial and

Figure 4. Concentrations of five PAHs of human health concern in residential soils. Note different scales on y-axes. We found no significant
differences in PAH concentrations between burned and unburned soil samples from the residential properties (Wilcoxon rank-based test, p > 0.05).
ns = not significant. For the concentrations of the other measured PAHs, see Supplemental Table 6.
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careful design of such sampling efforts is essential when trying
to quantify postfire soil contamination.

Soil contamination results from wildland fire studies may not
necessarily apply to WUI fires. The nature and distribution of
the contaminants are likely affected by the unique source of
combusted materials. WUI regions can be highly dissimilar,
and the wildfire events that may occur in these areas can be
highly variable. There is a clear need for more studies
specifically investigating the impacts of wildfires at the WUI on
potential soil contamination. WUI wildfires are likely to
become more common and pose greater risks to human
populations in coming years.2 Thus, additional information is
needed on the impacts of WUI fires on soil quality to guide
policy and provide informed recommendations for the
resettlement of areas affected by WUI wildfires.
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