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A B S T R A C T   

Over the past few years, the adoption of machine learning (ML) techniques has rapidly expanded across many 
fields of research including formulation science. At the same time, the use of lipid nanoparticles to enable the 
successful delivery of mRNA vaccines in the recent COVID-19 pandemic demonstrated the impact of formulation 
science. Yet, the design of advanced pharmaceutical formulations is non-trivial and primarily relies on costly and 
time-consuming wet-lab experimentation. In 2021, our group published a review article focused on the use of ML 
as a means to accelerate drug formulation development. Since then, the field has witnessed significant growth 
and progress, reflected by an increasing number of studies published in this area. This updated review sum-
marizes the current state of ML directed drug formulation development, introduces advanced ML techniques that 
have been implemented in formulation design and shares the progress on making self-driving laboratories a 
reality. Furthermore, this review highlights several future applications of ML yet to be fully exploited to advance 
drug formulation research and development.   

1. Introduction 

In recent years, there has been significant interest in the application 
of machine learning (ML), which is a branch of artificial intelligence, to 
accelerate development in the pharmaceutical sciences [1,2]. ML in-
volves the development of algorithms to analyze data and identify sta-
tistical patterns or relationships. These relationships can be leveraged to 
make predictions about new data, derive insights for decision making, 
and discover underlying structures or characteristics in complex data-
sets. The process of learning from the data involves using optimization 
techniques to adjust the algorithm’s parameters and improve its accu-
racy. Although both ML and statistics center around data analysis, they 
differ in their primary objective. Statistics traditionally focuses on hy-
pothesis testing, confidence intervals, and model interpretation, while 
ML emphasizes predictive modeling, optimization, and pattern recog-
nition [3]. Thus, ML has a wide range of applications, including image 
and speech recognition, natural language processing, and predictive 
analytics [4,5]. The broad applicability of these tools has given rise to a 
surge in the adoption of applied ML methods across many industrial 
sectors [6–8] including drug formulation design and development [1,2]. 

Pharmaceutical formulation plays a critical role in the development 
of safe, effective, and stable medicines. Through the optimization of 
drug formulations, pharmaceutical scientists can confer safety and/or 
efficacy improvements to therapeutic agents. These improvements can 
be the difference between clinical success and failure. For instance, it has 
recently been estimated that up to 90% of new therapeutics fail in 
clinical trials (from 2010 to 2017) due to poor efficacy, unacceptable 
toxicity, and/or poor drug-like properties [9]. However, optimized drug 
formulations can improve efficacy, reduce toxicity, and improve 
druggability. There are many examples of pharmaceutical formulations 
that have been designed to overcome such challenges. For example, 
Vyxeos® is a liposomal formulation, encapsulating a synergistic drug 
combination of daunorubicin and cytarabine, that results in an 
improvement in clinical efficacy relative to the free drug combination 
[10]. 

Optimizing drug formulations is essential for the development of safe 
and effective medicines, as it can significantly impact clinical success. 
However, the design and development of advanced pharmaceutical 
products is a complex process that requires significant time, resources, 
and expertise. This complexity arises from numerous factors, including 
the need to consider various parameters related to the drug, excipients, 
and manufacturing conditions within a high-dimensional design space. 
As a result, experimental evaluation of all parameter combinations is 
prohibitive. ML has the potential to enable pharmaceutical scientists to 
map the relationship between the composition and performance of 
advanced drug formulations to enhance a priori formulation design. 
Ultimately, ML tools may help navigate high-dimensional design spaces 
in search of drug formulations with targeted properties in a time and 
resource efficient manner. 

In 2021, our group published a review article that examined efforts 

to integrate ML into drug formulation development [1]. Specifically, the 
article introduced fundamental ML principles (e.g., different ML models 
and the concept of cross-validation) to readers by summarizing the ap-
plications of ML in pharmaceutical research dating back to the 1990s. A 
Web of ScienceTM search shows the number of research articles that 
include drug formulation development and aspects of ML has continued 
to grow (Fig. 1). Of course, in recent years the term “machine learning” 
has gained prominence in research terminology, replacing specific 
modeling techniques such as linear regression and principal component 
analysis. This shift reflects the growing recognition of the broader field 
of ML as a powerful tool for data analysis and prediction. For instance, 
linear regression and principal component analysis are now commonly 
thought of as introductory ML techniques for supervised and unsuper-
vised learning, respectively. While linear regression and principal 
component analysis are fundamental ML techniques, it is important to 
note that ML encompasses a vast array of methods and algorithms 
beyond these introductory techniques. More advanced approaches, such 
as random forest, support vector machine, neural network, kernel ridge 
regression, and deep learning, offer more complex and sophisticated 
modeling capabilities, each suited for different types of data and prob-
lem domains. It is these more advanced approaches that are typically 
incorporated into more recent studies to design advanced drug delivery 
systems. As shown in Fig. 1, there has been a surge in the use of ML, with 
50% of all papers from the past two decades published over the past two 
years. 

The current article builds on the previous article, with a summary of 
the latest studies that employ more advanced ML techniques to guide 
and accelerate development of a broader spectrum of drug formulations. 
In addition, this review outlines exciting future directions for the field. 
For a high-level introduction to ML methods and a stepwise summary of 
deploying ML pipelines in formulation development, we recommend the 
previous article [1]. For those with a more focused interest in a specific 
delivery strategy or dosage form, we recommend publications intro-
ducing ML in the context of solid dosage forms [11], hot-melt extrusion 
[12], nanomedicines [13], and 3D printing [14]. 

2. Recent applications of machine learning in advanced 
formulation development 

2.1. Advanced oral delivery systems 

Oral formulations are the most used medicines, accounting for 62% 
of all drug products currently on the US market [15]. This preference for 
oral products, in particular oral solid dosage forms, is generally attrib-
uted to their cost effectiveness, stability, ease of administration, and 
patient compliance [16]. Advanced oral delivery systems are designed to 
enhance the properties of therapeutic agents that are challenging to 
deliver via the gastrointestinal tract (i.e., due to poor solubility or in-
testinal permeability), or to provide extended release rates compared to 
conventional oral delivery systems (e.g., immediate-release tablets) 
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[17]. Recent research efforts in this space have investigated the use of 
ML to accelerate the design of various types of advanced oral delivery 
systems, including amorphous solid dispersions (ASD, [18–20]), 3D 
printed formulations [21–23]), and self-emulsifying drug delivery sys-
tems (SEDDS, [24,25]). For a more in-depth review of ML for oral dosage 
form development, the reader can refer to the recent article by Jiang et 
al [11]. 

2.1.1. Amorphous solid dispersions 
ASDs offer a solution to the challenges associated with poorly water- 

soluble drugs by combining the drug with an excipient, typically a 
polymer, to create a solid mixture lacking an ordered crystalline struc-
ture. ASDs provide several advantages over the corresponding crystal-
line form of the drug, including increased apparent solubility, faster 
dissolution rates, and improved bioavailability [26,27]. More than 20 
ASD products have been approved by the US FDA since 2000 [28]. The 
physicochemical nature of the excipients and drugs included in these 
formulations, as well as their relative proportions, can affect properties 
such as physical stability and dissolution rate of the ASD, and apparent 
solubility of the drug [29]. Consequently, the selection of suitable ex-
cipients has become a focus of many studies incorporating ML. For 
instance, Gao et al. compiled a dataset of 674 ASDs from the published 
literature [18]. The dataset was initially described by 374 input features, 
including ASD composition (e.g., polymer and drug types), in vitro 
release conditions (e.g., media), release sampling time points (i.e., 5 to 
60 min), and drug/polymer molecular descriptors (e.g., drug melting 
point and polymer topological properties). The number of input features 
was reduced to 40 by removing irrelevant features via recursive feature 
elimination [30]. Using this refined representation, two random forest 
(RF) models were trained. The first, a classifier, was trained to distin-
guish between two types of drug release profiles from ASDs, “spring- 
and-parachute” and “maintain supersaturation” which accounted for 
11% and 89% of the dataset, respectively. The second, a regressor, was 
trained only on the “maintain supersaturation” systems (i.e., 599 ASDs) 

to predict in vitro release. Both models were developed on 80% of the 
data (training set) using five-fold cross-validation and then evaluated 
using a test set (20%). The RF classifier had an accuracy of 0.95 (ACC, i. 
e., the fraction of correct predictions) and an F1 score of 0.97. The RF 
regressor had an accuracy of 0.781 R2 and a root mean square error 
(RMSE) of 14.4. The definitions, ranges, and equations of these and 
other commonly used ML metrics are summarized in Table 1. 

In addition to predicting drug release kinetics, ML has been 
employed to predict the size of ASD particles made by spray drying [20] 
as well as their physical stability during storage [19]. Schmitt et al. 
prepared 680 spray dried ASDs in-house and used the resulting dataset 
to train a panel of ML models. The best model was found to be an 
ensemble of support vector regressor (SVR), neural network (NN), and 
partial least squares (PLS). In the ensemble model, predictions were 
generated by averaging the outputs of the three models. The ensemble 
model exhibited a high degree of accuracy, as evidenced by a RMSE of 6 
µm (particle sizes in the dataset ranged from 8 to 104 µm). To predict 
ASD physical stability, Lee et al. [19] developed a NN multiclass clas-
sifier trained with a smaller open access dataset [31]. The feedforward 
NN was comprised of two hidden layers with 512 and 128 neurons, 
respectively. For multiclass classification, the output layer implemented 
a Softmax function. The dataset which contained 123 formulations, with 
103 used for model development by five-fold cross-validation and 20 for 
testing, was used to train ML models to predict ASD stability as a binary 
outcome over three timeframes (i.e., < 3, 3 to 6, > 6, months) [19]. The 
dataset used in this study was described by the authors as imbalanced. 
Imbalanced datasets can be biased toward the largest class and lead to 
prediction errors. To address this, the authors employed oversampling 
(i.e., synthetic minority oversampling technique, SMOTE) by creating 
synthetic instances of the minority class. Additionally, to further 
enhance the dataset and improve model classification performance, 
undersampling (i.e., edited nearest neighbour, ENN) was employed to 
remove instances at the boundaries of class predictions. The NN devel-
oped with this hybrid sampling strategy (SMOTE + ENN) was found to 

Fig. 1. Summary of the number of research articles focused on drug formulation and employing some aspect of machine learning. Sourced from Web of ScienceTM 

using keywords “linear regression” or “principal component analysis” or “machine learning” and “drug formulation” or “drug delivery” and applying the search to all 
fields (ALL). The resulting papers were limited to research articles published in the past two decades. The summation of publications across these categories is 
presented as the “Total”. These searches can be reproduced with the following search queries: “ALL = (“linear regression” NOT “machine learning” NOT “principal 
component analysis”) AND ALL = (drug formulation OR drug delivery)”; “ALL = (“principal component analysis” NOT “linear regression” NOT “machine learning”) 
AND ALL = (drug formulation OR drug delivery)”; “ALL = (“machine learning” NOT “principal component analysis” NOT “linear regression”) AND ALL = (drug 
formulation OR drug delivery)”. 
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be more accurate (ACC = 0.95; F1 score = 0.95) compared to the NN 
developed without sampling (ACC = 0.85; F1 score = 0.85) [32]. 

2.1.2. 3D printed oral formulations 
In comparison to traditional processes used to prepare oral dosage 

forms (e.g., hot-melt extrusion, spray drying), 3D printing offers addi-
tional flexibility and advantages during small-scale production [33]. ML 
has been incorporated into manufacturing oral dosage forms using 
various 3D printing techniques [14]. For instance, ML has been used 
with fused deposition modeling [22,23,34,35], selective laser sintering 
[36], and inkjet printing [37,38]. 

Fused deposition modeling is commonly used to develop extended- 
release tablets [39]. Compared to conventional immediate-release, 
extended-release tablets can maintain therapeutic drug levels in the 
body over a longer period, reduce side effects, and improve patient 
compliance [40]. Elbadawi et al. [35], Castro et al. [22], and Ong et al. 
[23] recently reported the use of ML to accelerate the development of 3D 
printed extended-release tablets via fused deposition modeling (Fig. 2). 
The ML models were integrated into a web-based application called 
M3DISEEN [41], using the tablet composition as inputs to rapidly pre-
dict manufacturing parameters and in vitro release profiles. 

M3DISEEN was initially developed by Elbadawi et al. through a 
study that included over 600 drug-loaded tablets that were extruded and 
3D printed in-house [35]. The dataset was randomly split into training 
(75%) and test (25%) sets. A panel of ML models including multi-linear 
regression (MLR), k-nearest neighbors (kNN), support vector machine 
(SVM), RF, and NN with a feedforward structure, were developed for the 
regression and classification of manufacturing parameters. These 
included: printability (binary classification: yes or no), filament me-
chanical characteristics (multiclass classification: unextrudable, flex-
ible, good, or brittle), extrusion and printing temperatures (both 

regression tasks). A five-fold cross-validation was applied to the training 
set to determine the optimal model hyperparameters. The optimal ML 
model for predicting individual parameters differed. For example, SVM 
achieved the highest ACC and F1 score predicting filament printability 
(0.76 for both), while the RF model was found to best predict printing 
temperature with a MAE of 8.4 ◦C and R2 of 0.83. 

To expand the scope of M3DISEEN, a follow-up study by Castro et al. 
focused on using a larger dataset collected from the literature (> 900 3D 
printed tablet formulations) [22]. The dataset was split into a training 
set (75%), a test set (25%), and 50-fold cross-validation was utilized on 
the training set. Castro et al. trained the same ML models as Elbadawi 
et al. and predicted the same manufacturing parameters with the addi-
tion of in vitro drug release (i.e., time to achieve 20%, 50%, and 80% 
release). Overall, the investigated models afforded relatively high ac-
curacies for each of the different prediction tasks. The classification RF 
and the regression feedforward NN models were found to be optimal in 
predicting printability (ACC/F1 score = 0.93–0.94) and drug release 
(MAE = 24.29 min, R2 = 0.86), respectively. Despite the promising 
performance of the models, the authors suggested that the dataset was 
imbalanced due to a lack of negative data (i.e., 85% of filaments were 
described as “good”). Thus, in a third study [23], the authors combined 
the literature-mined dataset [22] with their previously published 
experimental dataset [35]. The combined dataset was more balanced, 
with 66% of filaments described as “good”. NN, SVM, and RF models 
were trained using this expanded dataset to predict manufacturing pa-
rameters (but not in vitro release). The optimal model was a classifica-
tion RF, with a 0.84 ACC and a 0.80 F1 score when predicting 
printability and filament mechanical characteristics. The predictions for 
extrusion-and-printing temperatures had MAE values of 5.5 ◦C (R2 =

0.91) and 6.0 ◦C (R2 = 0.88), respectively. 

2.2. Long-acting injectable systems 

Long-acting injectables (LAIs) are formulations designed to provide 
sustained drug release following administration. The reduced fluctua-
tion in drug levels and administration frequency afforded by LAIs make 
them well-suited for the treatment of chronic diseases such as osteoar-
thritis [42], cancer [43], HIV [44], and mental illness [45]. Excluding 
on-body devices, LAIs currently in clinical use can be categorized into 
three primary groups: polymeric systems, micro and nanocrystal drug 
suspensions, and oil-based formulations [46]. Given these formulations 
release drugs over an extended period, in vitro release assays are critical 
characterization steps during preclinical development. The timeframe 
for drug release from LAI products ranges from one week (e.g., Bydur-
eon®) to six months (e.g., Trelstar®). As such, their extended in vitro 
drug release assays restrict iterative improvement in LAI design. To 
expedite the development cycle, researchers have investigated ML 
models to predict in vitro drug release a priori [47,48]. For example, our 
group recently trained 11 ML models on a dataset mined from the 
literature (i.e., 181 drug release profiles) to predict in vitro release of 
drugs from polymeric LAIs [47] (Fig. 3). The data was initially described 
by 17 features that included select physicochemical properties of the 
drugs, polymers, and LAIs, as well as experimental conditions, and three 
initial drug release values up to one day (T = 0.25, T = 0.5, and T = 1.0). 
These features were then used to train zero-shot and few-shot ML 
models. Zero-shot ML models were trained solely based on physico-
chemical properties and experimental conditions (14 features) without 
requiring early release data points. In contrast, few-shot ML models 
utilized early release data as additional input features (17 features in 
total). Both zero-shot and few-shot ML models were trained and assessed 
using a nested cross-validation approach, with the inner loop tuning 
hyperparameters and the outer loop evaluating model generalizability. 
Few-shot models were found to outperform zero-shot ones, as evaluated 
by the MAE on the outer loop. Amongst the few-shot models, LightGBM 
was optimal (i.e., lowest outer loop MAE of 0.114) and was further 
refined to remove highly correlated features. The complexity of ML 

Table 1 
A summary of commonly used metrics for machine learning model evaluation.  

Metric Definition Range 
[worst, 
best] 

Equation 

Accuracy (ACC) The fraction of 
correct predictions 
over all 
predictions. 

[0, 1] ACC =

number of correct predictions
number of all predictions 

F1 score The harmonic 
mean of the model 
precision and 
recall. 

[0, 1] F1 =
2

recall− 1 + precision− 1 

Coefficient of 
determination 
(R2) 

The proportion of 
the variance in the 
dependent 
variable that is 
explained by the 
model. 

(-∞ to 1] R2 = 1 −
SSres

SStot 

Root mean 
square error 
(RMSE) 

The square root of 
the average of 
squared 
differences 
between actual 
and predicted 
values. 

[0, ∞) 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(
yi − ŷi

)2

N

√

Mean absolute 
error (MAE) 

The average of the 
absolute 
differences 
between actual 
and predicted 
values. 

[0, ∞) 
MAE =

∑N
i=1

⃒
⃒yi − ŷi

⃒
⃒

N 

Mean absolute 
percentage 
error (MAPE) 

The average of 
absolute 
percentage 
differences 
between actual 
and predicted 
values. 

[0, ∞) 

MAPE =

∑N
i=1

⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒

N   
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models often makes them challenging to interpret in terms of how in-
dividual features impact overall prediction. To overcome this limitation, 
tools like SHapley Additive exPlanations (SHAP) and Local Interpretable 
Model-Agnostic Explanations have been developed, each employing 
unique strategies to elucidate model insight [49]. In this study, SHAP 
was used to interpret the LightGBM model. Collective SHAP values 
indicated that time and drug release at T = 1.0 were the most influential 
input features for predicting fractional drug release. As time varies for a 
specific LAI release profile, drug release at T = 1.0 serves as a proxy for 
initial drug release rates. Feature SHAP values were further analyzed 
using unsupervised clustering methods (T-distributed stochastic 
neighbor embedding and principal component analysis). This revealed 
interesting correlations between T = 1.0 and other feature values. In 
particular, it enabled the identification of attributes that strongly 

contributed to fast and slow drug release from LAIs. These insights were 
applied to design two drug-loaded poly(lactide-co-glycolide) (PLGA)- 
based microparticle (MP) formulations not previously seen by the 
model. Specifically, a fast-release drug-loaded PLGA MP (i.e., salicylic 
acid + low molecular weight PLGA) and a slow-release system (i.e., 
olaparib + high molecular weight PLGA) were prepared and charac-
terized in-house. Overall, good agreement was found between the pre-
dicted and experimental release profiles. The codes, dataset, and ML 
models developed through this study have been made openly available 
online [50]. 

In addition to predicting drug release, ML has been used to model 
other properties of LAIs including the average size of MPs [51,52] and 
drug loading levels [53]. To predict the size of MPs manufactured by 
electrospraying, Wang et al. trained ML models using data on 248 

Fig. 2. Summary of the studies conducted by Elbadawi et al. [35], Castro et al. [22], and Ong et al. [23] on the development of models to predict the processing 
parameters and properties of 3D printed tablets. The web application M3DISEEN [41] requests the composition of a 3D printed material as input and yields five 
predictions including the extrudability, extrusion temperature, printability, printing temperature, and in vitro release profile. 
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distinct PLGA formulations compiled from the literature [52]. Using this 
dataset, seven ML models (i.e., SVR, kernel ridge regression (KRR), kNN, 
feedforward NN (with 1–2 hidden layers and 4–20 neurons per layer), 
RF, XGBoost, and LightGBM) were trained and evaluated through a five- 
fold cross-validation. The XGBoost model was the optimal model 
showing the best accuracy (RMSE = 3.91 µm or MAPE = 50%). The 
generalizability of the model was then validated experimentally using 
13 new MP formulations prepared in-house. Additionally, drug loading 
of MPs has been predicted with ML [53]. Specifically, approximately 
100 MP formulations were prepared in-house using a hybrid extrusion- 
printing emulsification technique [53]. The resulting dataset was 
described with four manufacturing parameters (i.e., drug amount, 
printing speed, printing pressure, and nozzle size) as inputs and drug 
loading as the output. The data was split into training (85%) and test 
(15%) sets. The training set was used for model construction and 
hyperparameter optimization via a ten-fold cross-validation, and the test 
set was used for model evaluation. The authors concluded the decision 
tree (DT) outperformed other investigated models (RF, kNN, XGBoost, 
and LightGBM) with a MAE = 1.9 µg/mg and R2 = 0.93. The developed 
models were further validated by experimental studies with the DT 
showing a high accuracy (MAE = 2.6 µg/mg, R2 = 0.85). 

2.3. Nanomedicines 

Nanomedicines refer to nanotechnologies for use in a broad range of 
medical applications including prevention, monitoring, and treatment of 
disease. The recent success of lipid-based nanoparticles for delivery of 
mRNA and siRNA (i.e., Comirnaty™, and Spikevax™, Onpattro®) has 
significantly increased interest in nanomedicines. The development of 
nanomedicines has been an active area of research for decades, with 
early successes dating back to the 1990 s and the FDA approval of 
Doxil® (i.e., liposomal doxorubicin hydrochloride). Nanomedicines are 
relatively complex systems with their development posing significant 
challenges due to limitations in time, resources, and a historical reliance 
on Edisonian intuition. Overcoming these challenges requires a shift 
towards systematic and rational design strategies that leverage 
advanced computational tools, high-throughput screening, and data- 
driven approaches. By integrating interdisciplinary expertise and 
leveraging the power of emerging technologies, such as ML, it is possible 
to accelerate the development of nanomedicines, improve their prop-
erties, and perhaps even enhance their performance including thera-
peutic outcomes. In recent years, ML has been integrated into the design 
and evaluation of nanomedicines including to predict delivery efficiency 
[54–58], intratumoral biodistribution [59], drug release kinetics [60], 
cellular toxicity [54], stability [61], and particle size a priori [62,63]. 

For example, Gao et al. employed ML to predict the knockdown 

Fig. 3. Illustration of the workflow used by Bannigan et al. termed “data-driven LAI development” [47]. A total of 181 in vitro release profiles were collected from 
published literature and 17 input features were used to describe each experiment and predict fractional drug release. A panel of machine learning models were 
evaluated using a nested cross-validation approach. The optimal model, which had the lowest mean absolute error, was selected, further refined and subsequently 
analyzed to obtain insight into feature impact on the overall prediction. Two microparticle formulations were then designed prospectively using the developed 
model, with one formulation designed to provide fast drug release and another to provide slow release. 
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efficiency of siRNA-loaded lipid nanoparticles (LNPs) [56]. Two datasets 
were collected from the literature and used separately to train two 
LightGBM models for the prediction of in vitro (129 formulations) and in 
vivo (301 formulations) siRNA gene knockdown efficiency. The knock-
down efficiency was binarized using 50% as the threshold (i.e., > 50% 
knockdown efficiency was considered effective and vice versa). Both in 
vitro and in vivo models showed an ACC of around 0.8 for the classifi-
cation tasks. The in vitro model was then validated experimentally using 
six siRNA-loaded LNP formulations prepared in-house. Cell transfection 
studies showed that all siRNA-loaded LNPs were effective, and the 
model was able to predict performance for five of the six formulations (i. 
e., ACC = 0.833) [56]. This study provides an intriguing exploration of 
the potential application of ML in predicting the performance of siRNA- 
loaded LNPs. To further enhance the robustness of the model, it would 
be beneficial to evaluate its ability to also predict negative experimental 
outcomes. For practical applications, the model’s ability to accurately 
predict ineffective formulations is as important as its ability to predict 
effective ones. 

ML methods have also been employed to develop nanomedicines 
targeted for oncology applications [59]. These applications classically 
rely on the passive tumor uptake of nanomedicines driven by the 
enhanced permeability and retention (EPR) effect [64]. The EPR effect, 
described in detail elsewhere [65,66], is a heterogenous phenomenon 
purported to result in the accumulation of nanomedicines at solid tumor 
sites due to leaky blood vessels and poor lymphatic drainage. The het-
erogeneity of EPR can partially be attributed to varying tumor micro-
environments, including blood vessel density, cell density, and stromal 
components [67]. Through use of tissue section images as input features, 
advanced ML techniques can be employed to describe these complex 
microenvironments. For example, Tang et al. [59] proposed a generative 
adversarial network (GAN) to predict the intratumoral distribution of 
PEGylated CdSe/ZnS quantum dots (QDs) based on tumor microenvi-
ronment. GANs consist of two key components: a generator and a 
discriminator. The generator is responsible for producing synthetic data 
that is not present in the training dataset, while the discriminator’s role 
is to differentiate between real data from the training dataset and the 
synthetic data generated by the generator. These two components 
engage in an adversarial training process, continually improving their 
performance. The ultimate objective is for the generator to create data 
that is so convincing that it becomes indistinguishable from the real 
training data, demonstrating its ability to generate highly authentic 
data. In this study, the authors trained the GAN model on a dataset 
collected from an in-house study that involved intravenous adminis-
tration of PEGylated CdSe/ZnS QDs into six BALB/c mice bearing 4T1 
breast cancer tumors. After 24 h, the tumors were sectioned, blood 
vessels and cell nuclei were stained (with CD31/Alex-Fluour-488 and 
DAPI, respectively) before imaging. The resulting images comprised 
three channels: CD31, DAPI, and QD, corresponding to spatial infor-
mation on the blood vessels, cell nuclei, and QD biodistribution, 
respectively. The CD31 and DAPI channels accounted for tumor 
microenvironment and the QD channel showed the distribution of NPs 
in tumors. The images were decomposed into 512 × 512 pixel patches, 
resulting in 27,775 patches for training and 4,919 patches for validation. 
The GAN model was trained to predict QD intratumoral biodistribution 
(i.e., QD channel) using the tissue microenvironment (i.e., DAPI and 
CD31 channels). While the structure of and training strategies for GAN 
models are not the primary focus of this review, interested readers can 
refer to other publications for a more detailed introduction [68]. The 
developed GAN model accounted for 94% of the heterogeneity associ-
ated with the intratumoral biodistribution of the QDs (intraclass corre-
lation = 0.94 on the validation set). While this model is likely limited to 
the prediction of the intratumoral distribution of PEGylated CdSe/ZnS 
QDs administered to BALB/c mice with 4T1 tumors, and by using inputs 
of stained tumor sections, it does demonstrate an interesting application 
of generative models in nanomedicines. 

Up to this point, the studies discussed in this article have utilized 

supervised learning. Supervised learning relies on labeled datasets, 
using a specific set of input–output pairs to inform and guide the model’s 
prediction patterns. Supervised learning applications in formulation 
development usually involve training a panel of models with a static 
dataset. Models which afford the best performance are then employed to 
rapidly screen novel formulations in silico. However, the flexibility of 
this approach is limited by the availability of high quality, open-access 
datasets, and their inherent biases [1]. Ultimately, supervised learning 
models tend not to extrapolate accurately to out-of-distribution (OOD) 
examples, especially when their uncertainty is not calibrated, and they 
are not generalizable. This issue arises because the models are trained on 
a specific distribution of data, making them prone to misinterpretation 
when encountering examples that deviate significantly from this dis-
tribution. However, OOD examples can be potentially interesting as they 
encompass formulations with undetermined properties, thereby pre-
senting opportunities for true innovation. 

Active learning (AL) can be employed to mitigate this limitation. 
While AL does not inherently overcome the problem of OOD prediction, 
the dynamic nature of AL facilitates rationale exploration of OOD in-
stances. Compared to other similar approaches such as design of ex-
periments and response surface methodology which require human 
decision-making [69], AL autonomously refines its understanding of 
the design space and then recommends the next instances to be evalu-
ated. Bayesian optimization (BO) [70] is a prototypical AL strategy 
which combines a surrogate model (e.g., Gaussian processes, GPs), 
approximating the parameter-property relationship, with an acquisition 
function that determines which instances to investigate next. From a 
high level, GPs are a class of nonparametric models which apply normal 
distributions to infinite domains while retaining many attractive prop-
erties of normal distributions and estimate uncertainty. Currently, BO is 
considered the gold-standard approach to noisy black-box optimization 
[71]. Black-box optimization techniques are well-suited to drug 
formulation as the complex relationships between formulation 
manufacturing parameters and resulting formulation properties can be 
difficult to intuit explicitly. 

AL workflows can be described as an iterative “build-test-learn- 
design” cycle [72]. When applied to formulation design, this process 
begins with the preparation (“build”) and characterization (“test”) of a 
small set of formulations within the design space, serving as the initial 
dataset. This initial dataset is used to train the AL model (“learn”), which 
then proposes formulation(s) expected to exhibit target properties 
(“design”). The synergy of AL strategies like BO with automated/robotic 
laboratory equipment constitutes a self-driving laboratory (SDL) or 
materials acceleration platform (MAP) [73–78]. Both SDLs and MAPs 
are considered potential next-generation technologies for scientific 
experimentation and have been recently prototyped for the accelerated 
design of chemical syntheses [79,80], catalysts [81], inorganic materials 
[82–85] and are beginning to see adoption in formulation development 
[55,61,86]. 

As an illustrative example, Tamasi et al. [61] applied BO and a ro-
botic platform to accelerate the design of polymer-protein hybrids 
(PPHs) for three enzymes (glucose oxidase, Gox; lipase, Lip; and 
horseradish peroxidase, HRP) to maximize enzymatic activity (EA) 
following thermal stress (Fig. 4). Before conducting AL-guided experi-
mentation, the authors constructed an initial dataset of 504 PPHs using 
expert intuition. PPHs were described using copolymer characteristics, 
such as monomer composition and degree of polymerization. The au-
thors proceeded with batched BO (using a GP as a surrogate model), in 
which batches of 24 candidate copolymers were designed, built by 
automated photoinduced electron/energy transfer-reversible addition- 
fragmentation chain transfer (PET-RAFT) polymerization, and tested for 
EA following thermal stress. This “build-test-learn-design” loop was 
repeated for five batches, producing PPHs with enhanced thermosta-
bility for three distinct enzymes (46.2%, 31.5%, and 87.6% improve-
ment in comparison to the initial seed batch for HRP, Gox, and Lip, 
respectively). SHAP analysis was employed to further quantify the 
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contribution of the copolymer composition and degree of polymeriza-
tion to EA predictions. The SHAP analysis showed that the contributions 
of copolymer features to EA were found to be enzyme-dependent. For 
example, a degree of polymerization ranging from 50–75 increased the 
EA for HRP PPHs but decreased the EA for Lip PPHs. 

Overall, various ML techniques have been employed for formulation 
development in the last few years. A summary of the publications 
highlighted in this review are included in Table 2. 

3. Outlook 

Pharmaceutical formulation plays a key role in the drug develop-
ment process. It is a critical step in the design and development of drug 
products that are safe, effective, stable, and suitable for administration 
to patients. For decades the process of engineering such drug products 
has involved continuous cycles of experimentation and evaluation to 
identify formulation compositions. While this approach has resulted in 
the development of many drug products, it remains inefficient and 
resource intensive. In the last few years, ML has been applied increas-
ingly to accelerate the design of advanced drug delivery systems. Despite 
the advances that have been made, there remain several challenges 
hindering the widespread adoption of ML in pharmaceutical formulation 
development. 

The first challenge is the scarcity of professionals who possess 
expertise in both pharmaceutical formulation development and ML. As a 
result, meaningful integration of ML into formulation development is 
currently reliant on collaboration between pharmaceutical and com-
puter scientists. However, as the years go by it is expected that more and 
more individuals will possess both AI/ML knowledge and skills as well 
as domain specific expertise. Another challenge is the limited access to 
data, algorithms, or research findings for scientists to use freely, to 
modify, and to distribute. Although an increasing number of researchers 
are choosing to make their data and code open access (via public re-
positories such as Github and Zenodo), and some researchers have 
launched their own web-based applications to enable the use of trained 
ML models [41], there is still a reluctance to share many of the research 

outputs with the broader formulation community. As a result, other 
researchers may collect similar datasets and retrain models instead of 
building upon existing work. This will not only limit the potential 
impact of the research but also slow down the progress in the field as a 
whole. To fully realize the potential of ML-based formulation develop-
ment, it is essential to embrace open science principles and share 
research outputs in a transparent and accessible manner. Finally, there is 
what is often referred to as selective reporting in the scientific literature 
which makes it difficult to reproduce studies and to curate reliable 
datasets from publications [87,88]. Beyond this, as highlighted by 
Lammers et al. [89], there is a lack of standardization in studies con-
ducted to characterize formulations such as nanoparticles. The lack of 
open access datasets and selective reporting in the literature has driven 
many to pursue creation of their own datasets through integration of 
automation into their research [55,61,86]. 

In our previous review, we identified several advanced ML tech-
niques, including generative ML models and AL/SDL, that were yet to be 
fully utilized by pharmaceutical scientists but have the potential to 
further expedite formulation design [1]. In recent years, we have seen 
pioneering formulation studies integrating these approaches. For 
example, as summarized previously generative models have been 
deployed in a proof of concept study for the characterization of the 
intratumoral biodistribution of PEGylated CdSe/ZnS dots [59]. This is a 
pivotal study that may encourage more pharmaceutical scientists to 
employ generative models, which have been used in other fields (e.g., 
chemistry and materials science) [90,91]. Moreover, other research 
groups have begun to deploy AL for formulation optimization [55,61]. 
The goal of using AL is to autonomously select the next batch of ex-
periments to perform in such a way that the outcomes of these experi-
ments will be closer to the targets. When AL is combined with robotic 
systems that can automate these selected experiments, the resulting 
platforms are called SDLs [55,61]. The development of such autono-
mous platforms has immense transformative potential especially if more 
clinically relevant assays can be deployed in SDLs. On this front, there is 
increasing regulatory acceptance of organ-on-a-chip technology, which 
can be integrated into SDLs. For example, the 2021 report “Advancing 

Fig. 4. Illustration of the study by Tamasi et al. [61]. First, three possible enzymes (glucose oxidase, horseradish peroxidase and lipase) and eight possible monomers 
(ionic, hydrophilic, hydrophobic) are selected to prepare polymer-protein hybrids (PPH). The design space for the PPH consisted of one protein and up to four distinct 
monomers with a total degree of polymerization of 50–200 in increments of 25. From the set of 545,622 possibilities, 504 seed designs were selected and manu-
factured using an automated liquid handling platform. The PPHs were thermally stressed, and retention of enzymatic activity was evaluated. Bayesian optimization 
was then used to design batches of 24 new PPHs which were synthesized in a Build-Test-Learn-Design cycle. This was repeated a total of five times and the optimized 
PPHs showed a 30 to 90% improvement in the enzymatic activity compared to the seed designs. 
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New Alternative Methodologies at FDA” presents a strategic roadmap 
for incorporating cutting-edge organ-on-a-chip technology into pre- 
clinical development workflows. Reinforcing this trend, the US FDA 
Modernization Act indicates that the regulatory body will begin to 
accept toxicity data generated from organ-on-a-chip technology in place 
of pre-clinical animal models [92]. These developments are crucial in 
efforts to reduce our reliance on animal studies, which pose ethical 
concerns and require considerable amounts of time and resources. 
Overall, the adoption of SDL workflows could dramatically expedite 
preclinical development. 

In the coming years, the inclusion of ML is expected to play an 
increasingly important role in drug product development. With each 
passing year, advances in computational hardware and the increased 
availability of open access software packages increase ML accessibility 
[93]. Furthermore, a number of recently published papers aimed at 
pharmaceutical scientists also provide near-stepwise instructions to use 
ML approaches for drug formulation design [2,94–97]. The recent 
release of ChatGPT which was developed based on large language 
models (LLMs) has further reduced the barrier to entry for individuals 
interested in coding and training ML models. In addition, these LLMs 
also possess significant potential to rapidly collate and summarize 
relevant literature [98], which can streamline dataset construction for 
ML model training. However, building these LLMs requires substantial 
computational resources, expertise in ML, and access to a significant 
amount of training data. Therefore, developing LLMs from scratch may 

not be feasible for most individuals or small teams. Alternatively, in-
vestigators can leverage existing pre-trained models (e.g., GPT-3) which 
are readily available and can be fine-tuned for specific tasks with a 
smaller dataset. This approach allows researchers to benefit from the 
advancements made by companies like OpenAI while reducing the 
computational and data requirements for training such models. In par-
allel, automated ML (AutoML) has emerged in recent years [99]. These 
platforms (e.g., Google Cloud AutoML and Microsoft Azure) have 
increased accessibility to non-ML specialists by reducing the coding and 
data science skills required to deploy ML models. For example, using 
Google Cloud AutoML, two ophthalmology trainees with no coding 
background successfully built a deep learning model to classify the in-
dividual steps (i.e., phases) of cataract surgery from publicly available 
recordings of the procedure [100]. 

There also remain several exciting ML techniques that are yet to be 
fully explored for drug formulation development. For example, meta- 
learning is a promising approach to be considered. Meta-learning, 
often referred to as “learning to learn”, is a subfield of ML where algo-
rithms are designed to improve their knowledge or performance through 
experience gained from prior tasks [101,102]. This approach facilitates 
rapid adaptation to new tasks, leveraging previously learned concepts. 
In the context of drug formulation design, this could be a valuable 
strategy where the scarcity of training data poses a significant challenge 
for traditional ML approaches. SDLs, another platform requiring fewer 
data to initialize the model, still has significant unexploited potential. 

Table 2 
This table provides a summary of the studies highlighted in this review article that have incorporated machine learning techniques into drug formulation development. 
These studies are categorized based on the type of formulation, including advanced oral delivery systems, long-acting injectables, and nanomedicines.  

Formulation Therapeutic Model Target ML Algorithm Reference 

Advanced oral delivery 
systems 

Amorphous solid 
dispersion 

Small 
molecule 

In vitro release RF [18] 

Amorphous solid 
dispersion 

Small 
molecule 

Physical stability NN [19] 

Amorphous solid 
dispersion 

Small 
molecule 

Particle size PLS, Ridge, Lasso, SVR, KRR, XGBoost, NN, 
Ensemble: SVR, NN, PLS 

[20] 

3D printed formulation Small 
molecule 

Manufacturing parameter and 
in vitro release 

MLR, kNN, SVM, RF, NN [22] 

3D printed formulation Small 
molecule 

Manufacturing parameters NN, SVM, RF [23] 

Self-emulsifying drug 
delivery system 

Small 
molecule 

Apparent degree of 
supersaturation 

NN, PLS [24] 

Self-emulsifying drug 
delivery system 

Small 
molecule 

Pseudo-ternary phase diagram RF, kNN, DT, Naïve Bayes, SVM, LightGBM, 
XGBoost 

[25] 

3D printed formulation Small 
molecule 

Manufacturing parameters MLR, kNN, SVM, RF, NN [35] 

Long-acting injectable 
systems 

Polymer microparticle Small 
molecule 

In vitro release LightGBM, RF, NGB, XGBoost, DT, NN, kNN, SVR, 
Lasso, PLS, MLR 

[47] 

Polymer microparticle Small 
molecule 

In vitro release XGBoost, RF, LightGBM, ResNet, NN, DT, kNN, 
SVM, PLS, Lasso, Ridge, MLR 

[48] 

Polymer microparticle N/A Droplet size NN [51] 
Polymer microparticle N/A Particle size SVR, RF, NN, kRR, kNN, XGBoost, LightGBM [52] 
Polymer microparticle Small 

molecule 
Drug loading DT, RF, kNN, LightGBM, XGBoost [53] 

Nanomedicines Polymer nanoparticle Nucleic acid Delivery efficiency and 
cytotoxicity 

RF, XGBoost, DT, kNN, Relevance determination 
regression, Elastic net regression 

[54] 

Polyplex Nucleic acid Delivery efficiency Bayesian optimization [55] 
Lipid nanoparticle Nucleic acid Delivery efficiency LightGBM [56] 
Inorganic/organic 
nanoparticle 

N/A Delivery efficiency MLR, kNN, RF, Bagged model, GBM, SVM, NN [57] 

Lipid nanoparticle Nucleic acid Delivery efficiency LightGBM [58] 
Quantum dot N/A Intratumoral biodistribution GAN [59] 
Polymer nanoparticle Small 

molecule 
In vitro release NN [60] 

Polymer-protein hybrid Protein Thermal stability Bayesian optimization [61] 
Polymer nanoparticle N/A Particle size Neurofuzzy logic [62] 
Liposome N/A Particle size NN [63] 

Abbreviations: random forest (RF), neural network (NN), partial least squares (PLS), support vector regression (SVR), kernel ridge regression (KRR), extreme gradient 
boosted trees (XGBoost), multiple linear regression (MLR), k-nearest neighbor (kNN), support vector machines (SVM), light gradient boosting machine (LightGBM), 
residual neural network (ResNet), kernel ridge regression (kRR), gradient boosting model (GBM), generative adversarial network (GAN). N/A denotes that no ther-
apeutic agents were incorporated into the formulations. 
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Although there have been exciting advancements in SDLs [55,61,86], 
current platforms still require human intervention to assist with some 
procedures in the loop. However, with advancements in experimental 
automation and ML algorithms, we anticipate a reduction in human 
involvement and an increase in experimental throughput. As these new 
technologies continue to develop and mature, they will undoubtedly 
bring about transformative changes in the field of drug formulation 
design. 

Perhaps one of the best indicators of progress in this field is the 
emergence of start-up companies (such as Persist AI and Nanite Inc.) that 
intend to leverage ML techniques to monetize drug product develop-
ment as a service. These start-ups aim to capitalize on the potential of 
ML to accelerate drug development and reduce development costs. Be-
sides these start-ups, there is a growing adoption of ML by well- 
established companies. For example, Simulations Plus Inc. has 
employed ML to build ADMET Predictor® as a platform to assist in the 
prediction of the pharmacokinetics of a drug. These ML models have the 
potential to predict physiological based pharmacokinetic (PBPK) model 
parameters, a concept more thoroughly detailed elsewhere [103,104]. 
These models can be particularly advantageous for extended-release 
dosage forms such as LAIs, where pharmacokinetic studies require sig-
nificant time. 

In the coming years, as ML directed drug formulation development 
becomes more mainstream, we anticipate that many more companies 
will emerge at this interface between computer and pharmaceutical 
sciences. By enabling the identification of more promising candidate 
formulations earlier in the development process, the use of ML in the 
pharmaceutical industry is poised to drive significant progress. This will 
result in the development of safer, more effective, and more accessible 
drug products for patients. 
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