
Why Control Delay?

Kathleen Nichols
Pollere LLC

Understanding Latency 2.0
December 13, 2023

• Unlike other talks, this is focused on work
from 2011-2012

• Most Internet traffic used Reno or Cubic

• No QUIC

Surprisingly, still some relevance
(and Bjørn requested it!)

AQMs, transport protocols, other elements in the packet
path should focus on controlling delay:

1. Because Internet traffic is NOT poisson

• that delusion led to years of attempts to control queue lengths: delay
cannot be inferred from queue length

• see refs at https://pollere.net/Codel.html, esp “A Rant on Queues”

• CoDel article and RFC 8289 say these things well so this talk is more
motivational than explanatory

2. Because delay is what makes users tear their hair out

• delay is universal - the amount of delay users will accept has been studied

• delay has bounds - upper bounds before protocols start to die

Review (Neal covered this Tuesday)

The “full buffer problem” mainly results from transport
protocols trying to fill the “pipe” between source and
destination by increasing the number of packets in flight until
the sender gets an indication the pipe is full

Unfortunately, the “pipe” in this context includes filling up all
the buffers along the way, forming a persistent queue of
packets

Persistent queues mean added delay (latency) that has no
benefit, e.g., data isn’t transferred at a higher rate, instead, full
buffers leave no room for anyone else

Jim Gettys named the “full buffer problem”: bufferbloat

The “full buffer problem” or bufferbloat in action

RTTs measured with pping ~2016

The Internet has packet buffers to handle the normal burstiness of
statistically multiplexed networks - good

Persistent or standing queues of packets can develop at “fast to slow”
transitions - bad

Fat Pipe

Skinny Pipe

Buffer:
Waiting Room for the skinny pipe

A 1500B packet takes 400 µs @ 30 Mbps, 67 µs @ 180 Mbps, 12 µs at 1 Gbps
- 100 buffered packets in a “skinny pipe” of 180 Mbps adds 7ms delay; at 30 Mbps, 40ms delay

- The delay through the buffer experienced by dequeued packets is a measure that is both
independent of line rates and packet sizes as well as being directly related to something we
care about

transform packets into time:
at dequeue, measure how long each
packet spent in my buffer: “sojourn time”

After the initial burst of packets, the buffer settles into to a 5 (+/-1)
packet standing queue:

Sender Receiver

How do we get standing queue?
Consider a TCP with a 25 packet window into a path with and intrinsic pipe
size of 20 packets:

Time

Q
ue

ue
 le

ng
th

good queue

bad queue

the classic
Van Jacobson

picture

CoDel’s approach to tracking “bad queue” can be summarized as:
“good queue goes away in ~RTT, bad queue hangs around”

Using observed (sojourn) delay
experienced by dequeued
packets

➡ minimum delay during a
sliding window interval
measures bad queue…

➡ ... as long as window is at
least an RTT wide

➡ this delay that “hangs
around” is persistent
queue

Time

Q
ue

ue
 le

ng
th

Interval

"Interval is loosely related to RTT since it is chosen to give endpoints time to
react without being so long that response times suffer.” - CoDel CACM paper

• CoDel’s default interval of 100 ms was chosen for
continental Internet-wide traffic (not data center)

• CDNs mean intrinsic RTTs are frequently under 20
ms; should we change the default?

- A too-short interval can be disastrous, though a small
number of long RTT flows in a well-mixed bottleneck should
be okay

- A too-long interval means it takes longer for the dropping to
ramp up

Target sojourn time: how low should we go?

• In the sliding interval, the smallest observed
sojourn time needs to be under a target

• For a single transport connection, if at least one
packet has a zero sojourn time during the interval,
then there are no bloated packets

• Real life complications: forcing the delay to zero
reduces link utilization

• Shouldn’t drop a packet if there is nothing behind it

Kleinrock’s network power measure of throughput/
delay applied to a single flow gave a ballpark

0 5 10 15 20 25 30

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Power vs. Target for a Reno TCP

Target (as % of RTT)

Av
er

ag
e

Po
we

r (
Xp

ut
/D

el
ay

)

This suggested exploring target values in the range from
1 to 15 ms

In developing CoDel, this range was explored in
simulation with 5 ms consistently the most robust

How often should we drop?

• The number of flows, their type and RTT is unknown so
proceed with caution in order to “learn” what drop spacing
gets the sojourn time under target at least once per interval

• When a persistent queue is detected, enter dropping state and
drop a packet (unless it’s the only one)

- persistent queue: measured sojourn time goes over the target and no
subsequent sojourn time goes below target for an interval

• next drop time is set ~interval+target

- a sojourn time under target cancels the drop state

- after drop decrease next drop time by square root of number of drops since drop
state was entered

#drops next drop ∆
1 105 ms
2 74 ms
3 61 ms
4 53 ms
5 47 ms
6 43 ms

Consider an (apparently) unresponsive traffic mix at a buffer whose
measured sojourn times have been >= target for an interval

- graph illustrates start of drop state and subsequent drops
- interval = 100 ms, target = 5 ms
- packet time on bottleneck = 1ms

- single transport flow with intrinsic RTT of 20 ms, initial window 10 packets in a burst
- thereafter increases window by a packet every (current) RTT
- Interval = 100 ms, target = 5 ms, packet time on bottleneck = 1ms

Reno/Cubic
sender response
halves window

CoDel exits drop state when
sojourn time < target

Shorter RTT flow means we “undercontrol”
A longer RTT flow might receive multiple drops before it can respond
➡reality could be a mixture of flows and RTTs

Cool things about sojourn time as a delay metric: dynamic link

100 Mbps 10Mbps 1Mbps 50Mbps 1Mbps

100Mbps

CoDel (black)
RED (red)
Tail drop (blue)

0

2

10

0 50 100 150 200 250 300

Per-Packet Queue Delay for Dynamic Bandwidth

blue: Tail drop
black: CoDel
red: RED

10 pckt buffers

0

5

10

15×105

0 50 100 150 200 250 300

Cumulative Kbytes transferred vs simulation time (sec)

From simulations with rate
changing link, buffer size of 830
packets (4 FTPs, 5 packmime
connections/sec)

Buffer size is 830 packets
(BDP@100Mbps)

CoDel adapts to rate changes in
100ms

The throughput line for undersized
buffer of 10 packets is about 75%
less than with the larger buffer

And CoDel has the same
throughput as tail drop but only
2.7ms median delay, 5ms 75th
percentile

Experimentally duplicated:
https://reproducingnetworkresearch.wordpress.com/2012/06/06/solving-bufferbloat-the-codel-way/

830 pckt buffers: CoDel matches
TD except at sudden bw increases

Cool things about sojourn time as a delay metric: multi-queue link

Sojourn time doesn’t care how many queues there are

Multiple queues can be employed to mitigate ack compression and unfair
treatment of shorter flow (see fq_codel)

Smaller packets avoid waiting behind
larger
Separating large flows improves fairness

se
co

nd
s

black dots are median over ~2min

Netflix video on 30 Mbps cable link: captured on home network 03.20.16
Delay variation: server-to-capture point (RTD is ~14.5ms). These are interleaved 3.2 Mbps streams

A delay-aware transport like BBR would be nice. Failing that, CoDel.

Netflix video on 180 Mbps cable downlink: captured 09.11.16 (RTD still ~14.5ms)
Bursts cause shorter delays now but still need a burst-friendly AQM

~10Mbyte bursts spaced 20 sec apart per stream

Warning Label

Actual details of CoDel and fq_codel have
evolved over time, new transports should never
activate CoDel drop state

This talk used the original approach and was
meant to give some intuition on CoDel and
motivate measuring and controlling the thing
we care about: delay (latency)

