Overview:
At the end of November, conditions are mixed for wheat, maize, rice, and soybeans. For wheat, dry conditions persist in Argentina, southern Europe, Ukraine, the southern Russian Federation, and the US. Maize harvesting wraps up in the northern hemisphere under poor conditions in parts of Europe and Ukraine. In the southern hemisphere, dry conditions remain an issue in Argentina. Rice conditions are mixed in parts of China, Thailand, and the Philippines. Soybean harvesting wraps up in the northern hemisphere. In the southern hemisphere, Argentina is sowing into dryness, while conditions are favourable in Brazil.
At a glance for AMIS countries (as of November 28th)

Crop Conditions at a Glance

Wheat - In the southern hemisphere, harvesting is picking up speed with exceptional yields in Australia and poor yields in Argentina. In the northern hemisphere, winter wheat is under mixed conditions going into winter dormancy.

Maize - In the northern hemisphere, harvesting is wrapping up with overall mixed conditions, while in India, sowing of the Rabi crop is beginning. In the southern hemisphere, sowing continues in Argentina, Brazil, and South Africa.

Rice - In China, harvesting of late rice is wrapping up while India is transitioning from Kharif rice to Rabi rice. In Southeast Asia, wet-season rice harvesting is at its peak in northern countries while Indonesia wraps up dry-season rice harvesting.

Soybeans - In the northern hemisphere, harvesting is wrapping up in Canada, India, and Ukraine. In the southern hemisphere, sowing is beginning in Argentina under dryness, while progressing in Brazil under favourable conditions.

Forecasts at a Glance

Climate Influences – La Niña conditions are currently present and will likely continue into early 2023 (76% chance for December to February and 59% chance for January to March). Negative Indian Ocean Dipole (IOD) conditions weakened during November, and neutral IOD conditions are forecast for December.

Argentina – In the short term (two weeks) above-average precipitation is expected this week followed by below-average precipitation next week. The long-term (three months) forecast shows likely below-average precipitation.

Brazil – December precipitation is likely to be near average across the country. However, the long-term (three-month) forecast is for below-average rainfall across much of the central, south, southeast, and northeast regions.

The United States – Both the short-term (two weeks) forecast indicates likely below-average precipitation across most of the US, while the long-term forecast (three-month) indicates only above-average precipitation across the northern US.

* Assessment based on information as of November 28th.
Wheat Conditions for AMIS Countries

Wheat crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in other than favourable conditions the climatic drivers responsible for those conditions are displayed. Crop Season Specific Maps can be found in Appendix 2.

Wheat: In Australia, conditions are exceptional in most areas, despite ongoing flooding in parts of eastern Australia. Harvesting is well underway in northern and western cropping regions. In Argentina, yields are poor in most areas due to drought as harvesting is wrapping up in the north and beginning in the main producing areas; many plots have been used as forage. In the EU, conditions are generally favourable, albeit with delayed sowing in the southern countries due to low soil moisture levels. In the UK, conditions are favourable. In Türkiye, sowing is wrapping up under dry conditions in the west. In Ukraine, conditions are generally favourable, albeit with persistent dryness in Odessa and disruptions/security concerns in the southern and eastern regions due to the ongoing war. In the Russian Federation, sowing is wrapping up under generally favourable conditions except for dryness in the southern Caucasus. In China, winter wheat is under favourable conditions with ample soil moisture. In India, sowing is beginning in the northern and central states. In the US, dry conditions across the Great Plains from South Dakota to Texas continues to be a concern going into winter. In Canada, winter wheat sowing is complete and under favourable conditions going into winter dormancy.

* Assessment based on information as of October 28th
Maize Conditions for AMIS Countries

Maize: In the US, harvesting is wrapping up in the north under exceptional conditions in Michigan and Wisconsin. In Canada, harvesting is wrapping up under exceptional conditions in Ontario. In Mexico, harvesting is ongoing for the spring-summer season (larger season) under favourable conditions. In the EU, harvesting is wrapping up with below-average yields across most of western and southern Europe due to droughts and heatwaves. In Ukraine, harvesting slowly continues with just over half the crop collected so far, so many crops will likely be harvested during the winter or early spring. In India, sowing of the Rabi crop is beginning under favourable conditions. In Brazil, sowing of the spring-planted crop (smaller) is continuing under favourable conditions with a slight reduction in the total sown area expected compared to last year. In Argentina, sowing of the early-planted crop (typically larger season) continues at a slow pace due to dryness. Recent rains have improved conditions in some areas, but much of the intended sown area will likely shift to the later-planted crop (typically smaller season) in hopes of better soil moisture conditions. In South Africa, ample rainfall since mid-October has supported sowing and early development.

* Assessment based on information as of November 28th
Rice Conditions for AMIS Countries

Rice Conditions

Rice: In **China**, harvesting is wrapping up for late rice under mixed conditions due to persistent extreme heat and dry weather during the fertility period in the Yangtze River Basin. In **India**, harvesting of the Kharif crop is wrapping up in the southern and eastern states, while sowing is beginning for the Rabi crop. In **Indonesia**, harvesting of dry-season rice is wrapping up while the sowing of wet-season rice continues, albeit at a slower pace than last year. In **Viet Nam**, harvesting of wet-season rice is ongoing in the north. In the south, harvesting continues for the other wet-season rice (autumn-winter rice and seasonal rice), while sowing of dry-season rice begins in the Mekong Delta. In **Thailand**, harvesting of wet-season rice is ongoing under mixed conditions due to flooding in October that caused extensive damage in the Northeastern region. In the **Philippines**, wet-season rice is harvesting under mixed conditions as the passage of multiple tropical cyclones caused severe damage to crops in parts of Luzon and some parts of Visayas and Mindanao. In **Brazil**, sowing is wrapping up with a reduction in the total sown area.

* Assessment based on information as of November 28th
Soybeans: In Canada, harvesting is wrapping up under exceptional conditions in Ontario, Manitoba, and Quebec. In Ukraine, harvesting is wrapping up under generally favourable conditions outside of the occupied territories. In India, harvesting is wrapping up in the major producing states under favourable conditions. In Brazil, sowing is progressing under favourable conditions despite earlier delays due to adverse weather. An increase in total sown area is expected compared to last year. In Argentina, sowing is beginning in the main producing areas of Buenos Aires, Entre Ríos, Santa Fe, and Córdoba, as recent rains improved soil moisture conditions. However, the lack of surface soil moisture might impact the sowing progress, with southern Santa Fe and northern Buenos Aires being the most affected regions.
Climate Influences: La Niña Advisory and a Negative Indian Ocean Dipole

The El Niño-Southern Oscillation (ENSO) is currently in the La Niña phase. La Niña conditions will likely continue into early 2023 (76% chance for December to February and 59% chance for January to March), according to the IRI/CPC. Neutral ENSO conditions are likely after that.

Negative Indian Ocean Dipole (IOD) conditions weakened during November, and neutral IOD conditions are forecast for December, signifying the end of the negative IOD event.

Persistent La Niña conditions since late 2020 have produced high-impact, multi-year droughts in eastern East Africa, southern South America, Central and Southern Asia, and southern North America. The forecast continuation of La Niña for several more months raises concerns about continued dry conditions in these areas. For eastern East Africa, poor spring rains often follow fall La Niñas, as La Niña-like sea surface temperature gradients can linger after La Niña strength wanes. Recovery from severe drought can be a lengthy process, in which several seasons of improved precipitation may be needed to replenish reservoirs and groundwater, and negative socio-economic impacts can have long-lasting effects in food-insecure regions.

Source: UCSB Climate Hazards Center

Location and timing of likely above- and below-average precipitation related to La Niña events. Based upon observed precipitation during 21 La Niña events since 1950, wet and dry correspond to a statistically significant increase in the frequency of precipitation in the upper and lower thirds of historical values, respectively. Statistical significance at the 95% level is based on the resampling of precipitation during neutral El Niño-Southern Oscillation conditions. Source: FEWS NET & NOAA & CHC

* Assessment based on information as of November 28th
Global Two-week Forecast of Areas with Above or Below-Average Precipitation

The two-week forecast (Figure 1) indicates a likelihood of above-average rainfall over southern Peru, northern Chile, eastern Brazil, Portugal, Spain, southern France, Italy, Austria, Czechia, Slovakia, Hungary, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania, Kosovo, Serbia, western Romania, eastern Poland, southern Belarus, Moldova, Ukraine, southern and western Russian Federation, northwestern Kazakhstan, Morocco, southern Republic of Congo, northwest Angola, western South Africa, southern India, southern Thailand, Cambodia, southern Laos, southern Viet Nam, and the Philippines.

There is also a likelihood of below-average rainfall over the Great Lakes region of Canada and the US, northern Ecuador, western and southern Brazil, northern Bolivia, southern Paraguay, Uruguay, central Argentina, Norway, Finland, southern Türkiye, Iraq, Iran, Yemen, Ethiopia, Kenya, Somalia, southeast Tanzania, northern Mozambique, northern Madagascar, Uzbekistan, Turkmenistan, Tajikistan, Afghanistan, northern Pakistan, northwest India, western Nepal, China, eastern Russian Federation, Indonesia, and northern Australia.

* Assessment based on information as of November 28th
Argentina Outlook

The December 6 – 12th precipitation forecast anomaly (left) indicates slightly above-average rainfall over Buenos Aires, eastern La Pampa, southern Cordoba, Santa Fe, Entre Rios, eastern Santiago del Estero, and Chaco. During the same period, temperatures are likely to be above-average over all of the main agricultural areas. The December 13 – 19th precipitation forecast anomaly (center) shows likely below-average precipitation over Buenos Aires, eastern La Pampa, Cordoba, Santa Fe, Entre Rios, Corrientes, Misiones, Santiago del Estero, and Chaco. During the same period, temperatures are likely to be above average across most of the country.

The long-term December-January-February 2022/2023 forecast (right) shows likely below-average precipitation across much of the main agricultural areas except for western Buenos Aires, and La Pampa. During the same period, temperatures are likely to be above-average across Cordoba, Santa Fe, Entre Rios, San Luis, La Pampa, and Buenos Aires.

* Assessment based on information as of November 28th
Brazil Outlook
The December precipitation anomaly forecast (left) indicates generally average to near-average precipitation across most of the country. During the same period, temperatures are likely to be above-average across the Central-West and Southeast regions of the country.

The long-term November-December-January 2022/2023 forecast (right) indicates likely below-average precipitation across Tocantins, Goias, Bahi, Minas Gerais, Espírito Santo, Rio de Janeiro, southwest Mato Grosso do Sul, western Santa Catarina, and Rio Grande do Sul. During the same period, temperatures are likely to be slightly above-average across the eastern parts of the country and slightly below-average across the northwest portion of the country.

December and 3-month Precipitation Forecast Anomalies

* Assessment based on information as of November 28th
United States Outlook
The December 11-15th outlook indicates there is the possibility of above-average precipitation across most of the continental US, with the highest likelihood in the southern Great Lakes region and the southern Pacific Northwest. There is possible below-average precipitation in western Texas and southeastern New Mexico. During the same time, temperatures are likely to be above-average across the eastern US, while below average across the western US.

For the longer-term seasonal December-January-February (DJF) 2022-2023 outlook, below-average precipitation is possible across the entire southern part of the country and reaching up into the Central Great Plains. Conversely, above-average precipitation is likely in the Pacific Northwest and the Great Lakes region. During the same period, temperatures are likely to be above-average in the southeast and extend across the southern US and the entire East Coast. Temperatures are also likely to be below-average across the northern Great Plains across to the Pacific Northwest.

Short-term and the December-January-February 2022/2023 Precipitation Outlooks

The official 6 - 10 precipitation outlook issued on December 5th, 2022, and the extended December-January-February outlook issued on November 17th, 2022, from NOAA/National Weather Service, National Centers for Environmental Predictions, and Climate Prediction Center.

Images from https://www.cpc.ncep.noaa.gov/products/forecasts/.

Source: NOAA Climate Prediction Center

* Assessment based on information as of November 28th
Appendix 1: Terminology & Definitions

Crop Conditions:

Exceptional: Conditions are much better than average* at the time of reporting. This label is only used during the grain-filling through harvest stages.

Favourable: Conditions range from slightly lower to slightly better than average* at reporting time.

Watch: Conditions are not far from average* but there is a potential risk to final production. The crop can still recover to average or near average conditions if the ground situation improves. This label is only used during the planting-early vegetative and the vegetative-reproductive stages.

Poor: Crop conditions are well below average*. Crop yields are likely to be more than 5% below average. This is only used when conditions are not likely to be able to recover, and an impact on production is likely.

Out of Season: Crops are not currently planted or in development during this time.

No Data: No reliable source of data is available at this time.

*“Average” refers to the average conditions over the past 5 years.

Drivers:

These represent the key climatic drivers that are having an impact on crop condition status. They result in production impacts and can act as either positive or negative drivers of crop conditions.

Wet: Wetter than average (includes water logging and floods).

Dry: Drier than average.

Hot: Hotter than average.

Cool: Cooler than average or risk of frost damage.

Extreme Events: Catch-all for all other climate risks (i.e., hurricane, typhoon, frost, hail, winter kill, wind damage, etc.). When this category is used the analyst will also specify the type of extreme event in the text.

Delayed-Onset: Late start of the season

Crop Season Nomenclature:

In countries that contain multiple cropping seasons for the same crop, the following chart identifies the national season name associated with each crop season within the Crop Monitor. Within the Crop Monitor for AMIS countries, the larger producing season (most recent 5 years) has been assigned to the first season.

<table>
<thead>
<tr>
<th>Country</th>
<th>Crop</th>
<th>Season 1 Name</th>
<th>Season 2 Name</th>
<th>Season 3 Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Soybean</td>
<td>Spring-planted</td>
<td>Summer-planted</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>Maize</td>
<td>Summer-planted (larger producing season)</td>
<td>Spring-planted (smaller producing season)</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>Wheat</td>
<td>Winter-planted</td>
<td>Spring-planted</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Maize</td>
<td>Spring-planted</td>
<td>Summer-planted</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Rice</td>
<td>Single-season</td>
<td>Late-season</td>
<td>Early-season</td>
</tr>
<tr>
<td>Egypt</td>
<td>Rice</td>
<td>Summer-planted</td>
<td>Nili season (Nile Flood)</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Maize</td>
<td>Kharif</td>
<td>Rabi</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Rice</td>
<td>Kharif</td>
<td>Rabi</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>Rice</td>
<td>Wet-season</td>
<td>Dry-season</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>Maize</td>
<td>Spring-planted</td>
<td>Autumn-planted</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Maize</td>
<td>Main-season</td>
<td>Short-season</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>Rice</td>
<td>Main-season</td>
<td>Off-season</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>Rice</td>
<td>Wet-season</td>
<td>Dry-season</td>
<td></td>
</tr>
<tr>
<td>Russian Federation</td>
<td>Wheat</td>
<td>Winter-planted</td>
<td>Spring-planted</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>Rice</td>
<td>Wet-season</td>
<td>Dry-season</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>Wheat</td>
<td>Winter-planted</td>
<td>Spring-planted</td>
<td></td>
</tr>
<tr>
<td>Viet Nam</td>
<td>Rice</td>
<td>Wet-season</td>
<td>Dry-season</td>
<td></td>
</tr>
</tbody>
</table>

* Assessment based on information as of November 28th
Appendix 2: Crop Season-Specific Maps

Winter Planted Wheat Conditions for AMIS Countries

Winter wheat crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

Spring Planted Wheat Conditions for AMIS Countries

Spring wheat crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

* Assessment based on information as of November 28th
Maize 1 crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

Maize 2 crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

* Assessment based on information as of November 28th
Rice 1 crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

Rice 2 crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

* Assessment based on information as of November 28th
Rice 3 crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

Soybean 1 crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

* Assessment based on information as of November 28th
Soybean 2 crop conditions over main growing areas are based upon a combination of national and regional crop analyst inputs along with earth observation data. Crop condition information is based upon information as of November 28th. Where crops are in less than favourable conditions the climatic drivers responsible for those conditions are displayed. The crop calendar is provided as a point of reference to provide information on what part of the life cycle the crops are currently in for each area.

* Assessment based on information as of November 28th*
Prepared by members of the GEOGLAM Community of Practice
Coordinated by the University of Maryland with funding from NASA Harvest
Climatic Influences by Climate Hazards Center of UC Santa Barbara

The Crop Monitor is a part of GEOGLAM, a GEO global initiative.

Photo courtesy of Brian Barker

https://cropmonitor.org/

@GEOCropMonitor

Sources & Disclaimer

Sources and Disclaimers: The Crop Monitor assessment is conducted by GEOGLAM with inputs from the following partners (in alphabetical order): Argentina (Buenos Aires Grains Exchange, MAGyP), Asia Rice Countries (AFSIS, ASEAN+3 & Asia RiCE), Australia (ABARES & CSIRO), Brazil (CONAB & INPE), Canada (AAFC), China (CAS), EU (EC JRC MARS), Gro Intelligence, India (NCFC), Indonesia (LAPAN & MOA), International (CIMMYT, FAO GIEWS, IFPRI & IRRI), Japan (JAXA, MAFF), Mexico (SIAP), Russian Federation (IKI), South Africa (ARC & CSIR & GeoTerralmage & SANSA), Thailand (GISTDA & OAE), Ukraine (NASU-NSAU & UHMC), USA (NASA, UMD, USGS – FEWS NET, USDA (FAS, NASS)), Viet Nam (VAST & VIMHE-MARD). The findings and conclusions in this joint multiagency report are consensual statements from the GEOGLAM experts, and do not necessarily reflect those of the individual agencies represented by these experts.

More detailed information on the GEOGLAM crop assessments is available at https://cropmonitor.org