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• Unlike other talks, this is focused on work 
from 2011-2012

• Most Internet traffic used Reno or Cubic

• No QUIC

Surprisingly, still some relevance
(and Bjørn requested it!)



AQMs, transport protocols, other elements in the packet 
path should focus on controlling delay:

1. Because Internet traffic is NOT poisson

• that delusion led to years of attempts to control queue lengths: delay 
cannot be inferred from queue length

• see refs at https://pollere.net/Codel.html, esp “A Rant on Queues”

• CoDel article and RFC 8289 say these things well so this talk is more 
motivational than explanatory

2. Because delay is what makes users tear their hair out

• delay is universal - the amount of delay users will accept has been studied

• delay has bounds - upper bounds before protocols start to die



Review (Neal covered this Tuesday)

The “full buffer problem” mainly results from transport 
protocols trying to fill the “pipe” between source and 
destination by increasing the number of packets in flight until 
the sender gets an indication the pipe is full

Unfortunately, the “pipe” in this context includes filling up all 
the buffers along the way, forming a persistent queue of 
packets

Persistent queues mean added delay (latency) that has no 
benefit, e.g., data isn’t transferred at a higher rate, instead, full 
buffers leave no room for anyone else

Jim Gettys named the “full buffer problem”: bufferbloat



The “full buffer problem” or bufferbloat in action

RTTs measured with pping ~2016



The Internet has packet buffers to handle the normal burstiness of 
statistically multiplexed networks - good

Persistent or standing queues of packets can develop at “fast to slow” 
transitions - bad

Fat Pipe

Skinny Pipe

Buffer:
Waiting Room for the skinny pipe

A 1500B packet takes 400 µs @ 30 Mbps, 67 µs @ 180 Mbps, 12 µs at 1 Gbps
- 100 buffered packets in a “skinny pipe” of 180 Mbps adds 7ms delay; at 30 Mbps, 40ms delay

- The delay through the buffer experienced by dequeued packets is a measure that is both 
independent of line rates and packet sizes as well as being directly related to something we 
care about

transform packets into time:
at dequeue, measure how long each
packet spent in my buffer: “sojourn time”



After the initial burst of packets, the buffer settles into to a 5 (+/-1) 
packet standing queue:

Sender Receiver

How do we get standing queue?
Consider a TCP with a 25 packet window into a path with and intrinsic pipe 
size of 20 packets:
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CoDel’s approach to tracking “bad queue” can be summarized as:
“good queue goes away in ~RTT, bad queue hangs around”

Using observed (sojourn) delay 
experienced by dequeued 
packets

➡ minimum delay during a 
sliding window  interval 
measures bad queue…

➡ ... as long as window is at 
least an RTT wide

➡ this delay that “hangs 
around” is persistent 
queue
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"Interval is loosely related to RTT since it is chosen to give endpoints time to 
react without being so long that response times suffer.” - CoDel CACM paper



• CoDel’s default interval of 100 ms was chosen for 
continental Internet-wide traffic (not data center)

• CDNs mean intrinsic RTTs are frequently under 20 
ms; should we change the default?

- A too-short interval can be disastrous, though a small 
number of long RTT flows in a well-mixed bottleneck should 
be okay 

- A too-long interval means it takes longer for the dropping to 
ramp up



Target sojourn time: how low should we go?

• In the sliding interval, the smallest observed 
sojourn time needs to be under a target

• For a single transport connection, if at least one 
packet has a zero sojourn time during the interval, 
then there are no bloated packets

• Real life complications: forcing the delay to zero 
reduces link utilization 

• Shouldn’t drop a packet if there is nothing behind it



Kleinrock’s network power measure of throughput/
delay applied to a single flow gave a ballpark
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This suggested exploring target values in the range from 
1 to 15 ms

In developing CoDel, this range was explored in 
simulation with 5 ms consistently the most robust



How often should we drop?

• The number of flows, their type and RTT is unknown so 
proceed with caution in order to “learn” what drop spacing 
gets the sojourn time under target at least once per interval

• When a persistent queue is detected, enter dropping state and 
drop a packet (unless it’s the only one)

- persistent queue: measured sojourn time goes over the target and no 
subsequent sojourn time goes below target for an interval

• next drop time is set ~interval+target

- a sojourn time under target cancels the drop state

- after drop decrease next drop time by square root of number of drops since drop 
state was entered



#drops next drop ∆  
1 105 ms
2 74 ms
3 61 ms
4 53 ms
5 47 ms
6 43 ms

Consider an (apparently) unresponsive traffic mix at a buffer whose 
measured sojourn times have been >= target for an interval

- graph illustrates start of drop state and subsequent drops
- interval = 100 ms, target = 5 ms
- packet time on bottleneck = 1ms



- single transport flow with intrinsic RTT of 20 ms, initial window 10 packets in a burst
- thereafter increases window by a packet every (current) RTT
- Interval = 100 ms, target = 5 ms, packet time on bottleneck = 1ms

Reno/Cubic 
sender response 
halves window

CoDel exits drop state when 
sojourn time < target

Shorter RTT flow means we “undercontrol”
A longer RTT flow might receive multiple drops before it can respond
➡reality could be a mixture of flows and RTTs



Cool things about sojourn time as a delay metric: dynamic link
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From simulations with rate 
changing link, buffer size of 830 
packets (4 FTPs, 5 packmime 
connections/sec)

Buffer size is 830 packets 
(BDP@100Mbps)

CoDel adapts to rate changes in 
100ms

The throughput line for undersized 
buffer of 10 packets is about 75% 
less than with the larger buffer

And CoDel has the same 
throughput as tail drop but only 
2.7ms median delay, 5ms 75th 
percentile

Experimentally duplicated:
https://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/

830 pckt buffers: CoDel matches 
TD except at sudden bw increases



Cool things about sojourn time as a delay metric: multi-queue link

Sojourn time doesn’t care how many queues there are



Multiple queues can be employed to mitigate ack compression and unfair 
treatment of shorter flow (see fq_codel)

Smaller packets avoid waiting behind 
larger
Separating large flows improves fairness
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black dots are median over ~2min

Netflix video on 30 Mbps cable link: captured on home network 03.20.16
Delay variation: server-to-capture point (RTD is ~14.5ms). These are interleaved 3.2 Mbps streams

A delay-aware transport like BBR would be nice. Failing that, CoDel.

Netflix video on 180 Mbps cable downlink: captured 09.11.16 (RTD still ~14.5ms) 
Bursts cause shorter delays now but still need a burst-friendly AQM

~10Mbyte bursts spaced 20 sec apart per stream



Warning Label

Actual details of CoDel and fq_codel have 
evolved over time, new transports should never 
activate CoDel drop state

This talk used the original approach and was 
meant to give some intuition on CoDel and 
motivate measuring and controlling the thing 
we care about: delay (latency)


