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INTRODUCTION: WHY DO WE NEED ∞-CATEGORIES?

Higher category theory is nowadays a fundamental language: its power and its versatility has
been used extensively in the last thirty years of developments in mathematics. The language
of higher categories, and especially the language of∞-categories, provides the apt formalism
to study a wide array of homological and homotopical phenomena naturally arising in alge-
braic geometry, algebraic topology, commutative algebra, number theory, deformation theory,
theoretical physics, symplectic geometry. Yet, its high complexity, together with the cult-like
behavior of the mathematical community which naturally employs it1, leads the "non-initiated"
to look suspiciously at the idea of studying∞-category theory, because they simply consider
it to be a game which is not worth the candle. Indeed, the question that I get asked most
frequently from algebraic geometers who do not use the higher categorical language is the
following: why should I learn∞-category theory? The goal of this introduction is to provide a
(very partial) answer to this dilemma, showing some interesting examples which highlight how
higher category theory naturally enters the game in algebraic topology and algebraic geometry,
how it sheds a new epistemological light on many classical problems from both fields, and how
it can be used to bypass many technical and theoretical drawbacks.

Why we need them in algebraic topology.
Ever since the beginning of time, man has
yearned to study the homotopy category.

Montgomery Burns (more or less)

A rough, but truthful, description of the goals of algebraic topology could be the following:
algebraic topology is the study of algebraic invariants attached to topological spaces, which have to

1In the preface to [Mum75], Mumford states that «[algebraic geometry] seems to have acquired the reputation
of being esoteric, exclusive, and very abstract, with adherents who are secretly plotting to take over all the rest of
mathematics. In one respect this last point is accurate.» This claim continues to be true if one replaces "algebraic
geometry" with "higher category theory".
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be sufficiently computable and powerful at the same time. The meaning of sufficiently computable
is self-evident: we do not want a theory that makes it difficult to compute invariant even in the
most elementary or interesting cases. The meaning of sufficiently powerful is a bit trickier: we
want such invariants to be able to distinguish between spaces whenever they are "different"
with respect to some fixed equivalence relation. The most natural relation one can impose is
the one provided by the existence of homeomorphisms linking topological spaces, but this is
too rigid. The second most natural one is the equivalence relation provided by the existence of
homotopy equivalences linking topological spaces.

Definition (Homotopy equivalence). Let X and Y be two topological spaces, let f , g : X → Y
be two continuous maps between them.

(1) A homotopy between f and g is a map F : X × [0, 1]→ Y such that F(x , 0) = f (x) and
F(x , 1) = g(x). We denote the homotopy equivalence relation by ≃.

(2) A map f : X → Y is a homotopy equivalence between X and Y if there exists a map
g : Y → X such that f ◦ g ≃ idY and g ◦ f ≃ idX .

Most of the algebraic invariants that people encounter during their studies are indeed
homotopy invariant, that is, they turn homotopy equivalences into strict isomorphisms of
algebraic structures: see for example de Rham cohomology, singular homology and cohomology,
cellular homology, fundamental groups and higher homotopy groups. (Some standard references
for these theories are [BT82] and [Hat02].) This is a so fundamental feature of algebraic, and
especially homological, invariants, that in 1945 Eilenberg and Steenrod explicitly required
homology and cohomology theories to satisfy the homotopy invariance property ([ES45, Axiom
4]). Thus, it is natural to ask for the following: what if we worked directly with topological
spaces considered only up to homotopy equivalence?

Definition. The classical (or naive) homotopy category Ho(Top) is the category obtained from
the category Top of topological spaces in the following way.

(1) The class of objects of Ho(Top) is the same as the class of objects of Top.
(2) The set of maps between two topological spaces X and Y is the quotient set

[X , Y ] := HomTop(X , Y )/≃ .

It turns out that, in general, this is actually the wrong definition of a homotopy category of
topological spaces. Indeed, we are mainly interested in studying the homotopy type of a space X
– that is, its homotopy groups πn(X , x) for any choice of a base point x . Yet, in Ho(Top) we can
find topological spaces sharing the same homotopy type which however are not isomorphic.

Example. Let L be the long line, defined as follows. Letω1 be the first uncountable ordinal, and
consider the totally ordered set

R :=ω1 × (0, 1]

equipped with the lexographic order: (α, t) < (β , s) if and only if α < β or α = β and t < s.
This order induces a topology (the order topology), admitting a basis of open subsets of the form

((α, t), (β , s)) := {(γ, u) ∈ R | (α, t)< (γ, u)< (β , s)} .
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Taking Rop to be the same set as R equipped with the reverse order, then L is defined as

L :=
�

R
∐︂

Rop
�

/∼

where ∼ glues (0,1) ∈ Rop (its maximum) with (0,0) ∈ R (its minimum). L is connected, and
for any choice of a point l ∈ L and for any n ∈ N one has

πn(L, l)∼= {∗} .

Yet, the inclusion ι : {l} ˓→ L is not a homotopy equivalence, in spite of inducing isomorphisms
on every homotopy group: in particular, in Ho(Top) we lack the inverse of (the homotopy
equivalence class of) the inclusion ι. (Let us remark that this issue does not arise if X and Y are
both CW-complexes and there exists a map f : X → Y inducing isomorphisms on all homotopy
groups, in virtue of the Whitehead theorem: see for example [Hat02, Chapter 4, Theorem 4.5]).

What we actually need to do in order to really identify topological spaces with the same
homotopy type is to localize the category Top at the class Wof weak homotopy equivalences.
This procedure formally inverts the maps that induce isomorphisms on all homotopy groups via
the so called calculus of fractions (see [GZ67]). This machinery has fundamental size issues for
a general category Cwith a given choice Wof a class of weak equivalences; yet, these issues
do not arise when C admits a model category structure (see the original, enlightening, book
[Qui67], or [Hov99] for a standard and modern reference). This is the case for Top, and so we
have a well defined homotopy category hTop. Still, things are quite messy.

Example. Consider the multiplication map S1 ·2−→ S1 defined as eiθ ↦→ e2iθ . We are interested in
understanding what should be the correct colimit, in the homotopy setting, of the following
diagram.

S1 S1

{∗}

p

·2

(1) In Top, the pushout is modeled by the coproduct S1
∐︁

{∗} modulo the equivalence
relation generated by identifications eiθ ≃ {∗} whenever there exists a ϕ ∈ [0, 2π] such
that eiθ = e2iϕ and {∗} = p

�

eiϕ
�

. In particular, since both ·2 and p are surjective, it
follows that {∗} is in relation with all the points in S1, hence the strict pushout is just a
singleton. We have now a induced diagram of fundamental groups

Z Z

0 0

·2

which is however not a pushout of groups. In some sense, the strict pushout in Top
does not behave well with respect to the underlying homotopy type.

(2) In hTop, the induced diagram does not even admit a pushout! This is a standard compu-
tation in algebraic topology: first, observe that if Q was a pushout in hTop, then for any
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other pointed space (Z , z), the maps (up to homotopy) from Q to Z would compute
the elements of order 2 inside π1(Z , z). So by taking a fibration sequence of pointed
topological spaces

X −→ Y −→ Z

one would get a long exact sequence of generalized homotopy groups (see [May99,
Chapter 6])

. . .→
�

Q, Ω2Z
�

→ [Q, ΩX ]→ [Q, ΩY ]→ [Q, ΩZ]→ [Q, X ]→ [Q, Y ]→ [Q, Z] .

Here, ΩnX is the n-fold space of loops based at the base point x of X . But from the
Hopf fibration

S1 −→ S3 −→ S2

we get, after modding out the action of S0, a fibration

S1 −→ P3
R −→ S2.

Taking the maps up to homotopy equivalence from Q, using that π1(S1)∼= Z, π1(S2)∼= 0,
and π1(P3

R)
∼= Z/2Z, we get the sequence

. . . −→ 0 −→ Z/2Z −→ 0 −→ . . .

which is obviously non exact. This rules out the existence of such Q in hTop.
(3) Finally, we could try a more sophisticated approach. Recall that in concrete categories,

in order to compute the classical pushouts over a span

X Z

Y

f

g

we first build a coproduct of Y and Z , and then mod out by the relation that identifies
elements y ∈ Y and z ∈ Z whenever they are the image of the same element x ∈ X via
f and g, respectively. We can picture this idea by saying that y ≃ z in Y

∐︁

X Z if and
only if there is a diagram of identifications

x

z.y
gf

The collection of all these diagrams is a, possibly very convoluted, graph; yet, classical
pushouts only recover its connected components. But what if we do not forget about
these paths that connect elements from X , Y , and Z? We get a way finer topological
object, which has not only a set of connected components but also paths, 2-cells, and so
forth, which define a structure that remembers how the property of "being equal" holds
between elements. (To read more about this presentation of homotopy colimits, see the
excellent slides by Anel [Ane18].)
For topological spaces, in particular, a method to implement the above idea would
be to consider the disjoint union of the two topological spaces Y and Z (in our case
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case, a circle S1 and a singleton {∗}) and of the cylinder X × I over X (so, a honest
cylinder S1 × I). If we image X to be embedded in X × I via the inclusion x ↦→

�

x , 1
2

�

,
we can interpret our cylinder as a space parametrizing paths out of X in both directions.
Finally, we glue these three topological in the following way: we identify an element
(x , 0) ∈ X × I with f (x) ∈ Y , and points (x , 1) ∈ X × I with g(x) ∈ Z . In our case,
this is just the standard presentation of the mapping cone of the double covering map

S1 ·2
−→ S1, see for example [Hat02, Page 13]. This is the notion that makes the most

sense in the homotopical setting: for example, one can prove that this object indeed
has trivial homotopy groups except for the fundamental group, which is isomorphic
to Z/2Z, which is precisely what we needed in order to make the long sequence of
homotopy groups exact. However, this construction still has some drawbacks: it has no
immediate universal property, and does not agree with either the colimit in Top or in
hTop. Rather, it should be a "higher colimit" in a more natural environment.

A place where to study cohomological theories and stable homotopy theory. Homology and
cohomology theories, in order to be meaningful, are supposed to satisfy the Eilenberg-Steenrod
axioms. Among requirements concerning homotopy invariance, the existence of Mayer-Vietoris
sequences, and excision formulae, Eilenberg and Steenrod included also the following axiom of
dimension: any homology theory E• in degree n ̸= 0 should be trivial when evaluated on the
point, i.e., En({∗})∼= 0 for all n ̸= 0; the same has to hold for cohomology theories. By erasing
this axiom, one gets generalized homology and cohomology theories, such as algebraic K-theory
([Qui73]) and complex cobordism ([Ati61]). It turns out that these generalized cohomology
theories inhabit a no man’s land sitting between algebra and topology, in the following sense.

(1) By the Brown Representability Theorem ([Bro62, Theorem 1]), any cohomology theory
functor

En : hTopop −→ Set

is representable by (the representative of) a CW complex, denoted by K(E, n). Moreover,
Eilenberg-Steenrod axioms imply that for any X there exists an isomorphism En(X )∼=
En+1(ΣX ), where Σ is the suspension functor of pointed topological spaces. In virtue of
the adjunction Σ ⊣ Ω, one has a chain of isomorphisms

[X , K(E, n)]∼= En(X )∼= En+1(ΣX )∼= [ΣX , K(E, n+ 1)]∼= [X , ΩK(E, n+ 1)] ,

which yields an isomorphism in hTop (i.e., a real homotopy equivalence in Top) between
K(E, n) and ΩK(E, n+ 1). By the very same adjunction, the homotopy equivalences
K(E, n)

≃
−→ ΩK(E, n + 1) yield structure maps ΣK(E, n) → K(E, n + 1) for any non-

negative integer n.
(2) On the converse, for any topological space we can consider its n-fold suspension ΣnX ,

and define a collection of topological spaces

Σ∞X := {ΣnX }n∈N ,
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with structure maps Σ (Σ∞Xn) → Σ∞Xn+1 given by the natural homeomorphism
Σ(ΣnX )∼= Σn+1X . Taking the set of functors

[−,ΣnX ] : hTop −→ Set

produces a generalized cohomology theory.

Since the reduced suspension functor Σ is equivalent to taking the smash product of pointed
topological spaces with S1, where the smash product of two pointed topological spaces (X , x)
and (Y, y) is defined as

(X , x)∧ (Y, y) := ((X × Y )/ (X ∨ Y ) , (x0, y0)) ,

we can abstract these key ideas as follows.

Definition ([Lim58; Ada74]). A topological spectrum E• is a collection of pointed topological
spaces {En}n∈N together with maps S1 ∧ En→ En+1.

Actually, we have just defined topological sequential spectra, but there are many other
sligthly different notions that shape the same underlying, homotopical theory: topological
Ω-spectra, sequential spectra in simplicial sets, excisive functors from finite pointed simplicial
sets to pointed simplicial sets, combinatorial spectra, and so on. All of these objects are gathered
in appropriate categories which moreover admit model structures, and all of these categories are
linked by (a zig zag of) Quillen equivalences, hence they present the same homotopy category,
which is usually called stable homotopy category, or just stable category, and is denoted by hSp.
The stable homotopy category is equipped with a∞-loop space functor

Ω∞ : hSp −→ hTop,

which agrees with taking the standard free∞-loop space construction for a pointed topological
space

QX := colim
k→∞

ΩkΣkX .

Yet, in hSp, the ∞-loop space is the right adjoint in an adjoint equivalence, where the left
adjoint is the suspension spectrum functor

Σ∞ : hTop −→ hSp.

The fact that taking loops becomes an invertible operation in hSp makes this category the natural
environment where to study stable homotopy groups of topological spaces, i.e., the homotopy
groups

πs
n(X ) := colim

k∈N
πn+k(Σ

kX ).

These stable homotopy groups have been widely studied because of the discovery of some
important results concerning the stabilization of homotopy groups of n-connected topological
spaces, such as the Freudenthal Suspension Theorem ([Fre38; Swi75]).

The stable homotopy category hSp enjoys many other nice properties. It admits a symmetric
monoidal structure given by the smash product of spectra, with monoidal unit given by the



viii

sphere spectrum S := Σ∞S0, and there is a natural transformation

Σ∞ (X ∧ Y ) −→ Σ∞X ∧Σ∞Y

which agrees with the symmetric monoidal structures on both hTop and hSp. In particular, one
can think of the stable homotopy category as a natural environment where to study "non-linear
homological algebra": spectra play the role of abelian groups in the topological/homotopical
setting, and taking monoids with respect to the smash product produces homotopy-coherent
algebraic structures called ring spectra, which recover ordinary homological algebra by consid-
ering the cohomology theory with coefficients in any commutative ring. Yet, no model category
can present the stable homotopy category and enjoy strict variants of all the above properties
(i.e., monoidality under smash product, adjunction between Σ∞ and Ω∞, etc.): for reference,
see the landmark paper [Lew91]. Given how badly homotopy categories of model categories
behave – they are not even concrete categories, see the original paper for topological spaces
[Fre70] and its recent generalization [LL18] – this is a huge problem if one wants to study of
algebraic topology by the means of ring spectra.

Why we need them in algebraic geometry. Historically, homological algebra arose thanks
to the interest and efforts by Riemann, Betti, Poincaré, Noether (who first realized that Betti
numbers actually computed the rank and the torsion of some graded abelian group), de Rham,
and a lot of other mathematicians who wanted to study manifolds and topological spaces
between the ending of the 19th century and the first half of the 20th century: a beautiful
account of the history of its developments is to be found in [Wei99]. Yet, it was only between
1950 and 1956 that Cartan and Eilenberg wrote a book which extracted the main algebraic
and theoretical (now we would say: homological) tools out of the machinery usually applied to
topological spaces, coining the phrase homological algebra (which was moreover chosen as the
title for their book [CE56]). Immediately, Grothendieck and all the mathematicians belonging
to European algebraic geometry school appropriated this formalism in order to study problems
arising from complex algebraic geometry, number theory and commutative algebra. One of the
most important results in this direction, nowadays hailed as the beginning of modern derived
algebraic geometry, is the following.

Theorem (Serre’s intersection formula, [Ser65]). Let Y and Z be two closed subschemes of an
ambient space X , cut out by two sheaves of ideals IY and IZ , respectively. Then the intersection
multiplicity at a point x in the set-theoretic intersection Y ∩X is computed by the Euler characteristic

m := m(x , Y, Z) =
∑︂

i⩾0

(−1)i lengthOX ,x

�

TorOX
i (OX/IY , OX/IZ)

�

.

The groundbreaking idea of this formula is that, if Y and Z do not meet transversally and they
are not at least Cohen-Macaulay, the merely scheme-theoretic data are not enough to compute
the multiplicity, for which one needs to taking into account some higher order corrections
of homological nature. Similar ideas and challenges, such as the need for an extension of
Serre duality to arbitrary proper schemes over a base, led soon to the development of derived
categories of quasi-coherent sheaves on schemes, and in general derived categories of abelian
categories, where homological operations such as deriving left and right exact functors naturally
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take place. The derived category hD(A) of an abelian category Awas introduced by Verdier
in his PhD thesis [Ver96], and even if it was not yet apparent, such construction was actually
the shadow of taking the homotopy theory of a model structure bestowed on category of chain
complexes of objects belonging to A. Differently from the homotopy category of topological
spaces, however, hD(A) is naturally a triangulated category, i.e., it admits a collection of exact
triangles which generalize and axiomatize the ideas of long exact sequences in cohomology
and mapping cones. This theory has famously a huge drawback: the cone which extends any
morphism in hD(A) to an exact triangle is unique up to a non-unique isomorphisms, which
leads to some unpleasant consequences.

Example. Fix a field |, and consider in hD(|) the following map of arrows.

| 0

0 |[1]

Then a mapping cone for the first arrow is |[1], and a mapping cone for the second arrow is
|[1] as well. Yet, there is not a unique choice of a map |[1]→ |[1] which produces a map of
exact triangles.

| 0 |[1] |[1]

0 |[1] |[1] 0.
∼=

∼=

0

∼=

Actually, there is more: there is an insurmountable obstruction to choosing a canonical
mapping cone of a morphism in the derived category.

Theorem ([Ver96, Proposition II.1.2.13]). Let T be a triangulated category where countable
products and countable direct sums exist. Let Arr(T) be the category of morphisms in T, and let
Triang(T) be the category of exact triangles n T, and suppose there exists a functor

cone: Arr(T) −→ Triang(T).

Then every trangle in T splits, i.e., is isomorphic to a triangle of the form

X → X ⊕ Y → Y
0
−→ X [1].

This issue, in the case of hD(A), can be explained with the following slogan: hD(A) is the
homotopy category of the category C•(A) of chain complexes in A, but Arr(hD(A)) is not the
homotopy category of the category Arr (C•(A)), with some induced model structure. Another
problem, which is even more severe, is the following: derived categories do not satisfy descent.

Example. Fix again a field | and consider the usual presentation of P1
| as the gluing of two

copies of A1
| along Gm,|. In particular, we have a presentation of P1

| as a pushout in schemes:

P1
|
∼= A1
|

∐︂

Gm,|

A1
|.
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Applying the contravariant functor D, we have an induced square of derived categories.

hD
�

P1
|

�

hD
�

A1
|

�

hD
�

A1
|

�

hD
�

Gm,|

�

This diagram is not a pullback square. More precisely: the natural functor

hD
�

P1
|

�

−→ hD
�

A1
|

�

×hD(Gm,|) hD
�

A1
|

�

is essentially surjective but not fully faithful.

The leitmotiv of these examples could be summarized as follows: it is not enough to
know that two (complexes of) quasi-coherent sheaves defined on two open subsets agree on
their intersection up to homotopy, but we also need to remember the homotopy itself. An
analogous claim holds for morphisms between them. These drawbacks can be solved by
replacing the ordinary derived category hD(A) with some∞-categorical enhancement D(A)
whose homotopy category is precisely hD(A). This, a posteriori, justifies our choice of notation
for the ordinary derived category of A.

Another important topic of research in algebraic geometry which eventually led to the
development of higher categorical formalism is the study of moduli problems arising from
algebraic and arithmetic contexts. A moduli problem for a category C, in the most naive sense,
can be simply described as a contravariant functor M: Cop → Set. Given an object C in C,
the set M(C) has to be though as a set of objects or structures depending naturally (in the
categorical sense) on C: for simplicty, from now on we shall call an element in M(C) as a
family over C . For example, when C is the category Sch of schemes, M can parametrize the
isomorphism classes of vector bundles, or the isomorphism classes of principal bundles with
respect to a smooth group scheme G, or the isomorphism classes of smooth curves of fixed genus
g and n marked points (for the case g = n = 1, this produces the moduli problem parametrizing
elliptic curves). If moreover the moduli problem M is representable, i.e., there exists an object
XM such that for any other C in C there is a natural bijection

M(C)∼= HomC(C , XM)

then the complexity of the moduli problem lowers considerably. Again, for C= Sch, this means
that there is some honest scheme which classifies completely the geometric structures we are
interested in, and (in virtue of the fully faithfulness of the Yoneda embedding) studying XM is
the same as studying its associated moduli problem M. Moreover, an immediate consequence of
the representability of M is that any family F∈M(S) over an arbitrary scheme S comes from a
universal family over XM, i.e., there exists a universal element

U∈M(XM)∼= HomSch(XM, XM)

corresponding to the identity automorphism of XM, such that for any other scheme S and any
family F in M(S), there exists a unique morphism χ : S→ XM such that F is the image of U

under M(χ): M(XM)→M(S). One of the most classical examples of this phenomenon is the
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absolute n-dimensional projective space Pn
Z, which represents the moduli problem

X ↦→ {line bundles L over X with a choice of a basis 〈s0, . . . , sn〉 of its global sections} .

In this case, the universal line bundle corresponds to the tautological line bundle OPn
Z
(−1).

However, many interesting moduli problems fail to be representable. In practice, many
families over an object C are honest objects F→ C living over C , and the condition of the
universality of the family U→ XM boils down to the condition that for any family F there
exists a unique χF such that

F

C

U

XM

f

χF

is a pull-back diagram andχF◦ f corresponds to the image of Uunder the map M(χF): M(XM)→
M(C) . So, whenever there is some S such that M(S) admits a non-trivial automorphism

α: M(S)
∼=−→M(S)

fixing any family F ∈ M(S), there is an obstruction to the representability of the moduli
problem: this automorphism fixing Fproduces a non-trivial isotrivial family (that is, another
family with isomorphic fibers). This problem arises, for example, in the case of moduli of elliptic
curves ([KM85]) and more generally in a wide class of moduli of curves ([HM98]). In order to
solve this issue, one can work in many different ways.

(1) One can settle for only coarse moduli space: this is the universal object XM which
is equipped with a natural transformation of functors M→ HomC(−, XM), which is
however not required to be an isomorphism anymore. For example, the moduli problem
of elliptic curves over a ring R admits a coarse moduli space given by the affine line A1

R:
indeed, any elliptic curve is determined by its j-invariant, which is a scalar in R. This is,
however, not fine enough to completely capture transformations of elliptic curves.

(2) Alternatively, one could add constraints in order to force such automorphisms to dis-
appear. In the case of elliptic curves one could for example ask also for some level n
structure (see [Dri74] or the account in [KM85, Chapter 5]).

(3) Finally, one could give up asking for a moduli problem with values in sets and keep
track of every possible automorphism of M(C), yielding a groupoid instead. The moduli
problem can then be studied with the theory of algebraic stacks ([Gir65; DM69]).

The classical definition of a stack is given in terms of a fibration in groupoids S→ Sch over
the category of schemes: such fibrations are then supposed to satisfy some descent data that
allows to glue the groupoid corresponding to the fiber SX over any scheme X along the fibers SUi

over any étale covering {Ui → X }i∈I . This definition, in virtue of the Grothendieck construction
([Tho79]), leads to the following principle: stacks should be nothing more than étale 2-sheaves
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in 1-groupoids, i.e., higher sheaves for the étale topology on schemes with values in the 2-
category of groupoids. This idea becomes a proper and well-tuned definition in the context of
∞-categories.

Remark. The above list is far, far from being complete, of course. For instance, another
historically and philosophically relevant thread of research worth mentioning is represented by
deformation theory, which arose in the mid Fifties thanks to the work of Kodaira and Spencer
([KS58]), who proved a relation between first order deformations of smooth projective complex
manifolds and first homology classes in classes with coefficients in the holomorphic tangent
sheaf TX in H1(X , TX ). Later, following the philosophy that the tangent sheaf should control
deformation and obstruction theory, Quillen developed a homology theory for commutative
rings (André-Quillen homology) in [Qui70], which was later globalized in [Ill71; Ill72], replacing
the module of Kähler differentials with a more well-behaved object: the cotangent complex.
The close relationship between derived algebraic geometry and deformation theory was then
hinted in a now famous letter by Drinfeld to Schechtman ([Dri14]), which coined the derived
deformation principle which laid the foundations for almost all subsequent research in the topic
of derived deformation theory: the reader can find in [DSV22] an incredibly well written account
of the Maurer-Cartan methods that led to the derived deformation principle. Let us finally
remark that this principle is false and very ill-behaved if one takes into account non-derived
deformation theory. The interested reader can delve into this theory, and many others as well,
in fuller detail by reading Toën’s recent and beautiful survey on derived algebraic geometry
[Toë14].

How algebraic geometry and algebraic topology interact. In virtue of the analogies between
the homotopy category of topological spaces and the derived category of an abelian category of
modules, it has been long conjectured that homotopy theory should provide a common ground
where to study both algebra and topology. In particular:

(1) One should be able to consider for any non negative integer n a theory of n-stacks
– which, roughly speaking, should be sheaves for some suitable Grothendieck topology
with values in homotopy types of topological spaces whose higher homotopy groups are
trivial in degrees m> n. This is linked to the theory of ordinary stacks in virtue of the
homotopy hypothesis: weak n-groupoids (that is, groupoids with non-trivial k-arrows
for every degree up to n, with composition of morphisms defined up to some given
homotopy-coherent datum) should be modeled by n-homotopy types, see for example
[GJ99, Theorem 11.4] or [May67, Chapter III, §16]. In particular, ordinary algebraic
stacks are stacks of 1-homotopy types, hence 1-stacks.

(2) One should be able to consider affinization of homotopy types, that is, for any reasonable
topological space X there should be some related algebraic scheme or stack from which
one could recover the homotopy type of X , and this association should be natural in X .

These ideas were envisioned (among others) by Grothendieck himself, who sketched them
out in a decent amount of details in a very influential letter to Quillen in 1983 ([Gro22]). To
highlight how far-reaching his insight was, let us recall that Voevodsky himself acknowledged
Grothendieck’s influence when he started developing motivic homotopy theory, which was a
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natural reinterpretation of the homotopy of topological spaces and higher categories from
the perspective of algebraic geometry and commutative algebra. Moreover, the problem of
affinization of homotopy types is still being investigated, see for example one of the latest
contribution to this subject by Toën in [Toë20].

What we want to do. Nowadays, derived algebraic geometry has moved towards directions
and concepts that go far beyond the scopes briefly presented above – and this happened also
because of the power and the versatility of the formalism of higher category theory. For example,
the most recent formulations of the mirror symmetry hypothesis in physics (from Kontsevich
[Kon95] onwards) are given in terms of some equivalence between A∞-categories (or differential
graded categories), which are in turn a higher enhancement of the concept of triangulated
categories. So, to sum up the content of this introduction: an algebraic geometer does not have
to completely grasp the theory of higher categories and derived geometry; yet, there are plenty
of reasons why an algebraic geometer should be interested in understanding them and look at
them with less suspicion. The problem is that higher category theory is indeed a hard subject:
differently from ordinary category theory, constructions have to be carried out using universal
properties and formal existence results, rather than by the means of explicit computations and
definitions "on the nose". This happens because ∞-categories rely on an infinite amount of
homotopy coherence data: we are relaxing the concept of "equality" asking objects to be only
"equivalent", thus for everything to work properly one needs to specify not only equivalences
between objects, but also homotopies between maps, 2-homotopies between homotopies, and
so forth.

The goal of these short lectures is the following: we want to provide the reader an intuition
on how to deal with ∞-categories; to teach them how to distinguish those cases in which a
"1-categorical arguments" can be adapted almost verbatim in the ∞-categorical world, and
those in which one has to pay some caution to more subtle details; to explain how to do
explicit computations with strict models; and finally, hopefully, to allow them to translate freely
notions and concepts borrowed from ordinary triangulated categories, dg categories, and stable
∞-categories. Most of all, we want to convince them that the apparently insurmountable
challenge of specifying an infinite amount of homotopy coherence is a very little price to pay
for a beautiful, rich and smooth theory: with some training, it is even natural to think about
certain topics directly in the∞-categorical world.

To sum it up: these notes want to present briefly some key ideas in the development of
homotopical algebra and higher category theory, and aim to provide some sort of cheat sheet,
allowing the reader to avoid the most technically demanding and challenging parts of books
such as Higher Topos Theory [Lur09] or Higher Algebra [Lur17], extracting the most fundamental
algebraic ideas behind the simplicial and quasi-categorical machinery, and providing some
less esoteric perspectives on how to deal with ∞-categories, stable∞-categories, ring spectra
which are linear over Z and commutative ring spectra which are linear over a base ring of
characteristic 0. Because of this, these notes critically lack proofs but have a lot of references
where to check more general statements and proofs.
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Prerequisites for these notes. These notes are thought for an audience that, albeit not knowl-
edgeable of homotopy theory, derived geometry and higher category theory, still has some
background in algebraic geometry and homological algebra à la Grothendieck. In particular,
I assume the reader to know some commutative algebra (up to Kähler differentials), some
very basic theory of derived categories à la Verdier, the theory of derived functors between
abelian categories in terms of δ-functors computed on projective or injective resolutions. Of
course, I assume some basic knowledge of the theory and the concepts of ordinary category
theory one can encounter in a standard Master course (definitions, limits, colimits, adjunctions,
equivalences of categories, Yoneda lemma, monoidal categories, abelian categories...).

Some basic references. Nowadays ∞-category is a language freely employed by a large
number of mathematicians coming from the most disparate fields of research. As such, plenty
of references have started to spring out here and there, more or less user-friendly. Among the
most useful ones that I both know and use I can pinpoint at least:

(1) Lurie’s books Higher Topos Theory [Lur09] and Higher Algebra [Lur17], which still are
some of the most important books (if not the most important books) on the subject.
Unfortunately, they are not user-friendly at all: they have been written bearing in mind
the necessities of algebraic topologists, and the formalism and the strategy of the proofs
can reach really convoluted heights. Nowadays, to learn the basics of higher category
theory there are many other references which look more accessible and compelling
than Higher Topos Theory for a novice reader (see below). On the other hand, Higher
Algebra is still the most complete account on the subject of higher categorical algebra
one can find, with precise and incredibly general statements of lots of both technical and
conceptual results: it still the most indispensable source on the subject. (Actually, the
amount and the precision of the results in both books are precisely the reasons why they
are still mistaken for introductory writings to the topic of higher categorical algebra in
the first place.)

(2) A really nice reference for the foundational theory of∞-category, with carefully spelled
statements and proofs (and a rather pleasant looking style) is to be found in [RV20] and
especially in [RV22]. When compared to [Lur09], these ones are way more accessible
and clearly intended to be read by an audience accustomed only to classical category
theory. The latter is particularly recommended.

(3) A more concise and gentler introduction to higher categorical algebra and homotopical
algebra, heavily relying on Lurie’s work, is to be found in [Gep20].

(4) Finally, recently Land published a book [Lan21], which aims to be some self-contained,
undergraduate-friendly reference for the foundational theory of ∞-categories. It also
features some interesting exercises at the end, if one is interested in rolling up their
sleeves and do some computations by themselves.

Acknowledgements. These notes have been largely discussed with, and improved thanks to
contributions by, I. Di Liberti, A. Gagna, and G. Nocera. Some of these exercises have been
borrowed directly from the ones that M. Porta proposed me during my PhD years. Hat tip to all
of them.
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1. INTRODUCTION TO HOMOTOPICAL CATEGORY THEORY: MODEL CATEGORIES

There are many different reasons why an introductory course on homotopical algebra and
higher category theory should start with model categories – other than their historical significance
for the subject, of course.

(1) The most fundamental example of "homotopy categories" – the homotopy category of
topological spaces and the derived category of an abelian category – come from model
categories, and having an even superficial knowledge of their axioms and properties is
quite useful for computations.

(2) One of the most fundamental results about model categories, namely the Quillen
equivalence between topological spaces and simplicial sets, hinted at one of the main
concepts of homotopy theory: namely, that simplicial leads to homotopy-theoretic. This
is the reason why Boardman and Vogt introduced weak Kan complexes in 1973 ([BV73]).
These objects, under the name quasi-categories, were later studied by Joyal starting
from the 1980s ([Joy02]), and are precisely the model for ∞-categories used by Lurie
in [Lur09].

(3) Finally, we shall see that many important∞-categories that we will be interested in arise
naturally as a Dwyer-Kan localization of simplicial combinatorial model categories, in a
unique way up to a zig zag of Quillen equivalences. At this point, this is probably nothing
more than gibberish for the reader, but the power of this statement will hopefully be
made clearer later.

References for this section. The theory of model categories is now very well understood: the
original article [Qui67] in which Quillen first introduced this concept is still very accessible to
the modern reader (up to some slight modifications of the original definition, see for instance
[Qui69]), but Hovey’s book [Hov99] arguably wins the cake as the most "classical" reference
for this subject. Notice that there is now a LATEXversion of ??: this makes it a mandatory reading
– just as almost everything Quillen wrote.

1.1. Definitions, main properties and constructions. In order to give the correct notion of a
model structure on a category, we need the following preliminary definitions.

Definition 1.1.1. Let C be an ordinary category, and let Arr(C) be the category of its arrows.

(1) A map f : X → Y is a retract of another map g : U → V if f is a retract of g in the
category Arr(C), i.e., if there exists a commutative diagram as follows.

X U X

Y V Y

f g f

idX

idY
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(2) A functorial factorization is an ordered pair of functors

(α,β): Arr(C)×Arr(C) −→ Arr(C)

such that any morphism f : X → Y in C admits a factorization f = β( f ) ◦α( f ).
(3) Given two maps f : X → Y and g : U → V , we say that f has the left lifting property

(LLP) with respect to g and that g has the right lifting property (RLP) with respect to f if
for any commutative square of solid arrows in C

X U

Y V

f g

there exists a lift Y → U making the above diagram commuting in every direction.

We are now ready to state the definition of a model category.

Definition 1.1.2 ([Hov99, Definition 1.1.3]). A model structure on a category C is the datum
of three classes of maps of C, called weak equivalences, fibrations, and cofibrations, together
with two functorial factorizations

�

cFtriv, F
�

and
�

cF, Ftriv
�

, satisfying the following axioms.

(A1) Weak equivalences satisfy the two-out-of-three property: given f : X → Y and g : Y → Z
two maps in C, then if two among f , g and g ◦ f are weak equivalences so is the third
one.

(A2) If f : X → Y is a retract of g : U → V and g is a weak equivalence, a fibration, or a
cofibration, so is f .

(A3) Let us define trivial fibrations as those fibrations that are also weak equivalences;
analogously, let us define trivial cofibrations. Then fibrations have the right lifting
property with respect to trivial cofibrations, and conversely cofibrations have the left
lifting property with respect to trivial fibrations.

(A4) For any map f : X → Y , cFtriv( f ) is a trivial cofibration, F( f ) is a fibration, cF( f ) is a
cofibration and Ftriv( f ) is a trivial fibration.

A model category is a category C admitting all limits and colimits and equipped with a model
structure.

Remark 1.1.3. Definition 1.1.2 is not the only possible definition of model categories. For
example, in his original paper [Qui67], Quillen did not ask for the existence of all limits and
colimits, while Axiom 1.1.2.(A4) can be weakened as follows: one can only ask for two not
necessarily functorial different factorizations for any morphism. For most of the examples we
are interested in, however, factorizations indeed can be made functorial and our categories are
both complete and cocomplete, so it is more or less harmless to include these requirements.

We are not really interested in delving deep in the theory of model categories. Thus, the
following results are proposed as simple exercises to the reader.

Exercises 1.1.4.
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(1) Prove that there are always three model structures on a complete and cocomplete
category C, defined by setting one among weak equivalences, fibrations or cofibrations
to coincide with the class of isomorphisms, and setting the other two to be the class of
all morphisms in C.

(2) Prove that if C is equipped with a model structure, then Cop admits a dual model
structure: how is it defined?

(3) (Retract argument) Given a map f : X → Y in C, admitting a factorization

X Y

A

f

i p

prove that if f has the left (resp. right) lifting property with respect to p (resp. with
respect to i), then f is a retract of i (resp. of p).

(4) Choosing a class of weak equivalences and a class between fibrations and cofibrations
uniquely determine the third one. Namely, in a model category cofibrations are precisely
those maps enjoying the left lifting property with respect to all trivial fibrations, and
trivial cofibrations are precisely those maps enjoying the left lifting property with respect
to all fibrations, so one could simply ask these classes of morphisms to provide weak
factorization systems. Try to deduce this statement, and its dual as well. (Hint: apply
the retract argument of Exercise 1.1.4.(3) to some suitable factorization provided by
Axiom 1.1.2.(A4).)

(5) Prove that (trivial) cofibrations are stable under pushouts, and that (trivial) fibrations
are stable under pullbacks.

Definition 1.1.5. Given a model category C, let us denote by 1 the terminal object, and by ∅
the initial object. We say that an object X is fibrant if the canonical map X → 1 is a fibration;
dually, we say that an object Y is cofibrant if the canonical map ∅→ X is a cofibration.

Fibrant objects and cofibrant objects are naturally gathered in two distinct full subcategories
of C, that we shall denote by Cf and Cc, respectively. The category of both cofibrant and fibrant
objects is the intersection of these two categories, and is denoted by Ccf.

Remark 1.1.6. In virtue of Axiom 1.1.2.(A4), we can factor the initial morphism ∅→ X as
a cofibration ∅ → QX followed by a trivial fibration QX → X . Similarly, we can factor the
terminal morphism X → 1 as a trivial cofibration X → RX followed by a fibration RX → 1.
Moreover, the associations X ↦→QX and X ↦→ RX define functors

Q : C−→ Cc

and
R: C−→ Cf.

We shall call Q and R the cofibrant replacement and the fibrant replacement functors, respectively.

1.2. The homotopy category of a model category.
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Definition 1.2.1. Given a model category Cwith class of weak equivalences W, the homotopy
category of C is the localization hC := C

�

W−1
�

. It is the universal category admitting a functor
C→ hC sending all morphisms in W to isomorphisms.

There is a "standard" way to present the homotopy category of a model category C. Namely,
one can consider the same objects as C but arrows given in the following way: one adds
formally an arrow w−1 : Y → X for any weak equivalence w: X → Y , and then defines

HomhC(X , Y ) :=

⎧

⎨

⎩

X
f1−→ X1→ . . .→ Xn−1

fn−→ Y

|︁

|︁

|︁

|︁

|︁

|︁

the arrows fi are either maps in C

or formal inverses of maps in W

⎫

⎬

⎭

imposing the relations
n

X
f
−→ Y

g
−→ Z
o

≃
n

X
g◦ f
−→ Z
o

for any composable maps f and g in C, and
§

X
w−1

−→ Y
w
−→ X
ª

≃
n

X
idX−→ X
o

for any weak equivalence w. However, there are some problems in general: if one takes arbitrary
strings of maps the size can soon explode, see for example [Gin]. Indeed, if C is locally small
but not small, there is no reason for the homotopy category defined above to be again locally
small, and thus one a priori should be forced to move up some larger universe Uwhere hC
becomes locally U-small. But for model categories it turns out that this step is unnecessary.

Definition 1.2.2.

(1) A cylinder object for X is any object Cyl(X ) such that the codiagonal map∇: X
∐︁

X → X
factors through a cofibration X

∐︁

X → Cyl(X ) and a weak equivalence Cyl(X )→ X . By
precomposing with the natural inclusions X → X

∐︁

X , one has maps ι1 and ι2 from X
to Cyl(X ).

(2) A path object for X is any object Path(X ) such that the diagonal map ∆: X → X × X
factors through a weak equivalence X → Path(X ) and a fibration Path(X )→ X × X . By
postcomposing with the natural projections X × X → X , one has maps π1 and π2 from
Path(X ) to X .

(3) A left homotopy from f : X → Y to g : X → Y is a map H : Cyl(X ) → Y such that
H ◦ ι1 = f and H ◦ ι2 = g. We shall write f ∼l g if f is left homotopic to g.

(4) A right homotopy from f : X → Y to g : X → Y is a map K : X → Path(Y ) such that
π1 ◦ K = f and π2 ◦ K = g. We shall write f ∼r g if f is right homotopic to g.

(5) We say that f : X → Y and g : X → Y are homotopic ( f ∼ g) if they are both left and
right homotopic.

(6) We say that f : X → Y is a homotopy equivalence if there exists g : Y → X such that
f ◦ g ∼ idY and g ◦ f ∼ idX .

It turns out that these relations are very ill-behaved: in general, they not stable under
compositions either to the left or to the right with other morphisms, they are not equivalence
relations, and one does not imply the other. However, everything works neatly if the source
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is assumed to be cofibrant and the target is assumed to be fibrant: in particular, if we restrict
ourselves to the category of both fibrant and cofibrant objects Ccf, all these issues disappear
([Hov99, Proposition 1.2.5, Corollaries 1.2.6 and 1.2.7]). Hence, one can define the "quotient"
category Ccf/∼, by taking the full subcategory of C spanned by both fibrant and cofibrant objects
and then modding out the hom-sets by the homotopy equivalence relation. This turns out to be
the correct definition of the homotopy category of C.

Theorem 1.2.3 ([Hov99, Proposition 1.2.3, Corollary 1.2.9, Theorem 1.2.10]). The natural
map

hCcf := Ccf

�

W−1
�

−→ Ccf/∼

from the homotopy category of Ccf to the naive homotopy category Ccf/∼ is actually an equivalence
of categories. Moreover, the natural inclusion Ccf ˓→ C induces an equivalence of categories

hCcf
≃
−→ hC.

Remark 1.2.4. There is a certain amount of heuristics hidden in the statement of Theorem 1.2.3.

(1) The fact that hCcf ≃ Ccf/∼ is due to the fact that fibrant-cofibrant objects of a model
category C are precisely the ones for which holds a Whitehead-like theorem: a weak
equivalence X → Y always admits a quasi-inverse Y → X providing an explicit homotopy
equivalence between X and Y .

(2) The fact that Ccf/∼ ≃ hC implies that we have a nice way to control the hom-sets in
hC. Namely, given (the class of) two objects X and Y in C, to compute HomhC(X , Y ) it
suffices to replace them with their cofibrant-fibrant replacement QR(X ) and QR(Y ) and
them compute morphisms between them up to the equivalence relation of homotopy
equivalence. Actually, there is more: it suffices to replace X by a cofibrant replacement
QX and Y by a fibrant replacement RY .

(3) In his original book [Qui67], Quillen explicitly warns the reader that "model category" is
meant to be interpreted as a short cut to category of models for a homotopy theory. Indeed,
the model structure on C is simply a collection of additional data useful to present
and study its homotopy category hC, just as one studies smooth differential manifolds
by choosing carefully an atlas of smooth charts, or studies a group by choosing a
suitable presentation by generators and relations. In particular, different model structures
can present the same homotopy theory: the latter depends only on the class of weak
equivalences.

We conclude this section by introducing very briefly the concepts of Quillen adjunctions,
Quillen equivalences, and derived functors.

Definition 1.2.5 ([Hov99, Definitions 1.3.1, 1.3.6, 1.3.12]). Let C and D be two model
categories, and let FL : C⇋ D: FR be an adjunction between them.

(1) The pair FL ⊣ FR is a Quillen adjunction if FL and FR satisfy one of the following equivalent
conditions.
• FL preserves cofibrations and trivial cofibrations.
• FR preserves fibrations and trivial fibrations.
• FL preserves cofibrations and FR preserve fibrations.
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• FL preserves trivial cofibrations and FR preserves trivial cofibrations.
In this case, we say that FL is a left Quillen functor and that FR is a right Quillen functor.

(2) The left derived functor LFL of the left Quillen functor FL is given by the composition

LFL : hC
hQ
−→ hCc

hFL−→ hD.

Dually, the right derived functor RFR of the right Quillen functor FR is given by the
composition

RFR : hD
hR
−→ hDf

hFR−→ hC.

(3) The adjunction FL ⊣ FR is a Quillen equivalence if LFL and RFR form an adjoint equiva-
lence between hC and hD.

Remark 1.2.6. If FL ⊣ FR satisfy the equivalent conditions of Definition 1.2.5.(1), then
LFL : hC⇋ hD: RFR is indeed an adjunction between the homotopy categories.

Example 1.2.7. Two particularly interesting examples of derived functors are the homotopy
limit and homotopy colimit functors. Let us start with two observations.

(1) For any category C admitting limits and colimits of shape I , there exist a limit functor

lim: Fun(I , C) −→ C,

a colimit functor
colim: Fun(I , C) −→ C

and a constant functor
const: C−→ Fun(I , C)

which are related by a string of adjunctions colim ⊣ const ⊣ lim .
(2) Under some assumptions on the model category C (the model structure has to be

generated by "treatable and small enough data", in some sense), the category of diagrams
Fun(I , C), where I is a small category, admits two model structures: the projective
model structure which detects fibrations point-wise, and the injective model structure
which detects cofibrations point-wise. Both detect weak equivalences point-wise, hence
there exists an equivalence of categories

hFun(I , C)inj ≃ hFun(I , C)proj.

Then, we have two Quillen adjunctions

colim: Fun(I , C)proj −−⇀↽−− C: const

and

const: C−−⇀↽−− Fun(I , C)inj : lim,

which respectively determine a homotopy colimit functor

hocolim := L colim: hFun(I , C)proj −→ hC

and a homotopy limit functor

holim := R lim: hFun(I , C)inj −→ C.
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1.3. Notable examples of model categories. In this section we include the basic description
of model structures on important categories, with no proofs. Namely, we describe the class of
weak equivalences and one between fibrations and cofibrations (in virtue of Exercise 1.1.4.(4)),
we describe fibrant-cofibrant objects if possible, and we exhibit either a path or cylinder objects
providing the homotopy equivalence relation on fibrant-cofibrant objects.

Topological spaces. Let us start with the fundamental and motivating example of all the theory:
topological spaces ([Hov99, Section 2.4]).

Definition 1.3.1.

(1) Let (Sn, e1) be the unit sphere of Rn+1, pointed at the point (1,0, . . . , 0). The n-th
homotopy group of a pointed topological space (X , x) is the group1

πn(X , x) := HomTop∗((S
n, e1) , (X , x))/∼ .

(2) A continuous map of topological spaces f : X → Y of topological spaces is a weak
homotopy equivalence if it induces isomorphisms πn(X , x) → πn(Y, f (x)) for every
n⩾ 0 and every choice of a basepoint x ∈ X .

(3) Let Dn be the unit disk in Rn. A continuous map of topological spaces X → Y is a Serre
fibration if for any n⩾ 0 and for any diagram of solid continuous maps

Dn

Dn × [0,1]

X

Y

(id, 0)

there exists a lift Dn × [0,1]→ X making the diagram commute in every direction.

Theorem 1.3.2 ([Hov99, Theorem 2.4.19]). The category Top of topological spaces admits a
model structure where weak equivalences and fibrations are the weak homotopy equivalences and
the Serre fibrations of Definition 1.3.1. In this model category, every topological space is fibrant,
while cofibrant topological spaces are retracts of cell complexes ([Hov99, Definition 2.4.3]).
A cylinder object for a topological space X is the topological product X × [0, 1]. In particular, left
homotopies are exactly ordinary homotopies between continuous maps.

Remark 1.3.3. The Quillen model structure of Theorem 1.3.2 presents the homotopy theory
which identifies objects sharing the same homotopy type, but we should note that the "naive"
homotopy category Ho(Top) is itself the homotopy category for some model category. Namely,
it is the homotopy category for the Strøm model structure on all topological spaces: see [Str72].

Remark 1.3.4. Every CW complex is a fibrant-cofibrant object for the model category on Top
of Theorem 1.3.2: this implies the classical Whitehead theorem, which states that every weak
homotopy equivalence between CW complexes is a strict homotopy equivalence, can be seen as
a corollary of Theorem 1.2.3 via Remark 1.2.4.(1). In particular, the full category CW ⊆ Top
spanned by CW complexes is a proper subcategory of Topcf. It is a remarkable result of algebraic
topology that this inclusion induces an equivalence at the level of localizations at homotopy

1Recall that for n= 0 this is a priori just a pointed set.
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equivalences: indeed, every topological space has the homotopy type of a CW complex, in virtue
of [Hat02, Proposition 4.13]. In particular,

CW
�

W−1
�

≃ CW/∼ ≃ hTop.

Simplicial sets. Even if not commonly studied here in Italy, the category of simplicial sets has to
be cconsidered as the most important model category among all possible examples. And the
reason is the following: we will see in Theorem 1.4.3 that their homotopy category presents
the homotopy category of topological spaces, but the categorical properties of simplicial sets
are way nicer and "more minimal".

Definition 1.3.5. The simplex category ∆ is the category described as follows.

(1) Objects are non-empty finite ordinals [n] := {0→ 1→ . . .→ n− 1} .
(2) The maps in the hom-set Hom∆([n], [m]) are non-strictly order preserving functions

from [n] to [m].

A simplicial object in a category C is a functor X• : ∆
op→ C. The category of simplicial objects of

C is the category of diagrams
sC := Fun(∆op, C).

Remark 1.3.6. Even if a priori the amount of data for a simplicial object in C is huge, one can
prove that maps in ∆ are generated by all possible compositions of the following type of maps

(1) Face maps of the form δn
i : [n− 1] ˓→ [n], for 0 ⩽ i ⩽ n− 1, described as the unique

injective map which skips the element {i} in [n].
(2) Degeneracy maps of the form σn

i : [n+ 1]↠ [n] for 0⩽ i ⩽ n, described as the unique
surjective map which sends both {i} and {i + 1} to {i}.

These maps have to satisfy the simplicial identities.

(1) For 0⩽ i < j ⩽ n, one has

δn+1
i ◦δn

j = δ
n+1
j+1 ◦δ

n
i

and
σn

j ◦σ
n+1
i = σn

i ◦σ
n+1
j+1 .

(2) For any 0⩽ i, j ⩽ n, one has

σn
i ◦δ

n+1
j =

⎧

⎪

⎨

⎪

⎩

δn
i ◦σ

n−1
j−1 for i < j

id[n] for i = j or i = j + 1

δn
i−1 ◦σ

n−1
j for i > j

.

In particular, a simplicial object X• is equivalently described as

(1) A collection of objects Xn of C for any non-negative integer n.
(2) A collection of face maps dn

i : Xn→ Xn−1 and of degeneracy maps sn
i : Xn→ Xn+1 satisfying

the dual of the simplicial identities.

Definition 1.3.7. The category of simplicial sets sSet is the category of simplicial objects in the
category of sets.
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Simplicial sets form a topos (indeed, by definition, they are gathered in a category of
presheaves); hence the category of simplicial sets shares many interesting properties with
the category of sets. For instance, sSet is a Cartesian closed monoidal category: the level-wise
Cartesian product of simplicial sets provides a symmetric monoidal structure, and for any
simplicial set X• the functor

−× X• : sSet −→ sSet

admits a right adjoint provided by the mapping complex

Map•sSet(X•, −): sSet −→ sSet

defined on an object Y• by the formula

Mapn
sSet(X•, Y•) := HomsSet(X• ×∆n, Y•)

where ∆n is the simplicial set corresponding to the representable functor Hom∆(−, [n]). In
particular, we can consider sSet as a category enriched over itself, i.e., we have a simplicial set of
maps between simplicial sets, and the composition is compatible with the Cartesian monoidal
structure on sSet. The latter statement, for example, does not hold in Top: the product with a
topological space X does not commute with colimits if X does not enjoy some nice properties
(e.g., if X is locally compact Hausdorff).

Definition 1.3.8 ([Qui67, Chapter II, Section 3]). Let f• : X•→ Y• be a map of simplicial sets.

(1) We say that f• is a cofibration if it is a monomorphism in sSet (i.e., fn is an injective
map for any n⩾ 0).

(2) We say that f• is a fibration if it is a Kan fibration, i.e., if it has the right lifting property
with respect to all inclusions Λn

k ˓→∆
n. Here, Λn

k is the sub simplicial set of ∆n given by
the union of the image of all face maps sn

j : ∆n−1 ˓→∆n, except for the one corresponding
to j = k.

(3) We say that f• is a trivial cofibration (resp. trivial fibration) if it has the left lifting
property with respect to all Kan fibrations (resp. if it has the right lifting property with
respect to all monomorphisms).

(4) We say that f• is a weak equivalence if it can be factorized as a composition f• = p• ◦ i•,
where p• is a trivial fibration and i• is a trivial cofibration.

Theorem 1.3.9 ([Qui67, Chapter II, Section 3, Theorem 3]). The category sSet of simplicial sets
admits a model structure where weak equivalences, fibrations and cofibrations are defined as in
Definition 1.3.8. In this model category, every simplicial set is cofibrant, while fibrant simplicial
sets are called Kan complexes.
A cylinder object for a simplicial set X• is the product of simplicial sets X• ×∆1. Moreover, such
model structure on simplicial sets is compatible with the simplicial enrichment and the monoidal
structure, in the sense of [Qui67, Chapter II, Section 2, Definition 2].

Remark 1.3.10. It is necessary to provide some insight on the model structure described in
Theorem 1.3.9.

(1) We did not describe weak equivalences for the model structure on the category of
simplicial sets, and actually this is something that works in general: to characterize a
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model structure it is sufficient to specify the classes of fibrations and cofibrations, while
the rest can be deduced from lifting properties and from the existence of factorizations
of morphisms.

(2) In this case, it turns out that weak equivalences of simplicial sets are those morphisms
with right lifting property with respect to any inclusion ∂∆n ˓→∆n (where ∂∆n is the
sub simplicial set obtained by discarding the unique non degenerate n-simplex of ∆n),
or equivalently those morphisms of simplicial sets f• : X•→ Y• such that for any Kan
complex K• precomposition of f• induces a simplicial homotopy equivalence

Map•sSet(Y•, K•) −→Map•sSet(X•, K•).

Most importantly, they are those morphisms whose geometric realization | f•| is a weak
homotopy equivalence in Top: this is actually how Hovey introduces them ([Hov99, Defi-
nition 3.2.1]). Here, we favored Quillen approach because it makes it more independent
from Top, and because it makes it way less tautological the content of Theorem 1.4.3.

(3) The compatibility with the simplicial enrichment mentioned briefly at the end of Theo-
rem 1.3.9 depends on some compatibility between the functors −× X• and Map•sSet and
(trivial) fibrations and (trivial) cofibrations. These are technical conditions but they
produce the following statement, which will be made more rigorous in the following
lectures: the homotopy category hsSet of sSet is weakly enriched over itself. Together with
Theorem 1.4.3, this will provide an enrichment of hsSet over the homotopy category of
topological spaces.

Chain complexes of modules. Finally, let us focus on the main algebraic example of a model
category: namely, the category of chain complexes of (either left or right) R-modules C•(R) over
an associative ring R. Actually, we shall describe a projective model structure on the category of
non-negatively graded chain complexes C⩾0(R), an injective model structure on the category of
non-positively graded chain complexes C⩽0(R), and a projective model structures on the category
of all chain complexes C•(R). One can find in [Wei94] all relevant (and basic) definitions for
chain complexes: we just remark that we proudly adopt a homological convention. (In particular,
we interpret bounded below cochain complexes in terms of bounded above chain complexes.)

Theorem 1.3.11.

(1) ([Hov99, Theorem 2.3.11]) The category C⩾0(R) of non-negatively graded chain complexes
of left R-modules admits a projective model structure where weak equivalences are quasi-
isomorphisms and fibrations are surjections in every positive degree. Every object is fibrant,
and cofibrant objects are those complexes which are projective in every non-negative degree.

(2) ([Hov99, Theorem 2.3.13]) The category C⩽0(R) of non-positively graded chain complexes
of left R-modules admits an injective model structure where weak equivalences are quasi-
isomorphisms and cofibrations are injections in every negative degree. Every object is
cofibrant, and fibrant objects are those complexes which are injective in every non-negative
degree.

(3) ([BMR14, Theorem 1.4]) The category C•(R) of all chain complexes of left R-modules
admits a projective model structure where weak equivalences are quasi-isomorphisms and
fibrations are surjections in every degree. Every object is cofibrant and fibrant objects
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are chain complexes C• which are projective in each degree and such that for any acylic
object A• the internal mapping chain complex MapR(C•, A•) is again acyclic ([BMR14,
Proposition 1.7]).

Remark 1.3.12. A cylinder object for the model structures on chain complexes of Theorem 1.3.11
is not easy to describe in full generality. If R is commutative, there is a standard way to produce
an interval object in (bounded below) chain complexes of left R-modules via the two-term
complex

I• :=
�

. . . −→ R
deg=1

〈id,−id〉
−−−−→ R⊕ R

deg=0

�

,

and so by mimicking the construction of the cylinder object in sSet and Top one could define

Cyl (C•) := C• ⊗R I•

Yet, if C• is not projective in each degree, the standard map

C• ⊕ C• −→ C• ⊗R I•

is not a cofibration for the projecive model structure. Anyway, this is a false problem: homotopies
in these model categories are precisely chain homotopies.

1.4. Relations between some of these model categories. We conclude this section with a
brief survey on how these model categories interact and are, in some sense, very different
presentations of very similar and connected homotopy theories. Some of the well-known
results of this theory will provide further foundational motivation for introducing ∞-categories
in Section 2. Quite remarkably, the following discussion stems – again – as a non-trivial
consequence of Yoneda lemma.

Theorem 1.4.1 (Ninja Yoneda Lemma). The Yoneda embedding

H: C −˓→ Fun(Cop, Set)

is a fully faithful functor and exhibits Fun(Cop, Set) as the free cocompletion of the category C,
i.e., for any functor F : C→ Dwith cocomplete target there exists an essentially unique realization
functor

|−| : Fun(Cop, Set) −→ D,

which commutes with colimits and makes the following diagram commute.

C Fun(Cop, Set)

D

H

F |−|

Moreover, |−| is a left adjoint to the nerve functor N: D→ Fun(Cop, Set) defined on an object D
of D as the presheaf

N(D): C ↦→ HomD(F(C), D).

Remark 1.4.2. The tongue-in-cheek name of Theorem 1.4.1 is shamelessly borrowed from
[Lor21, Proposition 2.1]: this is how the classical statement every presheaf on a category C is
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canonically a colimit of all the representable presheaves mapping to it (or at least, its reformulation
in terms of coend calculus) is referred to. This result is also known as Density Formula or co-
Yoneda Lemma (in nLab, [nLa23a]): a proof of it can be found in [Mac71, Chapter III, §7,
Theorem 1]. It is however an easy exercise to show how that Ninja Yoneda Lemma implies our
Theorem 1.4.1: a proof can be found in the brilliant paper [Dug09, Proposition 2.2.4].

Theorem 1.4.1 has remarkable consequences. What happens if C= ∆? In this case, the
category of presheaves on∆ is by definition the category of simplicial sets sSet. In the following,
we shall study what happens when applying Theorem 1.4.1 to the simplex category, changing
suitably the target D.

Homotopy theory and simplicial sets. Let us start with D= Top. We can see that there exists a
familiar functor from ∆, given by sending an object [n] to the standard topological n-simplex

∆n :=

¨

(x0, . . . , xn) ∈ Rn+1

|︁

|︁

|︁

|︁

|︁

n
∑︂

i=0

x i = 1

«

.

Since Top is cocomplete, Theorem 1.4.1 provides a geometric realization functor |−| : sSet→ Top,
together with a right adjoint. But in this case, such right adjoint bears a familiar face: it is the
singular simplicial complex functor Sing. Moreover, it turns out that this adjunction behaves
particularly well with respect to both model structures on sSet and Top.

Theorem 1.4.3 ([May67, Chapter III, §16]). The adjunction

|−| : sSet −−⇀↽−− Top: Sing

is a Quillen equivalence.

Let us delve a bit deeper into the meaning of Theorem 1.4.3.

(1) Simplicial sets contain all the homotopical information of topological spaces; yet, the
categorical and abstract properties of the category sSet are way nicer.

(2) Homotopy groups of Kan complexes (which, being the fibrant-cofibrant objects of sSet,
are essentially the only simplicial sets that matter for investigating the homotopy theory
of topological spaces) are not as familiar as homotopy groups of topological spaces,
but this is not a real problem: one can compute πn(S•, s0) in terms of πn(|S•| , |s0|) –
actually they can be defined in this way.

(3) Most importantly, simplicial sets can be studied by combinatorial means, making them
more tractable than topological spaces.

Category theory and simplicial sets. Let us change now the target from Top to Cat, the category
of small2 categories. Again, we have a standard way to embed ∆ inside Cat, by sending [n] to
its categorical incarnation as a poset. This provides a functor

h: sSet −→ Cat, (1.4.4)

2This could appear as an underwhelming deal breaker of the theory. Fortunately, most of the time we can
overcome any limitation on the size of our considered categories thanks to an unscrupulous, yet standard, abuse
of the assumption that we are provided a sufficiently vast supply of Grothendieck universes, so as to enlarge our
universe – hence, assume our categories to be small – whenever we need to.
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that we call (for reasons that will be more apparent in Section 2) the homotopy category functor.
The image of a simplicial set S• under h is the category described as follows.

(1) Objects are given by the vertices of S•.
(2) The hom-sets HomhS•(x , y) are generated by edges f ∈ S1 such that d0( f ) = x and

d1( f ) = y , modulo the relations s0(x) = idx for any x ∈ S0 and d1(σ) = d0(σ) ◦ d1(σ)
for any σ ∈ S2.

However, we are actually more interested in its right adjoint N: Cat → sSet. Reading the
statement of Theorem 1.4.1, we can see that N is the functor sending a category C to the
simplicial set NCwhose set of n-simplices is HomCat([n], C), i.e.:

(1) The set of 0-simplices is the set of objects of C.
(2) The set of n-simplices is the set of strings of composition of n compatible maps.
(3) The degeneracy maps dn

i : NCn → NCn−1 collapse an n-simplex, corresponding to
a composition X0 → . . . → X i → X i+1 → X i+2 → . . . → Xn, onto the composition
X0→ . . .→ X i → X i+2→ . . .→ Xn.

(4) The face maps sn
i : NCn−1→ NCn insert the identity on the object X i into a composition

X0→ . . .→ Xn−1.

Theorem 1.4.5 ([Rez21, Proposition 4.10]). The nerve functor N: Cat→ sSet is fully faithful.

So, up to size issues, even ordinary category theory can be fully recovered inside the theory of
simplicial sets.

Chain complexes and simplicial abelian groups. Finally, let us review the connection between
chain complexes of Z-modules and simplicial abelian groups. This is a consequence of some
enriched version of Theorem 1.4.1, see for instance [Kan58].

Definition 1.4.6. A simplicial abelian group is a simplicial object in the category of abelian
groups Ab. The category of simplicial abelian groups is denoted by sAb.

Theorem 1.4.7 (Dold-Kan correspondence, [Dol58; Kan58; DP61]). There is an equivalence of
categories

Γ : C⩾0(Ab) −−⇀↽−− sAb: N,

where the functor N is the normalized chain complex functor, sending a simplicial abelian group A•
to the chain complex described as follows.

(1) In homological degree n,
N(A•)n :=
⋂︂

i⩾1

ker dn
i .

(2) The differential N(A•)n→ N(A•)n−1 is the degeneracy map dn
0.

Theorem 1.4.7 was later refined as follows. In [Qui67, Chapter II, Section 4, Theorem 4],
Quillen proved that the category sAb admits a natural model structure for which every object is
fibrant: using the formalism of transferred model structures developed in [Cra95, Theorem 3.3],
this model structure can be characterized by the fact that weak equivalences and fibrations are
detected along the forgetful functor sAb→ sSet, while cofibrations are generated by the image
of cofibrations in sSet under the free simplicial abelian group functor Z[−]: sSet→ sAb. Then:
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Theorem 1.4.8 ([Qui67, Chapter II, Section 4, Remark 5]). The equivalence of categories of
Theorem 1.4.7 is Quillen.

In particular, even homological algebra can be recovered from the homotopy theory of
simplicial sets, which is the same as the homotopy theory of topological spaces in virtue of
Theorem 1.4.3. The key observation that the homotopy theory of simplicial sets is ubiquitous
and retains all information coming from algebraic topology, homological algebra and category
theory is the stepping stone for the theory of∞-categories that we shall outline in Section 2.

1.5. Some exercises.

(1) Try to prove some of the statements of this section. If you are an algebraic geometer with
a penchant for homological algebra, it should be sufficiently easy to prove in all details
the existence of the projective model structure on bounded below chain complexes
of left R-modules, at least up to reading the statements of some technical results in
[Hov99] as "hints".

(2) (To read the full story hinted at by this exercise – i.e., that model categories with a
reasonably compatible closed monoidal structure produce closed monoidal homotopy
categories – read [Hov99, Chapter 4].) Prove that if P• is a complex of projectives, then
the adjunction

−⊗R P• : C•(R) −−⇀↽−− C•(R): HomR(C•, −)
yields a Quillen adjunction

−⊗R P• : C•(R)proj −−⇀↽−− C•(R)proj : HomR(C•, −).

Show that if P•→ M[0] is a quasi-isomorphism, the derived functors L (−⊗R P•) and
RHomR(P•, −) in the sense of Definition 1.2.5 agree with the usual definition of derived
tensor product −⊗LR M and derived hom-functor RHomR(M , −). (Note that the derived
hom-functor is usually presented via an injective resolution of the target. The fact that
one can equivalently resolve the source by a complex of projectives is classically a
standard yoga exercise in spectral sequence theory: here, it is a simple consequence of
the fact that the homotopy categories underlying C•(R)proj and C•(R)inj coincide.)

(3) (For the following, use the so-called Quillen formula to detect homotopy pullbacks
and pushouts via strict pullbacks and pushouts, see for instance [Lur09, Proposition
A.2.4.4]) Compute the homotopy colimit of the diagram {∗} ← {∗}

∐︁

{∗} → {∗} in Top.
Try to visualize the geometric picture.

(4) Compute the homotopy colimit of the diagram 0← M•→ 0 in C•(R). Then compute the
homotopy limit of the diagram 0→ M•[1]← 0. Deduce some properties of homotopy
limits and colimits in the category of chain complexes.

(5) Prove that the singular complex of a topological space is always a Kan complex.
(6) Prove that the nerve of a small category C enjoys the following property: for any inner

horn Λn
k ⊆ ∆

n, with 0 < k < n, and for any map Λn
k → NC, there exists a unique lift
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making the following diagram commute.

Λn
k NC

∆n

There is more: prove that any simplicial set S• satisfying this property arises as the
nerve of a small category C. Why did we restrict ourselves to inner horns? Can you
imagine an outer horn which does not admit a filling in (the nerve of) a category C?

(7) Prove that the nerve of a small category C is a Kan complex if and only if it is a small
groupoid. There is more: any 2-coskeletal Kan complex admitting a unique filler for
any horn inclusion Λn

k ⊆∆
n for n⩾ 2 is the nerve of a groupoid. If you feel like it, you

can try to prove it by yourself up to reading the definition of skeletal and coskeletal
simplicial sets, see for instance [May67, Chapter II, §8].

(8) Try to investigate what happens to a topological space X under the composition

Π1 : Top
Sing
−−→ sSet

h
−→ Cat.

What functor is this? What are the endomorphisms of an object x of Π1(X )? What
happens to the induced functors Π1( f ): Π1(X ) → Π1(Y ) if f is a weak homotopy
equivalence? What can we say about Π1(X ) if X is 1-truncated (i.e., πn(X , x)∼= 0 for
any base point x and any n⩾ 2)?

(9) The notion of derived functors of Definition 1.2.5.(2) does not assume our categories to
be abelian: this allows for a theory of derived functors that transcends abelian categories
with enough projectives and injectives. Test the power of such theory with the following
example.
a. Using [Cra95, Theorem 3.3], prove (or convince yourself) that the category of

simplicial commutative rings sCRing admits a model structure transferred by the
one on simplicial abelian groups via the forgetful-free adjunction

sAb −−⇀↽−− sCRing.

In particular, weak equivalences are weak equivalences of simplicial sets (i.e., quasi-
isomorphisms of the corresponding normalized chain complexes) and fibrations
are Kan fibrations (i.e., morphisms which are surjective in positive homological
degrees).

b. Prove (or convince yourself) that the same claim holds for the category of B-
augmented simplicial commutative rings sCRing/B. Here fibrations, cofibrations and
weak equivalences are detected via the forgetful functor sCRing/B → sCRing.

c. The category sCRing/B admits products, hence we can consider the category of
abelian group objects Ab

�

sCRing/B
�

. Prove that there exists an equivalence of cate-
gories

Ab
�

sCRing/B
�

≃ sModB
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provided by sending
¦

A•
ϵ
−→ B
©

↦→ ker(ϵ), and with inverse provided by the assigna-
tion M• ↦→ B ⊕M• with level-wise square-zero commutative ring structure (for the
non-simplicial statement, see for example [Qui70, Proposition 1.5]).

d. Prove that the forgetful functor

oblvAb : Ab
�

sCRing/B
�

≃ sModB −→ sCRing/B

is a right Quillen functor, with left adjoint provided by the level-wise Kähler differen-
tial functor

Ω1
−/B : sCRing/B −→ sModB.

e. Finally derive to the left this functor to obtain the functor

L−/B : hsCRing/B −→ hsModB ≃ hC•(B).

Congratulations: you just constructed the cotangent complex of a simplicial commu-
tative ring at its given B-point ([Ill71; Ill72]).

(10) In virtue of the previous exercise, one could think: simplicial commutative rings are
commutative monoids with respect to the symmetric monoidal structure on simplicial
abelian groups given by level-wise tensor product. Since chain complexes are a nice
symmetric monoidal category, why can’t we repeat verbatim the previous arguments in
the context of commutative monoids in chain complexes, i.e., commutative differential-
graded rings? The answer depends on the fact that the Dold-Kan correspondence of
Theorem 1.4.7 is not monoidal. The solution to this exercise provides an example of
what can go wrong: prove that, if one works over a commutative ring R which does not
contain the field of rational numbers Q, the adjunction

FreeCAlg : C⩾0(R) −−⇀↽−− cdgaR : oblvCAlg

does not allow to lift the model structure on C⩾0(R) to cdgaR. (See, for instance, this
answer at MathOverflow: [Tyl].)

(11) Prove the simplicial Ninja Yoneda Lemma: for any category C, the category of simplicial
presheaves Fun(C, sSet) is the universal model category generated by C, and it is the
category which freely adds homotopy colimits to C. Alternatively, read the proof of this
powerful statement in [Dug01].
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2. DEFINITIONS AND BASIC CONSTRUCTIONS IN ∞-CATEGORY THEORY

Model categories were a first, quite powerful indeed, tool to study homotopical and homo-
logical phenomena via strict models. However, we have already seen the shortcomings of such
tool: an obvious drawback, for example, is given by the fact we always need to switch objects
and arrows with fibrant and cofibrant replacements. But there are also other annoying technical
issues: for any model category C and for an arbitrary shape K , the categories hFun(K , C) and
Fun(K , hC) are usually – almost always – quite different; moreover, model structures often
fail to fully capture the richness and abundance of structures that their homotopy categories
are equipped with. So, we want to work in a fully homotopical (or derived) world, in which
everything is naturally expressed up to homotopy: in order to do so, we need to keep track of
the homotopies that testify that some objects are equivalent. Hopefully, in such world one can
apply ordinary categorical tools (or suitable generalizations) without worrying about explicit
models and strict isomorphisms.

Before proceeding in describing what this kind of "fully homotopical" world is, let us look
for a moment back to Section 1, and let us summarize briefly what we have learned up to this
moment, including statements deduced from the exercises of Section 1.5.

(1) Simplicial sets encode all the homotopical information of topological spaces.
(2) Category theory, up to size issues, is embedded inside the theory of simplicial sets.
(3) Homological algebra is in some sense a Z-linear analogue of homotopy theory.
(4) The fundamental groupoid functor

Π1 : Top
Sing
−→ sSet

|−|
−→ Gpd ⊆ Cat

recovers all the homotopical information of a topological space X in degrees ⩽ 1.

Thus, we want to develop a theory that recovers simultaneously the homotopy of simplicial
sets (i.e., of Kan complexes), hence the homotopy of topological spaces; but we also want to
enlarge category theory in order to produce a notion of n-groupoids which has recover the
homotopical information of topological spaces in degrees ⩽ n. In particular, we want to go up to
∞ and produce a theory of∞-groupoids which can present faithfully all topological spaces up
to homotopy equivalence: this is precisely the goal of the homotopy hypothesis. Finally, we want
this theory to be well-behaved enough to do algebra in it, and recover classical homological
algebra inside this broader theory. This section wants to cover the first part of this program,
mostly categorical in nature; the algebraic part will be developed in ??.

References for this section. Almost everything presented in this section is a survey on what
the author has learned by reading [Lur09] and [RV22]. The rest is comprised of errors and
misunderstandings of his.

2.1. What an ∞-category should look like. Given a topological space X , its fundamental
groupoid Π1(X ) is the groupoid having as many objects as the points in X , and in which the
hom-sets HomΠ1(X )(x , y) recover the homotopy classes of paths from x to y inside X . But we
can refine this notion as follows.
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(1) Given two points x and y in X , corresponding to two objects in Π1(X ), we can consider
the set of paths x → y in X .

(2) Given two paths α,β : x → y , we can consider the set of homotopies between α and β .

In this way, the hom-set HomΠ1(X )(x , y) is actually an object of the category hTop⩽1, i.e., the
subcategory of hTop spanned by those topological spaces whose homotopy groups are trivial
for n⩾ 2 and for any choice of the base-point: using the terminology of algebraic topologists,
this is the category of homotopy 1-types. In other words, we have allowed both maps between
objects and homotopies between maps, which can be composed but only in a weak, homotopical
fashion: in particular, Π1(X ) is naturally enriched over the category of homotopy 1-types.

Definition 2.1.1 (Enrichment of a category, [Bor94, Definition 6.2.1]). A category C is said to
be enriched over a monoidal category V⊗ if HomC(X , Y ) is an object in V, and the composition
HomC(X , Y ) ⊗ HomC(Y, Z) → HomC(X , Z) is a map of V satisfying suitable associativity
conditions.

In order to detect the homotopical information of all topological spaces, and not only of
those with trivial higher homotopy groups, our theory of∞-categories should hence be a theory
of categories enriched over the category of all homotopy types hTop. This means that we
should be able to consider a set of morphisms between objects, but also homotopies between
morphisms, 2-homotopies between homotopies, and so forth, producing k-morphisms between
(k− 1)-morphisms for all positive integers k: this is what the "∞" in front of "∞-categories"
stands for. Moreover, we want all these higher morphisms to be invertible (indeed, these
higher morphisms are meant to be homotopy equivalences). This whole formalism may seem
unnecessarily convoluted at first glance, but it is actually rather natural for two reasons.

(1) Consider the definition of the hom-set HomΠ1(X )(x , y), which is equivalently the quotient
of the subset of HomTop([0, 1], X ) consisting of those maps sending 0 to x and 1 to y
under the homotopy equivalence relation. Composition is given by concatenation of
paths: one usually takes two compatible paths α,β : [0,1]→ X and then defines the
path β ⊛α: [0, 1]→ X by "running at twice the speed along α", and then by "running
at twice the speed along β", i.e.,

(β ⊛α)(t) =

¨

α(2t) if 0⩽ t ⩽ 1
2

β(2t − 1) if 1
2 ⩽ t ⩽ 1.

But why this parametrization? The following would work out just as fine for our scope.

(β ⊛α)∼(t) =

¨

α(3t) if 0⩽ t ⩽ 1
3

β
�

3t−1
2

�

if 1
3 ⩽ t ⩽ 1.

The fact is that β⊛α and (β⊛α)∼ are homotopic as well. And again, there are multiple
possible homotopies testifying to it, which are again homotopic one to the other, and so
on.

(2) Consider the category of small categories Cat. In an arbitrary category, isomorphisms are
defined to be those maps f : X → Y admitting an inverse f −1 : X → Y such that compo-
sitions are strictly equal to the identity of X and Y , respectively. Yet, in category theory
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we soon experience the fact that strict isomorphism of categories are too restrictive, and
that the better behaved notion is the one of equivalences of categories. An equivalence
of categories is the datum of two functors F : C→ D and G : D→ C together with
natural equivalences of functors σ : idC⇒ G ◦ F and τ: idD⇒ F ◦G: so, we ask for the
datum of some natural transformation testifying to how these compositions resemble the
identity functors on C and D. But what is the datum of such a natural transformation
if not a choice of some homotopy? Long story short: we have always been taught to
think of Cat as a (2,1)-category, and not as a mere (1-)category! (Actually, we have
always thought of Cat as a (2, 2)-category, because in category theory we are interested
also in non-invertible natural transformations between functors.)

In virtue of the above heuristics, we have two immediate models for the theory of∞-categories.

Definition 2.1.2 (Topologically enriched categories). A topologically enriched category is a
category C enriched over the category Topcg of compactly generated and weakly Hausdorff
topological spaces. We shall denote the category of topologically enriched categories with
topological functors by CatTop.

Remark 2.1.3.

(1) Since the natural functor
Top −→ hTop

preserves products, we can "shift" the enrichment of a topologically enriched category
from a Top-enrichment to a hTop-enrichment (for a reference for this result, see for
instance [Rie14, Lemma 3.4.3]). We shall not distinguish in notation between a topo-
logical category C and its associated hTop-enriched category C: this is motivated by
the fact that the former is simply an explicit model for the latter, which is the "real"
∞-category C.

(2) The assumption on the topological spaces providing the enrichment of topologically
enriched categories is motivated by the fact that the homotopy theory of compactly
generated and weakly Hausdorff topological spaces already presents the homotopy
theory of all topological spaces; yet, the restriction to Topcg simplifies a lot of the
technical machinery that we need in order to develop the theory. For example, when
restricted to Topcg, the Cartesian monoidal structure of Top is indeed closed, i.e., there
is a well-defined mapping space which provides a right adjoint to the functor taking
the Cartesian product with a fixed topological spaces: this is not true anymore if one
considers the whole Top.

The complexity of phenomena arising in the topological framework already suggest that if
one is interested in doing homotopy theory it could be reasonable to discard topological spaces
altogether and focus only on simplicial sets.

Definition 2.1.4 (Simplicially enriched categories, [Qui67]). A simplicially enriched category is
a category C enriched over the category sSet of simplicial sets. We shall denote the category of
simplicially enriched categories and simplicial functors by Cat∆.
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Again as in Remark 2.1.3.(1), any simplicially enriched category C comes equipped with a
mate hsSet-enriched category (that we again denote by C), having the same class of objects
and with enrichment provided by the natural product-preserving functor map

sSet −→ hsSet.

Definition 2.1.5. Let Cand Dbe either two topologically enriched categories or two simplicially
enriched categories. A topological or simplicial functor F : C→ D is a weak equivalence if it is
an equivalence of hTop-enriched (or equivalently hsSet-enriched) categories, i.e., if and only if
the following two conditions hold.

(1) The functor of ordinary categories hF : hC→ hD is essentially surjective.
(2) The map

MapC(X , Y ) −→MapD(F(X ), F(Y ))

is a weak equivalence for the standard model structure on topological spaces or simplicial
sets, respectively.

It is not difficult to prove, let alone to believe, that Theorem 1.4.3 implies that the homotopi-
cal theories underlying topologically enriched categories and simplicially enriched categories
are the same: we can switch between the two by replacing a topological mapping space with its
singular complex, via a functor

Sing: CatTop −→ Cat∆
and conversely by replacing a simplicial mapping space with its geometric realization via a
functor

|−| : Cat∆ −→ CatTop.

Moreover, this theory encompasses obviously category theory (an ordinary category is a topo-
logically enriched category with discrete mapping spaces between any pair of objects); it is
less obvious, but still fairly believable, how it encompasses homotopy theory of topological
spaces (this amounts to producing an∞-groupoid associated to a topological spaces). So, an
∞-category should be more or less something along these lines; yet, the necessary technical
machinery to make the theory work with these models is quite cumbersome.

(1) In both these models, one can consider the homotopy 1-category of a topologically/sim-
plicially enriched category C, defined as the category π0 Cwith same objects and with
hom-sets

Homπ0 C
(X , Y ) := π0MapC(X , Y ).

It is clear that there should be some adjunction going on between the category of small
categories Cat and the category of simplicially/topologically enriched categories Cat∆ /
CatTop, provided by some sort of functor

π0 : CatTop −⇀↽− Cat∆ −→ Cat. (2.1.6)

Yet, in the topological case, the strict adjunction works fine only on those categories
whose mapping spaces are locally path-connected ([Lur09, Remark 1.2.3.2]).
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(2) One encounters a lot of technical issues in defining a topologically/simplicially enriched
category of topological/simplicial functors between two topologically/simplicially en-
riched categories C and D. Very roughly, the issues boil down to the fact that functors
between ∞-categories should provide homotopy coherent diagrams, i.e., they should
consist of the datum of a functor between homotopy categories F : hC→ hD together
with all the natural transformations that allow to lift F to a honest functor between C

and D; but for technical reasons, this expectations is not met. (More in detail: both
topologically enriched categories and simplicially enriched categories are endowed with
a model structure, but even if C is cofibrant, hence we have enough rigid functors
C→ D to represent all ∞-functors, the product C×∆1 needs not to be cofibrant
anymore – and rigid functors C×∆1→ D are precisely the ones that represent natural
transformations between ∞-functors from C to D. See [Lur09, Sections 1.2.6 and
1.2.7] for more information about this technical stuff.)

Rather, we try to pursue the intuition sketched by the exercises of Section 1.5: topological spaces
are Kan complexes, and categories are almost Kan complexes.

Definition 2.1.7 (Weak Kan complexes, [BV73] or quasi-categories, [Joy02]). A weak Kan
complex or quasi-category is a simplicial set Q• satisfying the following lifting property: for every
inner horn Λn

k ⊆∆
n, with 0< k < n, and any map Λn

k →Q•, there exists a lift

Λn
k Q•

∆n

making the diagram commute.

We shall denote the full subcategory of sSet spanned by quasi-categories by sSetJoyal.

Remark 2.1.8.

(1) Note that, in order to get to Definition 2.1.7, we have relaxed simultaneously the
properties of the singular complex of a topological space and of the nerve of a category:
the former has the lifting property against all inclusions of horns, the latter has a unique
lifting with respect to inclusions of inner horns.

(2) We shall think of a vertex x ∈ C0 as an object of C, and of an edge f ∈ C1 as a morphism
between the source vertex d1

0( f ) and the target vertex d1
1( f ). In particular, each vertex x

comes equipped with a canonical edge whose both endpoints coincide with x – namely,
the degenerate edge s1

0(x), which acts as the identity of x .
(3) Given two vertices x and y in a quasi-category C, we can define a whole mapping space

Map•
C
(x , y), which is the simplicial set described in degree n by the formula set

Mapn
C
(x , y) := {σ : ∆n→ C | σ|∆{0,...,n−1} = x and σ|∆n = y}

and with faces and degeneracies induced by the ones of C. It is easily seen that this is a
Kan complex, i.e., it produces the homotopy type of a topological space: this is proved
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in [Lur09, Proposition 1.2.2.3]. In particular, we are still retaining our (pretty robust)
intuition of∞-categories as "categories enriched over homotopy types".

(4) For a simplicial set S• : ∆
op→ Set, precomposition with the natural involution ∆

≃
−→∆

which fixes the objects of ∆ and which sends a map f : [n]→ [m] to the map

f op : i ↦→ m− f (n− i)

produces a new simplicial set Sop
• : ∆op→ Set. In the case of a quasi-category C then

Cop is the opposite quasi-category of C.
(5) We will say that a morphism f : x → y is an equivalence in C if there exists an edge

f −1 : y → x and a pair of 2-simplices

x

y

x

f

⇓

idx

f −1

and
y

x

y.

f −1

⇓

idy

f

Definition 2.1.9. Given two quasi-categories C and D, a quasi-functor F : C→ D is a map of
simplicial sets.

Remark 2.1.10.

(1) In Definition 2.1.7, all the technical disadvantages that we encountered when trying
to define topologically/simplicially enriched functors disappear, because defining the
action of F on all simplices of C is precisely the datum that we need in order to define
the homotopy coherencies of the∞-functor represented by F .

(2) For any simplicial set K and for a fixed quasi-category C the simplicial mapping complex

Map•sSet(K , C): [n] ↦→ HomsSet(K ×∆n, C)

is a quasi-category ([Lur09, Proposition 1.2.7.3]). As a consequence, for any simplicial
set (and, in particular, for any quasi-category) K , we shall define

Fun(K , C) :=Map•sSet(K , C)

to be the quasi-category of quasi-functors between K and C. It is a striking result that,
differently from what happens in the theory of ordinary model categories, this quasi-
category models the homotopy theory of functors between the underlying homotopy
categories. In other words, if C and D are quasi-categories, we have an equivalence of
homotopy categories

Fun(hC, hD)≃ hFun(C, D),

where the homotopy category hCof a quasi-category is defined as in Construction 2.1.11.
(3) In ∞-category theory, one can easily generalize the notions of essentially surjective

and fully faithful ∞-functors: they are functors C→ D which are surjective on the
homotopy equivalence classes of objects, and functors C→ D such that

MapC(x , y)≃MapD(F(x), F(y))
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for any couple of objects x and y of C, respectively. It makes less sense to define
"full" or "faithful"∞-functors: the fact that we have a homotopy type of maps between
objects makes it almost meaningless to talk about "injectivity" and "surjectivity" on the
homotopy type of maps.

Construction 2.1.11. As in the case of simplicially enriched and topologically enriched cat-
egories, there is also a notion of a homotopy 1-category underlying a quasi-category C, which
agrees with the homotopy category of its underlying simplicial set defined through the func-
tor 1.4.4. In the case C is a quasi-category, the homotopy category hC can be equivalently
characterized as follows.

(1) Any vertex of C yields an object of hC.
(2) Any edge f : ∆1 → C yields an arrow between the source d1

0( f ) =: x and the target
d1

1( f ) =: y . The identity on an object x is the degenerate 1-simplex s1
0(x) =: idx .

(3) We mod out the set of edges of Cby the homotopy equivalence relations, that identify all
edges f : x → y and g : x → y whenever there exists a 2-simplex making the following
diagram commute.

x

y

y.

f

⇓

g

idy

Notice that with such a definition of the homotopy category of a quasi-category C,
the definition of equivalence provided in Remark 2.1.8.(5) can be restated as follows:
f : x → y is an equivalence precisely if it represents an isomorphism in the homotopy
category.

This discussion allows us to define what an equivalence of quasi-categories is.

Definition 2.1.12. An equivalence of quasi-categories is a quasi-functor F : C→ D such that
the induced functor hF : hC→ hD is essentially surjective, and the induced map of mapping
complexes

MapC(x , y) −→MapD(F(x), F(y))

is a weak equivalence of Kan complexes.

Remark 2.1.13. The meaning of Definition 2.1.12 is that an equivalence of quasi-categories is
an equivalence on the underlying homotopy categories with sufficient homotopy coherence data
to lift it to a proper functor of quasi-categories. At first glance, people who are not accustomed
to homotopy theory may find this definition too weak; yet this is precisely the right homotopy
generalization of what an equivalence between categories should be. Namely, let I be the
walking isomorphism category, i.e., the (quasi-category associated to the) category consisting of
two objects [0] and [1], and two non-trivial arrows f : [0]→ [1] and f −1 : [1]→ [0] subject
to the relations f ◦ f −1 = id[1] and f −1 ◦ f = id[0]. Then a quasi-functor of quasi-categories
F : C→ D is an equivalence in the sense of Definition 2.1.12 if and only if one of the two
following equivalent conditions hold.
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(1) For any quasi-category E the composition functor F∗ : Fun(E, C)→ Fun(E, D) is an
equivalence of quasi-categories.

(2) The functor F can be extended to a homotopy coherent equivalence, i.e., there exists a
quasi-functor G : D→ C and commuting diagrams

C

C

C

Fun(I, C)α

ev0

ev1

idC

G ◦ F

and D

D

D.

Fun(I, D)
β

ev0

ev1

idD

F ◦ G

See also [RV22, Theorem 1.4.7].

The homotopy category of a quasi-category has all the expected properties of the homotopy
category of a category enriched in homotopy types.

Proposition 2.1.14 ([Lur09, Propositions 1.2.3.1 and 1.2.5.1]). The functor h: sSet→ Cat is a
left adjoint, which is right adjoint to the nerve functor N: Cat→ sSet. Moreover, a quasi-category
C is a Kan complex if and only if hC is a groupoid.

We conclude this section with a brief remark on the history and the heuristics of quasi-
categories. Quasi-categories were first introduced by Boardman and Vogt, under the term weak
Kan complexes, in their study of homotopy invariant algebraic structures, and were later studied
in greater detail by Joyal starting from the 1980s. According to Joyal himself, he wished to
extend category theory to weak Kan complexes – this is why he called them quasi-categories
– but he stopped his project for almost fifteen years because of difficulties encountered while
trying to prove that a quasi-category is always a Kan complex if its homotopy category is a
groupoid. He finally achieved this result around the second half of the 1990s; later, he exhibited
a model structure on the category of simplicial sets whose fibrant-cofibrant objects were precisely
quasi-categories (see Theorem 2.3.6). Some years later, Lurie developed the theory of quasi-
categories in the seminal [Lur09], using Joyal’s theory (and unpublished ideas by Rezk) as
a stepping stone for his research. Nowadays, topologically enriched categories, simplicially
enriched categories and quasi-categories, (but also complicial setes, complete Segal spaces,
and so forth) are only meant to be interpreted as various models for ∞-category theory, all of
which enjoy the same properties up to formalism issues. The choice of the quasi-categorical
model is motivated purely by the technical advantages they bring to the table when proving
foundational results and theorems, and nothing else: the homotopy theories of topologically
enriched categories, simplicially enriched categories, and quasi-categories (but also complete
Segal spaces, complicial sets...) are all equivalent one to the other. For instance, there are both
topological

Ntop : CatTop −→ sSetJoyal (2.1.15)
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and simplicial

N∆ : Cat∆ −→ sSetJoyal (2.1.16)

nerve functors, that produce a quasi-category out from a topologically or simplicially enriched
category, respectively. Viceversa, one can extract a simplicially enriched category from any
quasi-category (actually, from any simplicial set) via a functor

C: sSetJoyal −→ Cat∆. (2.1.17)

Hence, by composing with Sing, we can obtain a topologically enriched category Sing(C [C])).
This assignation produces an adjunction which yields an equivalence at the level of homotopy
categories between Cat∆ (hence CatTop) and sSet ([Lur09, Theorem 1.1.5.13]). Moreover, for
any quasi-category C, the functor C induces a natural equivalence at the level of homotopy
categories, i.e.,

hC≃ π0(C(C)).

Here π0 is the homotopy category functor for simplicially enriched categories 2.1.6. Long story
short: even if we shall stick to the model provided by quasi-categories (if we need one), we can
transfer all our constructions from one setting to another essentially using the functors 2.1.15,
2.1.16 and 2.1.17. For all these reasons, the reader is deeply encouraged to think of this theory
in model-independent terms.

2.2. Category theory for∞-categories: an introduction. There are many important concepts
that we would like to preserve, or suitably generalize, from ordinary category theory to the
setting of∞-category theory. Among the most important, we recall the following.

(1) We want to arrange∞-categories in some (∞, 2)-category of ∞-categories, up to size
issues.

(2) We want to deal with adjunctions.
(3) Of course, we want to be able to talk about limits and colimits of arbitrary shape in

∞-categories.
(4) We want to prove an analogue of Ninja Yoneda Lemma (Theorem 1.4.1).

In the writer’s opinion, nowadays it is a bit anachronistic to base the statements and the proofs
of the theory entirely on the formalism of quasi-categories developed by Joyal and Lurie. The
reason is the following: recently, there has been a surge of results dealing with the theory of
enriched∞-category theory and of (∞, n)-categories that allow a way more intrinsic treatment
of the theory of∞-categories, for example via the theory of∞-cosmoi developed in [RV22],
which moreover highlights the naturality of the definitions in the higher categorical world and
almost makes rigorous the following slogan.

Slogan 2.2.1. Basic constructions of ordinary 1-category theory can be carried out almost
verbatim in the ∞-categorical world, up to replacing commutative diagrams with homotopy
coherent diagrams, isomorphisms with homotopy equivalences, unique up to a unique isomorphism
with unique up to a contractible space of homotopies, and sets with spaces or homotopy types.
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If a reader finds this slogan believable enough and is only interested in using ∞-categorical
tools for algebra and geometry, they can safely skip these sections and jump directly to Section 3.
Otherwise, let us begin!

2.3. The (∞, 2)-category of ∞-categories. For the moment, we shall stick to the quasi-
categorical model in order to explicitly present two fundamental∞-categories: the∞-category
of spaces S, and the ∞-category of ∞-categories Cat∞. The former will play the role of the
category Set of sets: all locally small ∞-categories are enriched over S, they are the most
prototypical example of a ∞-topos, and every cocomplete ∞-category is naturally tensored
over S; the latter is, simply, the ambient world for our ∞-categories. First of all, we need a
small detour: we have to show how we can produce a quasi-category from a model category, or
in general, from a category endowed with a class Wof weak equivalences.

Definition 2.3.1 (Hammock or Dwyer-Kan localization, [DK80, Definition 2.1]). Let (C, W)
be the datum of a category Cwith a class of weak equivalences W (i.e., a class of morphisms
that contain all isomorphisms and satisfy the two-out-of-three property). The hammock or
Dwyer-Kan localization of C at W is the simplicially enriched category LH(C, W) described as
follows.

(1) Objects of LH(C, W) are the same as the objects of C.
(2) The simplicial set of maps from X to Y in LH(C, W) is described in degree k by hammocks

of width k and any length. Namely: the k-simplices of Hom•LH(C, W)(X , Y ) are given by
diagrams of the form

X Y

C0,1 C0,2 . . . C0,n

C1,1 C1,2 . . . C1,n

...
...

...

Ck,1 Ck,2 . . . Ck,n

subject to the following relations.
• n ranges over all non-negative integers;
• all vertical arrows and all horizontal arrows pointing to the left lie in W;
• any two consecutive horizontal arrows point toward different directions;
• no column consists only of identity maps.

Faces and degeneracies are then defined in the natural way.

Remark 2.3.2. If C is moreover a model category, it is sufficient to consider only fibrant and
cofibrant objects.

It is quite clear from Definition 2.3.1 that the class of vertices of the simplicial set of maps
between X and Y in LH(C, W) is pretty close to the class of arrows from X to Y in the localization
C
�

W−1
�

of Definition 1.2.1. And indeed:
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Proposition 2.3.3 ([DK80, Proposition 3.1]). There exists an equivalence of categories

π0

�

LH(C, W)
�

≃ C
�

W−1
�

,

where π0 is the homotopy category functor for simplicially enriched categories 2.1.6.

Taking the simplicial nerve N∆
�

LH(C, W)
�

(2.1.16), we obtain a honest quasi-category. The
heuristics of what we are doing is clear: we are enhancing our model category to a∞-category
by considering simultaneously all possible homotopy coherence data that remember how diagrams
commute in the homotopy category C

�

W−1
�

. Moreover, the construction of Definition 2.3.1
provides an immediate candidate for the∞-category of spaces S: it is the∞-category associated
to the standard model structure on Top, or equivalently1 on sSet.

Definition 2.3.4. The∞-category of spaces (or of homotopy types) is the∞-category presented
by the quasi-category

S := N∆
�

LH(Top, W)
�

.

Remark 2.3.5. Definition 2.3.4 makes the homotopy hypothesis trivially true: since ((n+ 1)-
coskeletal) Kan complexes correspond to the nerve of (n-)groupoids, this definition identifies
the homotopy theory of n-homotopy types with the higher categorical theory of n-groupoids,
essentially by standard model theoretic arguments. However, this identification can become
less obvious, and even highly non trivial, with other models: see [nLa23b] for more details.

In a similar fashion to Definition 2.3.4, we can define the∞-category of∞-categories to be
the Dwyer-Kan localization of some model category.

Theorem 2.3.6 ([Joy02; Lur09]). There is a model structure on the category of simplicial sets
where cofibrations are monomorphisms, and weak equivalences are detected via the functor C

(2.1.17). The fibrant and cofibrant objects of this model category are precisely the quasi-categories,
i.e., sSetJoyal. Moreover, such model category is combinatorial2 and it is monoidal with respect to
the standard Cartesian monoidal structure on sSet3.

Remark 2.3.7. Theorem 2.3.6 allows us to consider, modulo suitably enlarging our universe, a
quasi-category of quasi-categories, which is the quasi-category associated to sSetJoyal. Again, let
us remark that such quasi-category has to be interpreted as a mere model for a∞-category of∞-
categories, that we shall denote either by Cat∞ (for the large∞-category of small∞-categories)
or Catd∞ (for the huge∞-category of large∞-categories). Moreover, the compatibility of the
model and the monoidal structures allows us to consider the ∞-categories Cat∞ and Catd∞
to be enriched over themselves. This is another way to interpret the fact that they are in fact
(∞, 2)-categories: the ∞-category of morphisms between two ∞-categories C and D is simply
its internal mapping object Fun(C, D). This mirrors the definition of a (2,2)-category as an
ordinary category which is (weakly) enriched over the Cartesian monoidal category Cat.

1Until now, this equivalently is a bit of a stretch, but we will justify the use of this word in Theorem 2.4.3.
2This simply means that it is tractable and generated by small enough data, in some sense.
3This is simply a technical conditions that guarantees that both the product of simplicial sets and the internal

mapping complex pass at the level of the homotopy category.
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So, we have gathered our∞-categories in a (∞, 2)-category Catd∞. Nice! We can finally start
doing real category theory, and there is more: the technical machinery of ordinary 2-category
theory which has been recently developed in the ∞-categorical setting allows us to define, in a
completely abstract and theoretical fashion, concepts such as adjunctions, limits and colimits,
highlighting their similarity with the usual definitions encountered in ordinary category theory.
From now one, we shall drop the quasi before quasi-categories and replace it with∞.

2.4. Adjunctions. In [Lur09, Definition 5.2.2.1], Lurie argues that an adjunction between
∞-categories Cand D should be the datum of an∞-functor M→∆1, which is both a Cartesian
and coCartesian fibration, together with equivalences

M×∆1 {[0]} ≃ C

and
M×∆1 {[1]} ≃ D.

While we shall discuss Cartesian and coCartesian fibrations in Section 2.7, we have still not
defined them yet; moreover, in ordinary category theory adjunctions are not defined in this
way. Hence, we prefer to follow the approach of [RV22], which recovers the same theory of
adjunctions between∞-categories as Lurie’s, but it is way more recognizable from a 1-categorial
point of view.

Definition 2.4.1 ([RV22, Definition 2.1.1]). An adjunction between ∞-categories is the datum
of two∞-functors

F : C−−⇀↽−− D: G

together with a pair of natural transformations η: idD⇒ G ◦ F and ε: F ◦ G⇒ idC satisfying
the following triangular identities in the underlying homotopy 2-category hCatd∞.

D D

C C

ε ⇓
⇓ ηG

F
G

idD

idC

≃
==

D

C

=G G and

D D

C C

⇓ ε
η ⇓

F
G

F

idC

idD

≃
==

D

C

= FF .

In this situation, we shall say that F is left adjoint to G and G is right adjoint to F and we shall
denote it by F ⊣ G (or equivalently G ⊢ F).

Let us remark that, in spite of a vast portion of literature still adopting the definition à
la Lurie, this is the definition that Joyal himself had proposed for an adjunction between
quasi-categories. It is a remarkable fact that, in order to provide an adjunction at the level of
∞-categories, one needs to specify only 2-dimensional data: the rest is recovered – and in a
homotopically essentially unique way! – from these, see [RV16, Theorem 4.4.18].

Proposition 2.4.2 ([RV22, Sections 2.1 and 4.1]).

(1) If F : C⇋ D: G is an adjunction, then for any∞-category Ethere is an induced adjunction

F∗ : Fun(E, C) −−⇀↽−− Fun(E, D): G∗.
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(2) If F : C⇋ D: G and F ′ : D⇋ E: G′ are adjunctions, then F ′ ◦ F : C⇋ E: G ◦ G′ is an
adjunction as well.

(3) If an∞-functor F : C→ Dadmits two right adjoints G and G′, then G ≃ G′. An analogous
claim holds for F admitting two left adjoints.

(4) Any equivalence of∞-categories can be modified into an adjoint equivalence up to modifying
one of the natural equivalences α and β of Remark 2.1.13.(2).

(5) A pair of∞-functors F : C⇋ D: G is an adjunction of∞-categories if and only if for any
object C in C and any object D in D it induces a natural equivalence of mapping spaces

MapD(F(C), D)
≃
−→MapC(C , G(D)).

Moreover, this equivalence is induced by applying ηC ◦ G.

Proposition 2.1.14 guarantees that adjunctions in the ∞-categorical world behave in a
very similar way to the ones in the 1-categorical framework. Actually, there is more: if two
∞-categories arise from the Dwyer-Kan localization of two model categories (Definition 2.3.1),
then Quillen adjunctions and equivalences are turned into ∞-categorical adjunctions and
equivalences.

Theorem 2.4.3 ([Maz16, Theorem 2.1]). Given a Quillen adjunction F : C⇋ D: G between
model categories, then the restrictions

F |Cc
: Cc −→ D

and
F |Df

: Df −→ C

induce an adjunction between their associated ∞-categories. If moreover F ⊣ G is a Quillen
equivalence, then the induced∞-functors yield an equivalence of∞-categories.

2.5. Limits and colimits. In most handbooks of categorical algebra limits and colimits are
presented before adjunctions. This is the approach of [Lur09] as well: we briefly review it here.

(1) First, Lurie generalizes the join operation of sets to quasi-categories in [Lur09, Section
1.2.8]. In ordinary category theory, the join of two categories C⋆ D is the category
whose objects are given by the disjoint union of the classes of objects of C and D, and
whose class of arrows is described as follows. If X and Y are objects in C, then the set
of maps between X and Y is just the set of maps between X and Y in C; an analogous
claim holds if X and Y are both in D. If X belongs to C and Y belongs to D then there
exists a unique map X → Y in C⋆D, while if X belongs to D and Y belongs to C there
is no map at all.

(2) In this way, for any diagram p : K → C in a quasi-category C he is able to define
over-quasi-categories C/p and under-quasi-categories Cp/ as those quasi-categories such
that, for any other simplicial set Y , there is an identity of mapping complexes

MapsSet

�

Y, C/p
�

=Mapp(Y ⋆ K , C),
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where the subscript on the right hand side denotes that we are considering only maps
of simplicial sets whose restriction to K agrees with p. This is the content of [Lur09,
Section 1.2.9]

(3) Next, Lurie introduces final objects in a quasi-category C ([Lur09, Section 1.2.12]): an
object 1 in a quasi-category C is final if and only if for any other object X of C the
mapping space MapC(X , 1) is contractible. Dually, an initial object is just a final object
in the opposite quasi-category Cop.

(4) Finally, a limit for a diagram p : K → C is defined to be a final object in C/p, and dually
a colimit is defined to be an initial object in Cp/ ([Lur09, Definition 1.2.13.4]).

However, having already developed the theory of adjunctions in the∞-categorical setting, we
can simplify a lot our definition of limits and colimits.

Definition 2.5.1. Let K be any simplicial set. We say that an ∞-category C admits colimits of
shape K if the∞-functor

const: C≃ Fun({∗} , C) −→ Fun(K , C),

induced by restriction along the canonical map K → {∗}, admits a left adjoint

colim: Fun(K , C) −→ C.

Dually, we say that an∞-category C admits limits of shape K if the above∞-functor admits a
right adjoint

lim: Fun(K , C) −→ C.

Given a diagram p : K → C, seen as an object in Fun(K , C), its colimit (resp. its limit) is the
image of p under the left adjoint colim (resp., under the right adjoint lim).

Notice that Definition 2.5.1 already extracts a lot of information on the behavior of limits
and colimits in ∞-categories. You can toy around with Proposition 2.4.2 to extract useful and
desired properties, such as the fact that the space of limits of a homotopy coherent diagram is
either empty or contractible, or the fact that limits are final in the∞-category of cones over a
homotopy coherent diagram, or again that limits are preserved by left adjoints, as well as their
dual statements for the case of colimits. Of course, this comes with a drawback: we are not
allowing our∞-categories to have some, but not all, limits or colimits of a certain shape. We
provide a 2-categorical definition just for reference, but we guarantee that in the following we
shall need only ∞-categories admitting all limits or colimits of a certain shape – most often
than not, even admitting all sufficiently small limits or colimits.

Definition 2.5.2 ([RV22, Definition 2.3.8]). Let K be a simplicial set, and let d : D→ Fun(K , C)
be a family of diagrams of shape K in C. We say that the family D admits a colimit in C if there
exists an∞-functor colim: D→ C and a 2-simplex

D Fun(K , C)

C

⇑ η

colim

d

const
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such that any 2-simplex of the following form

D

D Fun(K , C)

C

⇑ σ

d

const

factors uniquely through η. Dually, we say that the family D admits a limit in C if there exists
an∞-functor lim: D→ C and a 2-simplex

D Fun(K , C)

C

⇓ η

lim

d

const

such that any 2-simplex of the following form

D

D Fun(K , C)

C

⇓ σ

d

const

factors uniquely through ε.

Remark 2.5.3. Notice that if C is a model category, its associated∞-category N∆
�

LH(C, W)
�

is both complete and cocomplete, and limits and colimits in N∆
�

LH(C, W)
�

are modeled
by homotopy limits and homotopy colimits in C. Try to prove this statement yourself by
concatenating Definition 2.5.1 and Example 1.2.7 with Theorem 2.4.3.

Corollary 2.5.4. The ∞-categories S, Cat∞ and Catd∞ are complete and cocomplete, and the
inclusions S⊆ Cat∞ and Sb ⊆ Catd∞ preserve all limits and colimits.

Remark 2.5.5 ([Lur09, Remark 1.2.5.6]). Actually, Theorem 2.4.3 implies something more.
The identity functor on simplicial sets

idsSet : sSet −→ sSet,

where the source is endowed with the Quillen standard model structure of Theorem 1.3.9 and
the target with the Joyal model structure of Theorem 2.3.6, is both left and right Quillen. Indeed,
it preserves fibrant-cofibrant objects (since Kan complexes are in particular quasi-categories,
while all simplicial sets are cofibrant), weak equivalences (since C sends a weak equivalence
of simplicial sets to a weak equivalence of simplicial categories) and all limits and colimits
(trivially). In particular, the inclusion∞-functor S⊆ Cat∞ is both a left and a right adjoint. Its
right adjoint is the core∞-functor

(−)≃ : Cat∞ −→ S
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which is informally described by sending an ∞-category C to its core, i.e., its maximal sub-∞-
groupoid C≃. On the other hand, the left adjoint

gpdfy: Cat∞ −→ S

is the groupoidification∞-functor, which completes an∞-category to an∞-groupoid by adding
inverses to all non-invertible morphisms. The groupoidification∞-functor is modeled by the
fibrant replacement of a quasi-category for the standard Quillen model structure on simplicial
sets, while the core∞-functor is modeled by a left Bousfield localization, which is the classical
model-theoretic way to present the homotopy datum of a reflective full subcategory of a
homotopy category (a reference for the standard model-theoretic definition is [Hir03, Definition
3.3.1]). These arguments can be carried out verbatim also for their "huge" counterpart.

Example 2.5.6 (Notable examples and properties of limits and colimits).

(1) We can consider arbitrary products and coproducts in an∞-category C: in particular,
the terminal object of C is the product on the empty∞-category and the initial object is
the coproduct on the empty∞-category. We say that C is pointed if both initial and final
objects exist, and they are naturally equivalent. Note that in the case of the∞-category
of spaces, since S can be modeled by the model category Top where every object is
fibrant, products in Sare precisely modeled by products of topological spaces. (This is
not true in sSet, since fibrant objects are precisely Kan complexes; anyway, one does
not need to fibrantly replace the factors in a product when they are finite, since finite
products of simplicial sets preserve weak equivalences.)

(2) We can consider pullbacks and pushouts. Here, if C is a Dwyer-Kan localization of a
model category, the things become trickier: even when a span or cospan of objects in C

is comprised of both fibrant and cofibrant objects, the arrows can fail to be fibrations
or cofibrations, and so one needs to replace the diagram with one featuring at least a
fibration (in the case of pullbacks) or a cofibration (in the case of pushout). In particular,
pullbacks and pushouts of∞-categories provide a generalization of homotopy pullbacks
and pushouts.

(3) We can consider filtered colimits. While the formal definition of a filtered diagram is a
bit more convoluted than in the classical case (even if the idea is precisely the same:
a diagram K is filtered if every small sub-diagram J ⊆ K admits a cocone in K), for
us it will be sufficient to characterize filtered colimits as precisely those colimits which
commute with any finite limit in C ([Lur09, Proposition 5.3.3.3]). Notice that in almost
all model categories we encountered until now, cofibrations are (some subclass of)
monomorphisms and inclusions, so filtered colimits in Sand in Cat∞ (but also in more
algebraic ∞-categories that we will study in Section 3) model some sort of filtered
object in the "concrete" sense. The dual notion of a filterd colimit is provided by inverse
limits, i.e., limits of cofiltered diagrams.

(4) We can consider geometric realizations, i.e., colimits of diagrams of the form ∆op→ C.
In ordinary 1-category, one of the most important kind of colimits is represented by
the class of reflexive coequalizers, which extend the theory of quotients by equivalence
relations. In ∞-category, reflexive coequalizers are not enough anymore to capture all
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the homotopy coherencies that homotopy quotients must satisfy, because they are "too
low dimensional". Simplicial diagrams provide the correct generalization of coequalizers
in ∞-category: indeed, truncating a diagram in degrees ⩽ 1 (i.e., by pre-composing
with the natural inclusion ∆op

⩽1 ⊆∆
op) one obtains precisely a coequalizer diagram. For

instance, when we will be able to talk about group objects in a ∞-category, we shall
see that the quotient of the action of a group G on an object X in C is encoded by the
geometric realization

[X/G] := colim
n∈N

�

. . . G×3 × X G×2 × X G × X X
�

,

where the right-oriented maps are given by all possible binary products in G, all possible
binary actions of G on X , and projections. The dual notion of geometric realizations is
provided by totalizations, i.e., limits of cosimplicial diagrams ∆→ C.

(5) In general one can talk about sifted colimits, i.e., colimits of diagrams of shape K where K
is a sifted∞-category. We will not actually need the definition of what sifted means, but
we are interested in the fact that ∆op is sifted ([Lur09, Proposition 5.5.8.4]), and that
sifted colimits are precisely those colimits which commute with finite products ([Lur09,
Proposition 5.5.8.11]); in particular, filtered colimits are sifted as well. Actually sifted
colimits are essentially of these two types: i.e., to have all sifted colimits it is sufficient to
have geometric realizations and filtered colimits (this is stated, somewhat cryptically,
in [Lur09, Lemma 5.5.8.14] and spelled out in a bit more detail in [Lur09, Corollary
5.5.8.17]).

(6) We shall say that C is (co)complete if it admits all (co)limits, and we shall say that
it is finitely (co)complete if it admits all finite (co)limits, just as in the classical case.
As in ordinary category theory, an ∞-category C is finitely cocomplete if and only if
it admits pushouts and an initial object ([Lur09, Corollary 4.4.2.4]), or equivalently
finite coproducts and geometric realizations ([Lur17, Lemma 1.3.3.10]). Moreover, C
is cocomplete if and only if it admits all finite coproducts and sifted colimits (combine
[Lur17, Lemma 1.3.3.10]with [Lur09, Corollary 4.2.3.11]), or if it admits all coproducts
and pushouts ([Lur09, Proposition 4.4.2.6]). These results can be dualized, more or
less straightforwardly.

2.6. Comma ∞-categories. The observation that the ∞-category Catd∞ admits all limits
allows us to define over and under-∞-categories in a model independent way, which is however
essentially equivalent to Lurie’s definition. We state their construction here, since over- and
under-∞-categories will pop up often in the following.

Construction 2.6.1. Let C be any ∞-category, and let Fun
�

∆1, C
�

be the ∞-category of
arrows in C, with morphisms provided by homotopy coherent diagrams of arrows. The natural
inclusions

�

s0

s1

�

: {[0]}
∐︂

{[1]} −˓→∆1

induce by pre-composition two∞-functors

〈ev0, ev1〉: Fun
�

∆1, C
�

−→ C× C
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which determine the source and the target of a morphism, respectively. In particular, we can
apply this construction to the∞-category of homotopy coherent diagrams of shape K in C– i.e.,
to the∞-category Fun(K , C): its arrow∞-category Fun

�

∆1, Fun(K , C)
�

consists of homotopy
coherent natural transformation of diagrams of shape K . In particular, we have an∞-functor

ev1 : Fun
�

∆1, Fun(K , C)
�

−→ Fun(K , C),

and given a fixed diagram p : K → Cwe can take the fiber of such∞-functor at p. This yields
an∞-category

Fun(K , C)/p := Fun
�

∆1, Fun(K , C)
�

×Fun(K , C) {p} .
Morally, this is the ∞-category of homotopy coherent natural transformations of diagrams
of shape K, with the datum of a homotopy coherent natural equivalence between the target
diagram and the diagram given by p. The composition

Fun(K , C)/p −→ Fun
�

∆1, Fun(K , C)
� ev0−→ Fun(K , C)

selects the source of such natural transformation. Considering the constant diagram ∞-functor

const: C−→ Fun(K , C),

we produce a cospan of∞-categories

Fun
�

∆1, Fun(K , C)
�

/p Fun(K , C)

C

ev0

const

and we can take its limit

Fun(K , C)/p := Fun(K , C)/p ×Fun(K , C) C.

Again, this pullback amounts to the datum of a homotopy coherent natural transformation of
diagrams of shape K , with the datum of a natural equivalence between the source diagram and
the constant diagram over some object of C, and the datum of a natural equivalence between
the target diagram and the diagram p. This produces precisely the correct over-∞-category.
The under-∞-category Cp/ is defined analogously.

Remark 2.6.2. If K ≃ {∗}, then a diagram of shape K corresponds to an object X in C, and
Construction 2.6.1 produces the slice∞-categories C/X and CX/.

2.7. Fibrations and Grothendieck construction. This section is arguably the most technical
part of this foundational chapter, and this cannot be avoided: usually, graduate students do not
encounter fibrations of categories during their studies, so they can fail to see what is happening
when one introduces fibrations of∞-categories – which appear in many flavors, many of which
have no counterparts in the 1-categorical framework. We can try to explain their necessity as
follows: in ordinary category theory, if one wants to define a functor F : C→ D they can simply
define the image of an object X in Cunder F , specify what is the image of a morphism f : X → Y ,
and finally check that composition of arrows is preserved4. This cannot hold in∞-category, and

4This is beyond wishful thinking: usually people stop at "defining the image of an object".
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it is arguably the most crucially difficult part of the theory: since we have non-trivial n-cells for
all n⩾ 2 testifying to how diagrams of (n− 1)-cells can commute, we should actually define for
any n-simplex σ : ∆n→ C its image F(σ): ∆n→ D. Due to unfortunate reasons, we lack the
time to specify an infinite amount of data.

Here is where fibrations enter the picture: they allow to control an infinite amount of
homotopy coherencies via an only 1-dimensional check. To make this introduction less obscure,
let us start with arguably the classical example of a fibration.

Example 2.7.1 (Categories fibered in groupoids and Grothendieck construction, [Sta23, Section
4.35]). Let p : D→ C be a functor of categories.

Definition 2.7.2. We say that p exhibits D as fibered in groupoids over C if the following two
conditions hold.

(1) For any arrow f : X → Y in C and any lift of the target Y to D there exists a complete
lift of f to D, i.e., for all objects V in D such that p(V ) = Y we can find an arrow
ϕ : U → V such that F(ϕ) = f .

(2) All arrows in D are p-Cartesian. In general, an arrow ϕ : U → V in D is said to be
p-Cartesian if for every diagram of solid arrows in D

U V

W

ϕ

ψ

and for every arrow h: p(U)→ P(W ) making the following diagram commutative in C

p(U) p(V )

p(W )

p(ϕ)

p(ψ)

h

then there exists a unique lift χ : U →W such that p(χ) = h and such that the following
diagram

U V

W

ϕ

ψ

χ

is commutative in D.

It is a historical result that these data indeed define a fibration in groupoids, i.e., for any
object X in C the fiber category

DX := D×C {X }
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is actually a groupoid. What is more, the association

X ↦→ DX

{ f : X → Y } ↦→ { f ∗ : DY → DX } ,

is (weakly) 2-functorial. Here, f ∗ is defined by sending an object U in the fiber DY to the
domain of the Cartesian lift of f having U as target (this exists in virtue of Definition 2.7.2.(1)),
and by sending an arrow h: V → U in DY to the dotted arrow between lifts in DX (which exists
in virtue of Definition 2.7.2.(2)). Moreover, the uniqueness of such lift provided by Definition
2.7.2.(2) implies that there is a natural 2-cell that testifies to the fact that (g ◦ f )∗ ≃ f ∗ ◦ g∗. In
particular, giving a fibration in groupoids p : D→ C is equivalent to giving a weak 2-functor
from Cop to the (2,1)-category of groupoids Gpd.

Remark 2.7.3. In the above example, one can relax Definition 2.7.2 in the following way: for
any arrow f : X → p(V ), we can simply ask for the existence of some p-Cartesian morphism
U → V lifting f . This is enough to provide a weak 2-functor Cop → Cat, but not enough to
prove that every fiber is a groupoid. This construction is known in literature as the Grothendieck
construction.

Notice that, in the above example, a clever definition of the 1-dimensional data guarantees
a canonical 2-homotopy between the composition of pullback functors and the pullback functor
of the composition: this seems a particularly useful strategy when dealing with∞-categories.

Definition 2.7.4 (Fibrations of ∞-categories, [Lur09, Chapter 2]). Left p : D → C be an
∞-functor.

(1) We say that p is a inner fibration if it has the right lifting property with respect to inner
horn inclusions Λn

k ⊆∆
n for any n and any 0< k < n.

(2) If p : D→ C is an inner fibration of ∞-categories, we say that an arrow f : ∆1→ D in
D is p-cartesian if the natural∞-functor between over-∞-categories

D/ f −→ D/ev1( f ) ×C/ev1(p◦ f )
×C/p◦ f

is a trivial Kan fibration. We say that p is a Cartesian fibration if it is an inner fibration
and for any morphism f : X → p(U) in C there is a p-Cartesian morphism V → U in D

lifting f .
(3) We say that p is a coCartesian fibration if pop : Dop→ Cop is a Cartesian fibration.
(4) We say that p is a left fibration if it has the right lifting property with respect to inner

and outer-left horn inclusions Λn
k ⊆∆

n for any n and any 0⩽ k < n.
(5) We say that p is a right fibration if it has the right lifting property with respect to inner

and outer-right horn inclusions Λn
k ⊆∆

n for any n and any 0< k ⩽ n.
(6) We say that p is a Kan fibration if it has the right lifting property with respect to all horn

inclusions Λn
k ⊆∆

n for any n and any 0⩽ k ⩽ n.
(7) We say that p is a trivial Kan fibration if it has the right lifting property with respect to

boundary inclusions ∂∆n ⊆∆n for any n.

Remark 2.7.5. Following the usual principle of these lectures – that is, simplicial sets are
just a model – we have introduced only those fibrations of ∞-categories that have both an
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intrinsic categorical meaning and whose definition can be straightforwardly interpreted in
the internal theory of ∞-categories, while keeping an essentially combinatorial and simplicial
flavour. Namely:

(1) Inner fibrations can be thought as families of∞-categories DX parametrized by objects
of C, such that for any morphism f : X → Y there is a correspondence D

op
X × DY → S

between DX and DY . This is spelled out in some detail in [Lur09, Section 2.3.1].
(2) Kan fibrations were already defined in terms of fibrations for the model category of

simplicial sets, but here they acquire further meaning: they can be thought of as families
of∞-groupoids DX parametrized by objects of C, such that for any morphism f : X → Y
in C there is a couple of adjoint∞-functors

f ∗ : DY −−⇀↽−− DX : f∗.

When a Kan fibration is trivial in the sense of Definition 2.7.4.(7), then the fibration
p : D→ C it is moreover an equivalence of∞-categories.

(3) Cartesian fibrations, unsurprisingly conceptually but strikingly technically, parametrize
contravariant∞-functors Cop→ Catd∞, while coCartesian fibrations parametrize covari-
ant∞-functors C→ Catd∞. We shall review this correspondence in Theorem 2.7.13.

(4) Right fibrations are nothing more than Cartesian fibrations fibered in ∞-groupoids,
i.e., contravariant∞-functors Cop→ S ([Lur09, Proposition 2.4.2.4]). Similarly, left
fibrations are coCartesian fibrations fibered in∞-groupoids, hence covariant∞-functors
C→ S. Again, we shall review in more detail this correspondence in Theorem 2.7.7.

The order of the definitions in Definition 2.7.4 is chosen appropriately: any class of fibrations
contains all the classes of fibrations appearing after that. Moreover, the conceptual description
of fibrations just provided makes believable the following claims: if C is a∞-groupoid then
any left or right fibration is automatically a Kan fibration ([Lur09, Proposition 2.1.3.3]); if
moreover D is an ∞-groupoid as well, then every Cartesian fibration p : C→ D is also a right
fibration, while every coCartesian fibration is also a left fibration.

One of the most fundamental results in ∞-category theory is the fact that Cartesian and
coCartesian fibrations are indeed a way to encode (∞, 2)-functors with values in Cat∞, and that
right and left fibrations encode (∞, 2)-functors with values in S. This equivalence is provided
by a Quillen equivalence of model categories, in the following way.

Construction 2.7.6 (Preliminary notations for the Grothendieck construction).

(1) Let C be any simplicially enriched category, and let sSet be the category of simplicial
sets endowed with the Quillen model structure of Theorem 1.3.9. The category of
functors sSetC carries a projective model structure which detects weak equivalences
and fibrations point-wise.

(2) Let S be any simplicial set. The over category sSet/S carries a contravariant model
structure which detects cofibrations at the level of the underlying map of simplicial sets
(i.e., they are monomorphisms) and for which weak equivalences are maps X → Y such
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that
X ▷
∐︂

X

S −→ Y ▷
∐︂

Y

S

is a weak equivalence for the Joyal model structure on simplicial sets of Theorem 2.3.6.
Here, the notation X ▷ denotes the join simplicial set X ⋆ [0]: informally, we are adding
an artificial final vertex, the cone pont, to X . This model structure enjoys a vast amount
of nice technical and theoretical properties (it is proper, simplicial and combinatorial),
and the fibrant and cofibrant objects are precisely right fibrations X → S.

(3) Let ϕ : C[S] → Cop be a simplicial functor, where C[S] is the simplicially enriched
category associated to S via the functor 2.1.17. For any object X → S in sSet/S, by the
functoriality of C, we obtain both C[X ]→ C[X ▷] and C[X ]→ C[S]→ Cop, hence we
can consider the pushout of simplicially enriched categories

M := C[X ▷]
∐︂

C[X ]

Cop.

If v denotes the cone point of X ▷, then M trivially contains a copy of both v and Cop,
and so we can define a covariant functor

StϕX : C−→ sSet,

defined on an object C of C as the mapping complex

StϕX (C) :=MapM(C , v).

Varying all over objects X ’s over S, we define a functor

Stϕ : sSet/S −→ sSetC

that we call the straightening functor associated to ϕ. Suppose now that C= C[S] and
ϕ = idC[S]. For X → S a morphism, we can write the simplicially enriched category

M := C[X ▷]
∐︂

C[X ]

C[S]∼= C

�

X ▷
∐︂

X

S

�

because C is a left Quillen functor, hence preserves colimits. This is the free simplicially
enriched category over X ▷

∐︁

X S, which is simply S endowed with an extra vertex v and
a set of n-simplices which remember the existence of the (n− 1)-simplices in X . For
example, let X =∆1 and S = {∗}. Then X ▷ ∼=∆2, where the point v plays the role of [2],
and X ▷
∐︁

X S is just the simplicial set obtained by ∆2 collapsing the 1-simplex [0]→ [1]
to a point, without imposing further relations on f : [0]→ [2] and on g : [1]→ [2], or
on any other higher dimensional simplex for that matter.

X ▷
∐︂

X

S ∼=

⎧

⎪

⎨

⎪

⎩

[0]≡ [1]

v

⇒g f

⎫

⎪

⎬

⎪

⎭

.

So we can compute a bit more easily the above mapping complex: for an object C in
C[S] (which corresponds to a vertex of S), the set of vertices of the mapping complex



39

MapM(C , v) is the set of maps C → v, which in turn corresponds to the set of vertices
in the fiber of C under the map X → S, because for any object x in the fiber of C , there
is a unique map x → v. So we do recover the idea of constructing a functor that sends
an object to its fiber.

(4) The straightening functor admits a right adjoint

Unstϕ : sSetC−→ sSet/S,

whose explicit description is provided by Rezk in [Rez].

Theorem 2.7.7 (∞-categorical Grothendieck construction, [Lur09, Theorem 2.2.1.2]). The
adjunction

Stϕ : sSet/S −−⇀↽−− sSetC: Unstϕ
is a Quillen adjunction, and if ϕ is an equivalence of simplicially enriched categories then such
adjunction is an equivalence. In particular, the∞-category of left fibrations over an∞-category C

is equivalent to the∞-category of∞-functors Fun(Cop, S).

Outline of the proof. A messy, yet straightforward, computation yields that Stϕ indeed does
preserve both cofibrations and weak equivalences, hence the adjunction Stϕ ⊣ Unstϕ is Quillen.
To prove that it is an equivalence, one proceeds as follows.

(1) First, one proves that indeed right fibrations are sufficient to capture the homotopy
theory of sSet/S (i.e., the inclusion of the full simplicially enriched sub-category RFib(S)
spanned by right fibrations over S inside sSet/S is an equivalence of simplicially enriched
categories): this is [Lur09, Lemma 2.2.3.9].

(2) Next, assume that S = ∆n. In this case, C [∆n] is a simplicially enriched refinement
of the usual poset category [n]: it has the same objects, but the condition that the
composition of two morphisms i→ j and j→ k is strictly equal to the morphism i→ k is
relaxed to the existence of a coherent homotopy between the two morphisms. In more
technical terms, the (geometric realization of the) mapping complex MapC[∆n](i, j) is
homeomorphic to a cube (with interior, hence contractible), whose vertices are all the
possible compositions i→ k1→ k2→ . . .→ kn = j. In particular, we can consider the
map ϕ : C [∆n]→ [n] given by the identity on objects (we are "collapsing" our coherent
homotopies to strict equalities). Then one sees that the unstraightening functor induces
an equivalence between (the simplicially enriched categories associated to) fibrant
and cofibrant objects in sSet∆

n
and RFib(∆n) by directly inspecting the counit natural

transformation induced between their homotopy categories [Lur09, Lemmas 2.2.3.1
and 2.2.3.10]).

(3) One proves that if U is any class of simplicial sets which contains ∆n for any n, which
is stable under isomorphisms, disjoint unions, and pushouts and filtered colimits along
monomorphisms, then U= sSet ([Lur09, Lemma 2.2.3.5]). In particular, one proves
that the class U of simplicial sets for which the unstraightening functor produces an
equivalence of simplicially enriched categories between fibrant and cofibrant objects in
sSetS and RFib(S) enjoys all these properties ([Lur09, Lemma 2.2.3.11]).
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(4) Finally, one proves that if C→ C′ is an equivalence of simplicially enriched categories
then sSetC ≃ sSetC

′
([Lur09, Proposition A.3.3.8]), and that a Quillen adjunction is

a Quillen equivalence if and only if it induces an equivalence between the associated
simplicially enriched categories of fibrant and cofibrant objects ([Lur09, Proposition
A.3.1.10]).

Therefore, the steps above together imply the whole statement. □

Theorem 2.7.7 is the higher categorical generalization of Grothendieck’s fibrations in
groupoids. Yet, we still need an analogue result relating Cartesian fibrations and contravariant
∞-functors with values in Cat∞. The proof of this statement is way more technical, and relies
on introducing a new model category.

Definition 2.7.8 (Marked simplicial sets, [Lur09, Definition 3.1.0.1]). A marked simplicial set is
a pair (S, E) where S is a simplicial set and E is a set of edges which contain every degenerate
edge of S. An edge belonging to Ewill be a marked edge.
A map of marked simplicial sets (S, E)→ (S′, E′) is a map of simplicial sets which sends marked
edges to marked edges. The category of marked simplicial sets is denoted by sSet+.

The meaning of marking a simplicial set is the following: we want to specify a priori what
should be assumed to be an equivalence in an ∞-category modeled by a quasi-category. Of
course, every identity morphism has to be an equivalence, hence the assumption on degenerate
edges.

Remark 2.7.9. The category sSet+ is monoidal Cartesian closed: for any two objects (X , E),
(Y,F), there exists an internal marked mapping complex

Map+((X , E), (Y,F))

which provides a right adjoint to the Cartesian product of marked simplicial sets. We shall
denote by

Map+((X , E), (Y,F)) ⊆Map+((X , E), (Y,F))

the maximal marked sub-simplicial set of Map+((X , E), (Y,F)) which comprises only those
simplices whose edges are all marked in Map+((X , E), (Y,F)). For any simplicial set S, we can
consider the category sSet+

/S♯
: here, we shall denote by

Map+S ((X , E), (Y,F)) ⊆Map+((X , E), (Y,F))

and by
Map+S ((X , E), (Y,F)) ⊆Map+((X , E), (Y,F))

the sub-simplicial sets spanned by those edges compatible with the maps toward S.

Construction 2.7.10. For any simplicial set X we have three notable examples of markings.

(1) The marked simplicial set X ♯ is the maximally marked simplicial set (all edges are
marked).

(2) The marked simplicial set X ♭ is the minimally marked simplicial set (only degenerate
edges are marked).
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(3) If X is endowed of a map p : X → S, the marked simplicial set X ♮ is the Cartesian marked
simplicial set (marked edges are p-Cartesian edges, in the sense of Definition 2.7.4.(2)).

Proposition 2.7.11 (Cartesian model structure on marked simplicial sets, [Lur09, Proposition
3.1.3.7]). Let S be any simplicial set. The category sSet+

/S♯
of marked simplicial sets over S is

endowed with a left proper combinatorial and simplicial model structure, called the Cartesian
model structure, described as follows. Cofibrations are the ones whose underlying morphism of
simplicial sets is a cofibration for the Quillen model structure on simplicial sets. Weak equivalences
are maps f : X → Y such that, for any Cartesian fibration p : Z → S, pre-composition with f
induces equivalences

Map+S
�

Y, Z ♮
�

≃Map+S
�

X , Z ♮
�

and5

Map+S
�

Y, Z ♮
�

≃Map+S
�

X , Z ♮
�

.

Fibrant and cofibrant objects are precisely Cartesian fibrations over S.

Remark 2.7.12. If S = {∗}, then the ∞-category associated to such a model structure is again
Cat∞, and the Quillen inclusion (−)♯ : sSet ⊆ sSet+ which marks every edge models the natural
inclusion S⊆ Cat∞. Differently from the Joyal model structure on simplicial sets, however,
the Cartesian model structure on marked simplicial sets enjoys nicer technical properties. For
example, the fact that this is a simplicial model category provides a somewhat "more obvious"
hsSet-enrichment: indeed, the mapping complex Map+ introduced in Remark 2.7.9 models the
internal mapping object in Cat∞ – i.e., the∞-category of∞-functors – while its subcomplex
Map+ is the maximal sub-∞-groupoid that provides the natural S-enrichment. This will play a
role in describing how Cat∞ is a presentable∞-category in Section 2.9.

Theorem 2.7.7 refines to the following "marked" enhancement, which is a more technically
involved rephrasing of the previous statement (and of the strategy of its proof, as well).

Theorem 2.7.13 (Marked∞-categorical Grothendieck construction, [Lur09, Theorem 3.2.0.1]).
For any simplicial set S and for every simplicial functor ϕ : C[S] → C of simplicially enriched
categories there exists a Quillen adjunction

Stϕ : sSet+
/S♯
−−⇀↽−−
�

sSet+
�C

: Unstϕ

where the source is endowed with the Cartesian model structure of Proposition 2.7.11 and the
target again with the projective model structure. If ϕ is an equivalence of simplicially enriched
categories, then this adjunction is a Quillen equivalence.

Remark 2.7.14. Until now, it is not clear how the Cartesianity condition makes it easier to
construct∞-functors with values in homotopy types or∞-categories. [Lur09, Remark 2.4.1.4]
makes this advantage precise: if p : D→ C is an inner fibration, then an arrow f : ∆1→ D is

5Actually, either of the two implies the other.
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p-cartesian precisely if for any n⩾ 2 and for every diagram of solid∞-functors

∆1

Λn
n D

∆n C

{n− 1, n}

f

p

there exists a lift ∆n→ Dmaking everything commute.

Example 2.7.15 (Notable example of fibrations).

(1) Let C be any∞-category, and let Fun
�

∆1, C
�

be the∞-category of arrows in C. The
source evaluation∞-functor

ev0 : Fun
�

∆1, C
�

−→ C

is a right fibration, while the target evaluation∞-functor

ev1 : Fun
�

∆1, C
�

−→ C

is a left fibration, and moreover these left/right fibrations are compatible one with the
other. The∞-functor

〈ev0, ev1〉: Fun
�

∆1, C
�

−→ C× C

is, in fact, a bifibration ([Lur09, Corollary 2.4.7.11]): we shall not review this definition
in these lectures since this is the only instance in which we really use it, but it amounts
to little more than what we said here. In any case, Theorem 2.7.7 guarantees that we
have a well-defined∞-functor

MapC(−,−): Cop × C−→ S.

(2) Recall our Construction 2.6.1 of comma∞-categories. For any diagram p : K → C in
C, the natural∞-functor

C/p −→ C

is a left fibration ([Lur09, Proposition 2.1.2.1]). If p : {∗} → C selects the final object,
then it is a trivial Kan fibration (this is actually how final objects are defined in [Lur09]).

(3) An∞-functor F : C→ D can be described as an arrow in Catd∞, hence as an∞-functor
F : ∆1→ Catd∞. By Theorem 2.7.13 (and by suitably enlarging our universe), we can
view such an∞-functor as a coCartesian fibration p : M→∆1, where M×∆1 {[0]} ≃ C

and M×∆1 {[1]} ≃ D. If this fibration is also Cartesian, then it defines an∞-functor
�

∆1
�op
→ Catd∞ which again sends [0] to C and [1] to D, i.e., it also defines an ∞-

functor G : D→ C. By unraveling the definitions of p-coCartesian and p-Cartesian
edges, we see that they are equivalent to saying that F ⊣ G. This is how [Lur09,
Definition 5.2.2.1] defines adjunctions in the∞-categorical setting.
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2.8. The ∞-categorical Yoneda Lemma. At this point, we have all the needed ingredients to
produce an∞-categorical statement of the (Ninja) Yoneda Lemma (Theorem 1.4.1).

(1) We have a well defined ∞-category of ∞-functors Fun(C, D) for any couple of ∞-
categories C and D.

(2) We have a well defined opposite∞-category Cop.
(3) Since any ∞-category is canonically enriched over homotopy types, it is a tame guess

to imagine that we should replace the category of sets with the∞-category of spaces S.
(4) Moreover, Example 2.7.15.(1) (together with Theorem 2.7.13) guarantees that we have

a well defined∞-functor

MapC(−,−): Cop × C−→ S,

hence by passing through the adjoint

H: C−→ Fun(Cop, S)

we have a good candidate for the∞-categorical Yoneda embedding.

This construction should meet the following expectations: the∞-functor

H: C−→ Fun(Cop, S),

should be a fully faithful ∞-functor, which should preserve all limits existing in C, and should
produce a cocomplete ∞-category of presheaves. Finally, we expect that restricting along
H should provide, for any cocomplete ∞-category D, an equivalence of ∞-categories of
∞-functors

FunL(Fun(Cop, S), D)
≃
−→ Fun(C, D) (2.8.1)

where in the left hand side FunL denotes the∞-category of∞-functors which preserve colimits6.
The good news is: everything stated above is true, and it is even available in the literature7.

Theorem 2.8.2 (∞-categorical Yoneda Lemma, [Lur09, Propositions 5.1.3.1, 5.1.3.2, Corol-
lary 5.1.2.4, Theorem 5.1.5.6]). For any ∞-category C, there exists an ∞-categorical Yoneda
embedding

H: C −˓→ Fun(Cop, S),

informally described by the association C ↦→
�

MapC(−, C): Cop→ S
	

, which is fully faithful and
preserves all limits existing in C. Moreover,H exhibits Fun(Cop, S) as the free cocompletion of
the∞-category C.

Remark 2.8.3. The statement of Theorem 2.8.2 can be refined as follows. The association
C ↦→ Fun(Cop, S) can be made functorial, yielding an∞-functor

P: Cat∞ −→ Catd∞,

which sends a∞-functor F : C→ D to the left Kan extension of F along the Yoneda embedding
H: C ˓→ Fun(Cop, S). Moreover, there exists a natural transformation of ∞-functors from

6The L in FunL stands for left, since under very mild assumption colimit preserving∞-functors are precisely
left adjoints, see Theorem 2.9.3.

7This last part is not something to be taken for granted, not even in the case of "obviously true" statements.
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Cat∞ to Catd∞ between the natural inclusion and the ∞-functor P, which agrees with the
∞-categorical Yoneda embedding. This highly technical result has been recently proved in
[HHLN20, Theorem 8.1] and refined to the enriched setting in the last months in [Mos23,
Theorem 3.6], taking into account the adjunction-like behavior of the equivalence 2.8.1 as well.
This will not used in any essential way in the following.

2.9. Presentable ∞-categories. A key role in ∞-category theory is played by those ∞-
categories that are presentable. In the classical setting, a (locally) presentable category C

is a, possibly large, cocomplete category which is however controlled by a small set of compact
objects (called the generators of C) under κ-filtered colimits, for some regular cardinal κ. Since
we know that all these ingredients are available in the∞-categorical theory, we can just cast
this definition word by word also for∞-categories.

Definition 2.9.1 ([Lur09, Definition 5.5.0.1]). An∞-category C is presentable if it satisfies the
following two conditions.

(1) It is cocomplete.
(2) It is κ-accessible for some regular cardinal κ, i.e., there exists a small category Cω and

a regular cardinal κ such that

C≃ Indκ(C
ω),

where Indκ(Cω) is the∞-category of κ-filtered diagrams on Cω obtained by formally
adjoining all colimits of κ-filtered diagrams in Cω.

Definition 2.9.1 already gives a glimpse of the convenience of the existence of such small
∞-category of compact objects. But presentable∞-categories are way more convenient than
that, as the following result (which is a ∞-categorical rephrasing of theorems by Simpson and
Dugger) shows.

Theorem 2.9.2 ([Lur09, Theorems 5.5.1.1 and Proposition A.3.7.6]). For C an ∞-category,
the following are equivalent.

(1) The∞-category C is presentable.
(2) The ∞-category C is locally small, admits all colimits, and there exist a regular cardinal

κ and a small set S of κ-compact generators such that every object in C can be written as
a small colimit over a diagram in the full sub-∞-category spanned by objects in S.

(3) The ∞-category C arises as an accessible localization of the ∞-category of presheaves
Fun(D, S) over a small∞-category D, i.e., it is an accessible full sub-∞-category closed
under all limits in Fun(D, S) and the inclusion admits a left adjoint.

(4) The∞-category C, in its incarnation as a quasi-category, is equivalent to the simplicial
nerve of the Dwyer-Kan localization of Acf, where A is some simplicial combinatorial model
category.

In fact, presentable ∞-categories are so nice that they provide a wide class of ∞-categories
where the converse to the statementsleft adjoints preserve colimits and right adjoints preserve
limits holds.
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Theorem 2.9.3 (Adjoint Functor Theorem, [Lur09, Corollary 5.5.2.9]). Let F : C→ D be an
∞-functor between presentable∞-categories.

(1) The∞-functor F admits a right adjoint if and only if it preserves small colimits.
(2) The∞-functor F admits a left adjoint if and only if it preserves small limits and κ-filtered

colimits for some regular cardinal κ.

It is natural to ask for the existence of an ∞-category PrL of presentable ∞-categories and
left adjoints between them; equivalently, in virtue of 2.9.3, we can ask for an∞-category PrR of
presentable∞-categories and right adjoints between them. Moreover, they should be equivalent
via an equivalence that fixes objects and reverts arrows, informally by selecting a right or left
adjoint, respectively. Indeed, this can be done: we can always build a sub-∞-category C out of
another∞-category D by only specifying what kind of objects and arrows of Dwe want our
sub-∞-category C to contain.

Theorem 2.9.4 ([Lur09, Chapter 5]). Let Catd
rex

∞ be the sub-∞-category of Catd∞ spanned by
cocomplete∞-categories with colimit preserving∞-functors. There exists a full sub-∞-category
PrL ⊆ Catd∞ spanned by presentable∞-categories, and the inclusions

PrL ⊆ Catd∞

preserve filtered colimits and all limits. Moreover, there exists a complete ∞-category PrR of
presentable∞-categories and right adjoints between them, together with an anti-equivalence

�

PrL
�op
≃ PrR

which is the identity on objects. The inclusion PrR ⊆ Catd∞ preserves all limits.

Theorem 2.9.4 gives a lot of information on PrL. It says that it is a complete and cocomplete
∞-category, whose limits and filtered colimits are computed as in Catd∞. Moreover, arbitrary
colimits are computed by passing through the diagram of right adjoints (which is now a diagram
in PrR) and computing the limit on the underlying diagram of∞-categories there. In particular,
PrL is a semi-additive∞-category (products and coproducts in PrL coincide).

Example 2.9.5 (Notable example of presentable∞-categories).

(1) The∞-category of spaces S is presentable. Every (small) space X is actually a colimit
of a diagram of constant value in the point {∗}. This formalizes the idea that the
homotopy theory of topological spaces is completely modeled by CW complexes, which
are obtained by gluing cells homeomorphic to Rn (hence, they are contractible and
homotopy equivalent to a point), and every CW complex is a filtered colimit of its finite
sub-CW-complexes.

(2) The∞-category of (small)∞-categories Cat∞ is presentable.
(3) The ∞-category of presentable ∞-categories PrL is not presentable. However, fixing

a regular cardinal κ, the ∞-category PrL
κ

of presentable ∞-categories which are λ-
accessible for any regular cardinal λ up to κ is accessible ([Lur17, Lemma 5.3.2.9]).

(4) If C is a presentable∞-category, then the∞-category Fun(K , C) of homotopy coherent
diagrams of shape K is presentable for any small∞-category K ([Lur09, Proposition
5.5.3.6]).
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(5) In ??, we shall see that all our ∞-categories of algebraic interest are presentable,
including modules and algebras over ordinary commutative rings.

We conclude this section, and this chapter, with an important subclass of presentable
∞-categories.

Definition 2.9.6 ([Lur09, Definition 6.1.0.4]). An∞-category is an∞-topos if it is an accessible
left exact localization of an∞-category of presheaves over a small∞-category C.

Recall that a localization ι : C ˓→ D is left exact if the left adjoint reflector L: D→ C also
preserves limits. In particular, in virtue of the characterization of presentable∞-categories of
Theorem 2.9.2.(4), an∞-topos is a presentable∞-category with this further requirement on
the reflector∞-functor.

Example 2.9.7 (Notable examples of∞-topoi).

(1) The∞-category of spaces S is the prototypical example of an∞-topos.
(2) Any∞-category of presheaves over a small∞-category C is obviously an∞-topos.
(3) The most important (for an algebraic geometer, at least) class of examples for ∞-topoi

is provided by∞-categories of derived stacks for some Grothendieck topology on derived
commutative rings in the sense of [Lur11, Definition 2.4.3], see for example [Lur11,
Warning 2.4.5].

2.10. Some exercises.

(1) Again, try to prove some of the manifold statements which were left unproven in this
section. Keep in mind that some of these results involve only minor combinatorial argu-
ments, while other can prove themselves to be quite challenging – or worse. (Anyway,
some of the most approachable exercises are explicitly presented in this list, see below.)

(2) Prove that the opposite quasi-category Cop introduced in Remark 2.1.8.(4) indeed does
deserve its name.

(3) Let X and Y be two sets, seen as discrete simplicial sets (i.e., X0 = X and Xn consists
only of degenerate simplices for n⩾ 1). Show that any map f : X → Y is a Kan fibration,
and it is a trivial Kan fibration if and only if f is a bijection. Conclude that sets "do not
need to be derived", hence ordinary categories are recovered in the homotopy theory of
∞-categories.

(4) (See [RV22, Exercise 1.1.v.].) Let ∆1 be the walking arrow category, i.e., the (quasi-
category associated to the) category consisting of two objects [0] and [1], and only
one non-trivial arrow f : [0] → [1]. Let I be the walking isomorphism category, i.e.,
the (quasi-category associated to the) category consisting of two objects [0] and [1],
and two non-trivial arrows f : [0]→ [1] and f −1 : [1]→ [0] subject to the relations
f ◦ f −1 = id[1] and f −1 ◦ f = id[0].
a. Show that the quasi-category I admits precisely two non-degenerate 2-simplices.
b. Show that the natural inclusion ∆1 ⊆ I is realized as a sequential composite of

pushouts along inclusions of outer horns Λn
0 ⊆∆

n for n⩾ 2.
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c. Finally, show that an edge f : x → y in a quasi-category C, corresponding to a
quasi-functor ∆1→ C, is an equivalence precisely if it can be extended along the
inclusion ∆1 ⊆ I.

(5) Let C be a quasi-category, and let C′1 be a subclass of edges in C1 which is closed under
composition, i.e., for any 2-simplex

x

y

z

f

⇓

h

g

if both f and g belong to C′1, then also h belongs to C′1. Let C′ be the smallest full
subsimplicial set of C spanned by C′1, i.e., an n-simplex σ : ∆n→ C lies in C′ if and
only if every edge ∆1 ⊆∆n→ C lies in C′. Show that C′ is a quasi-category.

(6) Show that the products and coproducts in a ∞-category C provide the homotopy
1-category hC of categorical products and coproducts. Notice that we cannot extend
this argument for general shapes of limits or colimits: the proof passes through the fact
that

hFun

�

∐︂

i∈I

{∗} , C

�

≃ Fun

�

∐︂

i∈I

{∗} , hC

�

,

which is in general false for arbitrary shapes. For example, is already false when the
source is the walking arrow category ∆1.

(7) Let C be a quasi-category, and let C′0 be a subclass of vertices in C0. Let C′ be the
smallest full subsimplicial set of C spanned by C′0, i.e., an n-simplex σ : ∆n→ C lies in
C′ if and only if every vertex ∆0 ⊆∆n→ C lies in C′. Show that C′ is a quasi-category
and that the inclusion C′ ⊆ C is fully faithful.

(8) Let C be a quasi-category, and let C→ Ce be a fibrant replacement for the Quillen
model structure on sSet. Prove that Ce enjoys the following universal property: for any
quasi-category D, pre-composition with C induce a fully faithful quasi-functor

Fun
�

Ce , D
�

−→ Fun(C, D)

whose essential image is spanned by those quasi-functors C→ Dwhich send any edge
of C to an equivalence in D. Deduce that Ce ≃ C

�

Arr(C)−1
�

.
(9) Let C be a quasi-category and let S be a small collection of edges in C1. Show that

h
�

C
�

S−1
��

≃ hC
�

S
−1�

, where S is the image of S under the canonical projection
C→ hC.

(10) (See also Remark 3.1.3) Let C a pointed ∞-category with zero-object 0. Suppose that
for every object X in C the span

0 −→ X ←− 0

admits a limit ΩX and the cospan

0←− X −→ 0
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admits a colimit ΣX . Construct explicitly∞-functors Σ: C→ C and Ω: C→ C, and
show that Σ ⊣ Ω by explicitly constructing a both Cartesian and coCartesian fibration
M→∆1.

(11) Alternatively, prove the exercise before by showing that an∞-functor F : C→ D is a
left adjoint if and only if for every object U in D there exists an object X in C and a
natural transformation ϵX : F(X )→ U such that for any other Y in C the composition

MapD(Y, X )
F
−→MapC(F(Y ), F(X ))

ϵX ◦−−→MapC(F(Y ), U)

is an equivalence.
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3. ALGEBRA IN ∞-CATEGORIES

Section 2 laid out all the foundations that we needed in order to work with∞-categories. But
we are interested in doing algebra in ∞-categories; hence, we need some class of ∞-categories
in which it is natural to study algebraic phenomena – just like abelian categories provide the
natural 1-categorical framework to perform homological algebra. In our case, this natural
framework is provided by stable ∞-categories, and in particular the ∞-category of spectra. For
the following, it will be quite convenient to bear in mind this table of analogies, which will help
shaping the intuition of the reader while developing the theory of homotopical algebra.

Ordinary algebra ∞-categorical algebra

Sets Homotopy types

Abelian categories Stable∞-categories

Abelian groups Spectra

Tensor product of abelian groups Smash product of spectra

Associative algebras Associative (E1-)ring spectra

Commutative algebras Commutative (E∞-)ring spectra

References for this section. From now on, the main reference for these notes will be [Lur17].

3.1. Stable∞-categories. Quite surprisingly, at this point we have already all the∞-categorical
notions we need in order to state in very simple terms what a stable∞-category is.

Definition 3.1.1. Let C be a pointed ∞-category with zero object denoted by 0. A triangle in
C is any commutative square in C of the form

X Y

0 Z .

f

g

We say that a triangle is a fiber sequence if it is a pullback square; in this case, X is said to be the
fiber of the morphism g : Y → Z , and is denoted by fib(g). Dually, we say that a triangle is said
to be a cofiber sequence if it is a pushout square; in this case, Z is said to be the cofiber of the
morphism f : X → Y , and is denoted by cofib( f ).

Notation 3.1.2. A triangle as in Definition 3.1.1 is the datum of a 2-simplex

X

Y

Z

f

⇓

h

g
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together with a null-homotopy (i.e., another 2-simplex)

X

0

Z .
⇓

h

In the following, we shall denote triangles by leaving implicit the data of the 2-simplices above,
i.e., we shall simply write

X
f
−→ Y

g
−→ Z .

Remark 3.1.3 ([Lur17, Remark 1.1.1.7.]). Both fibers and cofibers are well defined up to a
contractible space of choices. Let Fib(C) ⊆ Fun

�

∆1 ×∆1, C
�

be the inclusion of fiber sequences
of C inside all commutative squares in C. The morphism

ev{[0,1]→[1,1]} : Fib(C) −→ Fun
�

∆1, C
�

,

which selects the "vertical arrow on the right" in a triangle, is a Kan fibration with either
contractible or empty fibers. If moreover C admits all fiber sequences, then this inclusion is a
trivial Kan fibration and therefore we have a section

Fun
�

∆1, C
� ≃
−→ Fib(C) ⊆ Fun

�

∆1 ×∆1, C
�

which completes an arrow f : X → Y to a fiber sequence. By evaluating this commutative
square at [0, 0], we obtain our desidered∞-functor

fib: Fun
�

∆1, C
�

−→ C,

defined without assuming our∞-category to admit all pullbacks. Similarly, one can define a
cofiber∞-functor. Notice that under these assumptions, we have adjunctions

cofib: Fun
�

∆1, C
�

−−⇀↽−− C≃ C0/ ≃ Fun
�

∆1, C
�

×ev0
{0}: R

and

L: Fun
�

∆1, C
�

×ev1
{0} ≃ C0/ ≃ C−−⇀↽−− Fun

�

∆1, C
�

: fib,

where the right adjoint in the first adjunction is the inclusion of an object X as the arrow 0→ X ,
while the left adjoint in the second adjunction is the inclusion of an object Y as the arrow Y → 0.
It follows that composing with adjoints in the "right direction" yields another adjunction

Σ := cofib ◦ L: C−−⇀↽−− C: fib ◦R=: Ω. (3.1.4)

Definition 3.1.5. Let C be a pointed∞-category admitting fiber and cofiber sequences. The
left adjoint Σ: C→ C in the adjunction 3.1.4 is the suspension ∞-functor. The right ajdoint
Ω: C→ C in the adjunction 3.1.4 is the loop∞-functor.

Definition 3.1.6. A stable ∞-category is a pointed ∞-category C, whose morphisms all admit
both fibers and cofibers, such that any trangle in C is a fiber sequence if and only if it is also a
cofiber sequence.
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Notice that Definition 3.1.6 can be restated simply as follows: C is stable if it is pointed,
admits all fiber and cofiber sequences, and the adjunction 3.1.4 is in fact an equivalence of
∞-categories. See also [Lur17, Corollary 1.4.2.27].

Remark 3.1.7. There are various analogies between stable∞-categories and abelian categories.

(1) The condition that fiber sequences are cofiber sequences is a higher categorical version
of the well known requirement for abelian categories: the image of a morphism is
canonically isomorphic to its coimage.

(2) The axioms for stable ∞-categories and those for abelian categories are both obviously
self-dual: C satisfies them if and only if Cop does.

(3) Stability is a property of an∞-category. Later, we shall see that this property endows
stable ∞-categories of a natural enrichment over the stable ∞-category of spectra, just
like abelian categories are defined in terms of categorical properties, yet are naturally
endowed with the structure of an Ab-enriched cateagory.

Exercise 3.1.8 ([Lur17, Proposition 1.1.3.4]). Prove that a stable∞-category is, in fact, both
finitely complete and cocomplete using the criterion of Example 2.5.6.(6) as follows.

(1) First, prove that C admits binary coproducts: use [Lur09, Corollary 5.1.2.3], that
guarantees that a diagram of arrows p : K → Fun

�

∆1, C
�

admits a colimit if and only if
the induced diagrams ev0 ◦ p : K → C and ev1 ◦ p : K → C admit colimits. (Hint: you
do need cofibers!)

(2) Next, prove that C admits pushouts. (Hint: This is almost the same argument, word by
word, used for proving that in additive categories pushouts are cokernels.)

(3) By dual arguments, prove the same statements for binary products and pullbacks.

Actually, one can prove much more. First, prove that pullbacks and pushouts in∞-categories
enjoy all the known properties of ordinary 1-categorical pullbacks and pushouts: in particular,
pullbacks and pushouts along equivalences are still equivalences, and the pasting law for pullback
and pushout diagrams holds ([Lur09, Lemma 4.4.2.1]). In particular, deduce that in a stable
∞-category, composition of diagrams satisfy a stronger two-out-of-three property: consider a
diagram ∆1 ×∆2→ C, which we view as a diagram

U V W

X Y Z

consisting of two small squares and a larger one obtained by pasting the other two. If two
among these squares are pullbacks or pushouts, then so is the third. By toying around with
pasted diagrams and these properties, deduce that in a stable∞-category there is a canonical
equivalence X × Y ≃ X

∐︁

Y . In particular, stable∞-categories are additive.

One of the most striking consequences of Remark 3.1.7.(3) is the following: the homotopy
category of a stable∞-category is canonically triangulated.
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Construction 3.1.9. Let C be a stable ∞-category. Denote by [n] := Σn the n-fold iteration of
the suspension∞-functor, and denote by [−n] := Ωn the n-fold iteration of the loop∞-functor:
these define adjoint equivalences at the homotopy category level

[n]: hC−−⇀↽−− hC: [−n].

Let
X

f
−→ Y

g
−→ Z

h
−→ X [1]

be a sequence of morphisms in hC. We shall say that the above is an exact triangle if there
exists a diagram ∆1 ×∆2→ C of the form

0 Z W

X Y 0
fe

he

ge

where both squares are pushouts, fe and ge represent f and g respectively, and h is given by the
composition of the homotopy class of he with the canonical equivalence W ≃ X [1].

Theorem 3.1.10 ([Lur17, Theorem 1.1.2.14]). Let C be a stable ∞-category. Then the data of
Construction 3.1.9 turn the homotopy category hC into a triangulated category.

Idea of proof. This is a tiresome, but straightforward, check that hC satisfies the axioms of a
triangulated category. The only part which, at least for people not used to homotopy theory, is
not an easy exercise in strictifying and pasting diagrams from hC to C is proving that hC is
additive. Exercise 3.1.8 guarantees that hC admits all coproducts, so we are only left to prove
that hC is enriched over abelian groups. By the adjunction 3.1.4, for any couple of objects X
and Y in Cwe have a natural equivalence of spaces

MapC(ΣX , Y )≃MapC(X , ΩY ).

Using that Ω is a particular type of limit and that the Yoneda embeddingH: C→ Spreserves
limits in C, we obtain a chain of (natural) equivalences

MapC(X , ΩY )≃MapC(X , 0×Y 0)

≃MapC(X , 0)×MapC(X , Y )MapC(X , 0)

≃ {∗} ×MapC(X , Y ) {∗}=: Ω∗MapC(X , Y ),

where Ω∗ : S∗→ S∗ is the loop∞-functor of pointed spaces, and we are considering MapC(X , Y )
to be pointed at the zero map. In particular, we have a chain of isomorphisms of homotopy
groups

π0MapC(ΣX , Y )∼= π0MapC(X , ΩY )
∼= π0Ω∗MapC(X , Y )∼= π1MapC(X , Y ).

Since this is a fundamental group, it follows that HomhC(X , Y ) := π0MapC(X , Y ) is endowed
with a natural group structure transferred by the one on π1MapC(X , Y ). By choosing a double
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suspension Σ2Z ≃ X functorially in X (we can do it, since Σ is an autoequivalence of C), we
obtain similarly another natural isomorphism

π0MapC(X , Y )∼= π2MapC(Z , Y )

hence this group structure is actually abelian, by the usual Eckmann-Hilton argument. □

Notation 3.1.11. Following the customs of homological algebra, given two objects X and Y
in C we shall denote the group MapC(X [−n], Y ) by Extn

hC(X , Y ). If n ⩽ 0, this agrees with
the (−n)-th homotopy group of MapC(X , Y ). In particular, if n = 0 we shall simply denote
Ext0

hC(X , Y )∼= π0MapC(X , Y ) as HomhC(X , Y ).

As in the case of presentable ∞-categories, we want to gather stable ∞-categories in
some suitable ∞-category. In order to do so, we need to define what is the natural notion
of ∞-functors between stable ∞-categories: in view of their definition, one could try the
following.

Definition 3.1.12. An∞-functor between stable∞-categories F : C→ D is exact if it preserves
fibers and cofibers.

Yet, it is quite evident from Exercise 3.1.8 that, since all finite limits and colimits in stable
∞-categories are created by fibers and cofibers, we have the following.

Proposition 3.1.13 ([Lur17, Proposition 1.1.4.1]). An∞-functor between stable∞-categories
F : C→ D is exact if and only if it is left exact, i.e., it preserves all finite limits, if and only if it is
right exact, i.e., it preserves all finite colimits.

Remark 3.1.14. In ordinary homological algebra, there is a distinction between left exact func-
tors (preserving limits) and right exact functors (preserving colimits). In stable∞-categories,
this distinction is no more: this proves that we are, indeed, working in a innerly derived fashion.

We can now define the ∞-category Stab∞ of stable ∞-categories and exact ∞-functors.
This∞-category admits all limits and filtered colimits, and the natural inclusion

Stab∞ ⊆ Catd∞

preserves them.

Remark 3.1.15. Actually, Stab∞ is a presentable∞-category ([BGT13, Theorem 1.10]), hence
it admits all colimits, even if they do not agree with colimits of their underlying∞-categories.
However, assuming to work with stable∞-categories with a sufficient supply of infinite colimits,
we can characterize cofibers in Stab∞ as∞-categorical enhancements of Verdier quotients of
triangulated categories ([BGT13, Section 5.1]).

Theorem 3.1.10 already confirms the idea that it is natural to think of stable∞-categories
as "better behaved∞-categorical enhancements of triangulated categories". Thus, we expect
to be able to recover concepts from the theory of triangulated categories inside the theory of
stable∞-categories. In particular, we want to know what a t-structure should be.
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Definition 3.1.16. A t-structure on a stable∞-category C is a t-structure on its triangulated
homotopy category hC, i.e., it is the datum of two full sub-categories hC⩾0 and hC⩽0 such that
the following conditions hold.

(1) For any object X in hC⩾0 and any object Y in hC⩽0, one has HomhC(X , Y [−1])∼= 0.
(2) We have inclusions

hC⩾1 := hC⩾0[1] ⊆ hC⩾0

and
hC⩽−1 := hC⩽0[−1] ⊆ hC⩽0.

(3) For any object X in hC, there exists a distinguished triangle of the form

X ′ −→ X −→ X ′′

where X ′ belongs to hC⩾0 and X ′′ belongs to hC⩽−1.

We shall denote by C⩾0 and by C⩽0 the full sub-∞-categories of C spanned by hC⩾0 and hC⩽0,
respectively. We shall say that X is connective if it belongs to C⩾0, and that it is coconnective if it
belongs to C⩽0.

Exercise 3.1.17. Definition 3.1.16 looks somewhat underwhelming: there is no ∞-categorical
content. One could guess that a more reasonable,∞-categorical definition of a t-structure on a
stable∞-category C should be instead the datum of two full sub-∞-categories C⩾0 and C⩽0

such that the following conditions hold.

(1) For any object X in C⩾0 and any object Y in C⩽0, one has MapC(X , Y [−1])≃ 0.
(2) We have inclusions

C⩾1 := C⩾0[1] ⊆ C⩾0

and
C⩽−1 := C⩽0[−1] ⊆ C⩽0.

(3) For any object X in C, there exists a fiber/cofiber sequence of the form

X ′ −→ X −→ X ′′

where X ′ belongs to C⩾0 and X ′′ belongs to C⩽−1.

It is clear that these data imply a t-structure in the sense of Definition 3.1.16. Prove the
converse.

Since the datum of a t-structure on a stable ∞-category is precisely the datum of a t-
structure on its triangulated homotopy category, it is natural to expect that all the known results
about t-structures on triangulated categories extend to the stable setting. And indeed, this is
true.

Proposition 3.1.18 ([Lur17, Section 1.2.5]). Let C be a stable ∞-category equipped with a
t-structure.

(1) The ∞-category C⩽0 of coconnective objects of C is a localization, i.e., the inclusion
C⩽0 ⊆ C is a right adjoint, whose left adjoint is the coconnective cover∞-functor

τ⩽0 : C−→ C⩽0.
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(2) Dually, the inclusion of the ∞-category C⩾0 of connective objects inside C is a left adjoint,
whose right adjoint is the connective cover∞-functor

τ⩾0 : C−→ C⩾0.

(3) Every fiber sequence
X ′ −→ X −→ X ′′

where X ′ is connective and X ′′ is (−1)-coconnective is canonically equivalent to the fiber
sequence

τ⩾0X −→ X −→ τ⩽−1X .

(4) The heart of C
C♥ := C⩾0

⋂︂

C⩽0

is an abelian subcategory of C. For any n ∈ Z, the∞-functor

Hn : C
[n]
−→ C

τ⩾0◦τ⩽0−→ C♥

is the n-th homology∞-functor.

3.2. Models for algebraic stable ∞-categories. In Section 3.1, we have seen how the homo-
topy category of stable ∞-categories is always triangulated. But we already know plenty of
(algebraic) triangulated categories, so it is also natural to ask: given a triangulated category
T, does always exist a stable enhancement Tenh? Is it unique up to natural equivalence of
∞-categories? The answers to both questions is: no, but almost yes. First, let us introduce a bit
of notation.

Definition 3.2.1. A differential graded category (from now on: dg category) over a base commu-
tative ring | is a category C enriched over the category C•(|) of chain complexes of |-modules.
In particular, C amounts to the following data.

(1) We have a class of objects of C.
(2) For any couple of objects X and Y of C a chain complex of maps

�

MapC(X , Y )•, d•
�

.
(3) For any triple of objects X , Y and Z of Cwe have an associative composition law

MapC(X , Y )• ⊗|MapC(Y, Z)• −→MapC(X , Z)•

which amounts to a collection of |-bilinear maps

◦: MapC(X , Y )p ×MapC(Y, Z)q −→MapC(X , Z)p+q

subject to the Leibniz rule d(g ◦ f ) = d g ◦ f + (−1)p g ◦ d f .
(4) For any object X of C, we have a identity morphism idX ∈MapC(X , X )0 which is a unit

for the composition law.

A dg functor between dg categories F : C→ D is a functor such that for any objects X and Y in
C the map

MapC(X , Y )• −→MapD(FX , FY )•
is a morphism of chain complexes. In this way, we can gather (small) dg categories and dg

functors between them in a category that we denote by Catd
dg

| .
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Exercise 3.2.2. Prove that the Leibniz rule implies that the identity morphism is a cycle, i.e.,
d(id) = 0.

Remark 3.2.3. Every |-linear category is a dg category over | in a stupid way, under the
(strongly monoidal) functor from ordinary |-modules to chain complexes which considers a
|-module as a chain complex concentrated in degree 0. On the converse, every dg category
over | has an associated |-linear category obtained by considering only the |-module spanned
by the 0-cycles in every mapping chain complex, i.e., for any objects X and Y in a dg category
Cwe consider the Hom-space

HomC(X , Y ) := Z0

�

MapC(X , Y )
�

:=
�

f ∈MapC(X , Y )0 | d( f ) = 0
	

.

Indeed, the Leibniz rule requirement in Definition 3.2.1 implies that the composition restricts
to the submodule of 0-cycles.

Definition 3.2.4. Let C be a dg category. The homotopy category of C is the |-linear category
hC (or H0(C)) having the same class of objects as C, and having as morphisms the |-module

HomhC(X , Y ) := H0

�

MapC(X , Y )•
�

.

We say that a dg functor F is a weak equivalence if hF : hC−→ hD is an equivalence of ordinary
categories and if for any couple of objects X and Y in C the natural map

MapC(X , Y )• −→MapD(FX , FY )•

is a quasi-isomorphism.

Construction 3.2.5. Let Abe a Grothendieck abelian category with enough projectives; this
means that A is an abelian category admitting all colimits, such that filtered colimits are com-
patible with monomorphisms, and admitting a generator (i.e., an object R such that whenever
HomA(R, X ) ∼= 0, then X ∼= 0). Let us assume A to be |-linear: every hom-set is a |-module.
Under these assumptions, the category C• (Acf) of (possibly unbounded) chain complexes of
objects of Aadmits an injective model structure analogous to the one defined for chain com-
plexes of |-modules in Theorem 1.3.11. We produce a differential graded (dg) enhancement Adg

of Aas follows.

(1) The objects are the objects of C• (A)cf, i.e., they are both fibrant and cofibrant chain
complexes of objects of A.

(2) For every couple of chain complexes X• and Y• over Aas above we produce a mapping
chain complex MapAdg(X•, Y•)• whose underlying graded |-module is characterized by
setting

MapAdg(X•, Y•)n :=
∏︂

p∈Z

HomA

�

X p, Yp+n

�

.

For f a map between X• and Y• of degree n, we define the differential dn( f ) as

dn( f ) := dY ◦ f + (−1)n f ◦ dX .

Exercise 3.2.6. With the notations of Construction 3.2.5, for any couple of objects X• and Y• of
Adg prove the following claims.
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(1) We have a natural isomorphism

Z0

�

MapAdg(X•, Y•)
�∼= HomC•(A)(X•, Y•).

(2) We have a natural isomorphism

H0

�

MapAdg(X•, Y•)
�∼= HomK(A)(X•, Y•),

where K
�

Aproj

�

is the naive homotopy category of Aproj. In particular, since X• and Y•
were assumed to be bifibrant, it follows that

HomK(A)(X•, Y•)∼= HomD(A)(X•, Y•).

In particular, the homotopy category of Adg recovers the usual derived category of A.

Construction 3.2.7 ([Lur17, Construction 1.3.1.3]). Recall the Dold-Kan correspondence of
Theorem 1.4.7. It is not strongly monoidal, yet thanks to the shuffle product of Alexander and
Whitney one can regard this correspondence as lax monoidal, i.e., they still send monoid objects
to monoid objects in a canonical way. In particular, consider A to be the category of abelian
groups. Under the lax monoidal composition

C•(A)
τ⩾0−→ C⩾0(A)

DK
−→ sAb

oblvAb−→ sSet,

obtained by cleverly truncating a chain complex in non-negative degrees, taking the associated
simplicial abelian group, and then forgetting the abelian group structure, we can regard every
differential graded category as a simplicial category, in particular as a∞-category.

Theorem 3.2.8 ([Lur17, Proposition 1.3.1.9] and [Coh13]). Let LH
�

Catd
dg

| , W
�

be the ∞-
category of differential graded categories over | obtained by hammock-localizing the category of dg
categories at the class of weak equivalences of Definition 3.2.4. Then the Dold-Kan construction of
Construction 3.2.7 provides a∞-functor

LH
�

Catd
dg

| , W
�

−→ Stab∞.

Remark 3.2.9. Actually, by further localizing the category of differential graded |-categories at
a finer class of weak equivalences – i.e., Morita equivalences – then Theorem 3.2.8 can be refined
as follows: the∞-category of |-linear dg categories up to Morita equivalence is equivalent to
the∞-category of idempotent-complete stable∞-categories which are weakly enriched over
the ∞-category of H|-modules in spectra. Yet, for now, almost nothing of this sentence makes
any sense to the reader.

Theorem 3.2.10 ([Lur17, Theorem 1.3.3.2 and 1.3.5.21]). Let A be a Grothendieck abelian
category with enough projective objects, and let D(A) the stable derived ∞-category obtained
from Construction 3.2.5 and Construction 3.2.7. Then D(A) admits a t-structure on D(A) such
that D(A)⩾0 is spanned by those chain complexes which have trivial homology in negative degrees
and D(A)⩽0 is spanned by those chain complexes which have trivial homology in positive degrees,
whose heart is naturally equivalent to A itself. Moreover, if we consider the full sub-∞-category

D−(A) :=
⋃︂

n⩾0

D(A)⩾−n ⊆ D(A),
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the restriction of the above t-structure defines a t-structure on D−(A) which is universal in the
following sense: let C be any stable∞-category equipped with a left complete t-structure. Then
there is an equivalence between the ordinary category of right exact functors Funrex

�

A, hC♥
�

and the full sub-∞-category of Fun(D−(A), C) spanned by those ∞-functors that send projective
objects of A into the heart of the t-structure on C.

Warning 3.2.11. Theorem 3.2.10 tells us that if we consider a Grothendieck abelian category
Awith enough projectives (for example, the category of |-modules over a ring) then there
exists a dg category, hence a stable∞-category, which "enhances" the usual derived category.
In virtue of [CS18], we know that this is the essentially unique way in which we can lift
the derived category to the ∞-categorical framework; it follows that some other important,
"non-affine" triangulated categories (such as the unbounded derived category of an algebraic
stack, or the category of perfect complexes over a Noetherian scheme) admit an essentially
unique dg/stable enhancement as well. However, there are subtle issues in the non-affine
case: stable derived∞-categories satisfy descent for the étale, fppf and Nisnevich topologies,
hence they can be glued and produce a well defined stable ∞-category of quasi-coherent
sheaves for every derived scheme or derived stack. Such ∞-category is, in general, not a
derived ∞-category of an abelian category, at all; however, if our derived stack is a classical
Deligne-Mumford stack X, it is true that the derived∞-category is the stable enhancement of
the usual derived category of X. Many people have investigated the problem of the uniqueness
of dg/stable enhancements of tringulated categories in the past twenty years or so, and many
counterexamples, retaining different flavors, are known: see for example [Sch01, Section 2.1]
for a topological example, [DS09] for an algebraic counterexample defined over Z, and [RV19]
for an algebraic counterexample defined over a field.

Remark 3.2.12. In some fields of research, for example symplectic geometry and theoretical
physics, one can stumble upon the similar and more general (but equivalent at the level of
homotopy theory) concept of A∞-categories. An A∞-category C is just like a dg category
equipped with "higher composition laws", and can be defined as follows.

(1) Again, we have a class of objects of C.
(2) For any couple of objects X and Y , we have a collection of graded |-modules MapC(X , Y )•.
(3) For any n⩾ 1 and any collection Y1, . . . , Yn of objects of C, using a homological grading

convention, we have morphisms

mn : MapC(X , Y1)• ⊗|MapC(Y1, Y2)• ⊗| . . .⊗|MapC(Yn−1, Yn)• −→MapC(X , Yn)•[2− n].

(4) With the previous notations, for any couple of objects X and Y and for any n⩾ 1 the
higher compositions are subject to relations

∑︂

n=r+s+t

(−1)r+st mr+t+1

�

id⊗r
X ◦ms ◦ id⊗t

Y

�

= 0.

In particular, for n = 1 we obtain a differential turning the graded |-module MapC(X , Y )•
into a chain complex, and for n = 2 we obtain some Leibniz rule for higher associativity,
and so forth.



59

A∞-functors are defined as expected. We have a natural functor from the category of dg
categories to the category of A∞-categories obtained by simply putting mn = 0 for any n> 1.
As proved in [COS19], this produces an equivalence of homotopy theories between differential
graded categories and A∞-categories, hence they are different ways to package the same
homotopy-theoretic content. This does not mean that one between the two is a more convenient
or more obsolete model!

3.3. The stable ∞-category of spectra. Despite our goal is to study (mainly) homological
algebra in the context of∞-categories, the most fundamental and basic – in a precise, algebraic
sense – example of a stable ∞-category does not arise from homological algebra, rather from
algebraic topology. The term stable comes itself from algebraic topology: stable homotopy
theory is in fact the study of homotopical phenomena which, afters a reasonable number of
steps, "stabilize". The most fundamental result in this regard is the following: let Sn be the n-
dimensional sphere pointed at the unit vector e1. The reduced suspension ΣSn is homeomorphic
to Sn+1, and we have a natural map Sn→ ΩΣSn given by the adjunction Σ ⊣ Ω. This produces,
for any integer k, a map

πn+k(S
n) −→ πn+k(ΩΣSn)∼= πn+k+1(S

n+1). (3.3.1)

Theorem 3.3.2 (Freudenthal Suspension Theorem). For n⩾ k+ 2, the map 3.3.1 is an isomor-
phism of abelian groups.

We can therefore start studying homotopy theory which stabilizes after applying the suspen-
sion functor for a certain number of times, for example the stable homotopy groups of topological
spaces

πs
n(X ) := colim

k→∞
πn+k(Σ

kX ).

Many interesting phenomena in topology, homotopy theory, even mathematical physics, albeit
unstable in nature, can be interpreted in terms of stable homotopy theory: for example, the fact
that Sn can admit a unital group structure induced by a division algebra structure on Rn+1 is
equivalent to the existence of a class of Hopf invariant 1 in the stable homotopy groups. Other
applications can be the classification of manifolds up to homotopy or framed cobordism, or
classification of exotic smooth structures on the spheres: see this interesting MathOverflow
post [Sta] for more. In order to study stable homotopy theory, it can be useful to work in a
framework in which the suspension becomes invertible, since in the stable range we do not
distinguish anymore between a space X of its k-fold reduced suspension ΣkX . This yields the
homotopy category of spectra, which are a sort of "algebraization" of homotopy types, in a sense
hinted at by the following example. In classical algebraic topology, we can define a topological
space X to be an H-space if it is almost a topological group, i.e., if e ∈ X is the identity element
and µ: X × X → X its multiplication, we ask µ(e,−) and µ(−, e) to be only homotopic to the
identity of X . A May’s recognition principle (also called May’s Delooping Theorem, see [May72])
states that for any n⩾ 1, given any pointed topological space (Y, y) which is n-connected1, the
iterated loop space ΩnY is an n-fold H-space: i.e., it admits n compatible H-space structures.
Moreover, any n-fold H-space arises, up to weak homotopy equivalence, in this way. One could

1This means that all its homotopy groups up to degree n are trivial.
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ask then what happens if n goes to infinity: morally, an object X which is an∞-fold H-space
should admit all possible deloopings, i.e., it sholud be an∞-loop space. A (connective) spectrum
can be thought as the datum of an ∞-loop spaces together with a choice of all its possible
deloopings. So, let us summarize how the stable homotopy category of spectra hSp behaves (or
what properties we expect it to enjoy).

(1) It should contain a full subcategory spanned by ∞-fold H-spaces, i.e., by topological
groups equipped with infinitely many group operations interacting nicely one with the
other. We will see that this means that any spectrum is a fully commutative homotopy
coherent topological group.

(2) The loop ∞-functor Ω: hSp → hSp is an autoequivalence: we can never run out of
deloopings to invert the looping of a spectrum. In particular, we should expect spectra
to have also negative homotopy groups, in contrast to ordinary spaces. Indeed, if we
have an ∞-loop space modeled as a Ω-spectrum E• with E0 =: X , then we have a chain
of isomorphisms of homotopy groups

πn(Ω
∞X )∼= πn+1(Ω

∞−1(X ))∼= . . .∼= colim
k→∞

πn+k(X ).

In particular, homotopy groups of spectra do not compute classical homotopy groups:
rather, they compute stable homotopy groups.

(3) As already mentioned in the introduction, spectra can also be thought of as objects
corresponding to generalized cohomology theories in virtue of the Brown Representabil-
ity Theorem. In particular, for any abelian group A we should be able to consider an
associated spectrum HA, the Eilenberg-Maclane spectrum of A, which corresponds to the
singular (co)homology with coefficients in A.

(4) The homotopy category of spectra is endowed with a symmetric monoidal structure
given by the smash product of spectra,

An introduction to the relationship between spectra, stable homotopy theory, and generalized
cohomology theories can be found in the excellent lecture notes [Sto22]. Here, our aim is
somewhat different: rather than studying stable homotopy theory, we want to see how derived
algebraic geometry and homological algebra live naturally in the stable homotopy category.
Therefore, in this section we shall review the construction of the ∞-category of spectra (which
is the ∞-categorical version of the abelian category of abelian groups) and determine some of
its most fundamental properties.

Definition 3.3.3. Let F : D→ C be an∞-functor.

(1) If D admits pushouts, we say that F is excisive if it sends pushouts in D to pullbacks in
C.

(2) If D admits a final object 1D, we say that F is reduced if it sends 1D to 1C.

If D admits a final object, we shall denote with Fun∗(D, C) the full sub-∞-category of
Fun(D, C) spanned by reduced ∞-functors. If D admits pushouts, we shall denote with
Exc(D, C) the full sub-∞-category of Fun(D, C) spanned by excisive∞-functors. If D admits
both final object and pushouts, we shall denote by Exc∗(D, C) the full sub-∞-category of
Fun(D, C) spanned by both excisive and reduced∞-functors.
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Remark 3.3.4 ([Lur17, Remark 1.4.2.4]). If D is a small ∞-category which is pointed and
admits all finite colimits, and C is presentable, then all the three ∞-categories above are
presentable: they are actually localizations of the presentable∞-category Fun(D, C).

We are interested in the case when D := Sfin
∗ , i.e., when the source is the ∞-category of

finite pointed spaces. This is described as follows: let Sfin be the smallest full sub-∞-category of
spaces which contains the point {∗} and which is closed under finite colimits. Then

Sfin
∗ := Sfin

∗/

is the ∞-category of pointed objects in Sfin. In particular, it is small, pointed, and admits all
finite colimits.

Definition 3.3.5. Let C be an∞-category. A spectrum object of C is an excisive and reduced
∞-functor F : Sfin

∗ → C. We denote the∞-category Exc∗
�

Sfin
∗ , C
�

as Sp(C).

It is easy to see that if C admits all finite limits, then Sp(C) admits all finite limits as well,
using the fact that limits in∞-categories of∞-functors are computed point-wise. Moreover, if D
is pointed and admits all colimits, then Exc∗(D, C) is pointed as well: under these assumptions,
any reduced (and in particular, any excisive and reduced)∞-functor F is a left Kan extension
of the∞-functor F ({∗}) : {∗} → C along the inclusion {∗} ˓→ D.

Proposition 3.3.6 ([Lur17, Proposition 1.2.4.16]). Let C be a finitely complete ∞-category.
Then Sp(C) is stable, and therefore deserves the name of stabilization of C.

Remark 3.3.7. In ordinary category theory, if C admits products we can talk about abelian
group objects in C, i.e., objects G of C equipped with a multiplication G × G→ G, an inverse
map G → G and a point {∗} → G which turn G into an internal abelian group in C. The
category of abelian group objects Ab(C), however, is not always abelian in general: notoriously,
for example, Ab(Top) is not abelian. In the∞-categorical setting, instead, admitting all limits
is enough to guarantee that Sp(C) is stable.

For convenience, we spell out some important properties of the stabilization of a finitely
complete∞-category C.

Proposition 3.3.8. Let C be a finitely complete∞-category.

(1) The∞-category C is stable if and only if the∞-loop∞-functor

Ω∞ : Sp(C) −→ C

given by evaluating an excisive and reduced∞-functor F on the 0-sphere S0 is an equiva-
lence of∞-categories.

(2) Let C∗ be the ∞-category of pointed objects in C. Then postcomposition with the forgetful
∞-functor C∗→ C yields an equivalence of∞-categories Sp(C∗)≃ Sp(C).

(3) Let Dbe a stable∞-category, and let Funlex(D, C) be the full sub-∞-category of Fun(D, C)
spanned by left exact ∞-functors. Then composition with Ω∞ : Sp(C)→ C induces an
equivalence of∞-categories

Funlex(D, Sp(C)) −→ Funlex(D, C).
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(4) Consider the tower of∞-categories

. . . −→ C
ΩC−→ C

ΩC−→ C.

Then Sp(C) identifies with the limit of such tower.

Example 3.3.9. It may seem not immediately obvious what we just defined in Definition 3.3.5.
We can explain the heuristics as follows: consider a (generalized and reduced) cohomology
theory from the category CW∗ of pointed CW complexes – for example, it can be the usual
singular cohomology H• := H•sing.

(1) The homotopy invariance axiom implies that H• factors through hCW∗.
(2) The additivity axiom implies that H• turns arbitrary products into coproducts. Passing

to the reduced theory, this translates in sending arbitrary wedge sums (the coproduct
in pointed topological spaces) to products.

(3) The exactness axiom, saying that for any inclusion ι : A ˓→ X one has a long exact
sequence of cohomology groups relating the cohomology of A, the cohomology of
X , and the relative cohomology of the pair (X , A), can be interpreted in terms of
pointed topological spaces in the following way. Notice that one has an isomorphism of
cohomology groups

Hn(X , A)∼= He
n
(cone(ι))

where cone(ι) is the mapping cone on the inclusion ι. In particular, since the mapping
cone produces the homotopy cofiber in the category of topological spaces (hence in the
category of CW complexes), we are saying that

Z [Sing(cone(ι))] −→ Z [Sing(X )] −→ Z [Sing(A)]

is a homotopy pullback of simplicial abelian groups (hence, of simplicial sets). In
particular, consider CX to be the cone on a topological space: then, CX is contractible (it
retracts to its vertex) and the mapping cone of the inclusion ι : X ⊆ CX is homeomorphic
to the reduced suspension ΣX . In particular, since a reduced cohomology theory is
trivial when valued on the point, it follows that H•(X )∼= H•+1(ΣX ).

(4) Notice that the fact that Hn(X )∼= Hn+1(ΣX ) actually forces the abelian group structure
on Hn(X ). Indeed, ΣX is a cocommutative cogroup object in hCW∗, because for any
other CW complex Y one has

HomhCW∗

�

Σ2X , Y
�∼= π2HomTop(X , Y ).

The additivity axiom applied to the n+ 2 degree of the cohomology theory, therefore,
turns Σ2X into an abelian group Hn+2(Σ2X ). The exactness axiom (or better, the
suspension isomorphism which is implied by the exactness axiom) then provides a
natural abelian group structure on Hn(X )∼= Hn+2(Σ2X ) for every n.

Excisive and reduced ∞-functors from the ∞-category Sfin
∗ with values in an ∞-category C

with limits can therefore be interpreted as reduced cohomology theories on the∞-category of
finite pointed spaces with coefficients in C: the homotopy invariance is naturally encoded in
the∞-categorical setting, while the exactness, additivity and suspensions axioms are encoded
in the excisive condition. Finally, the∞-categorical Brown Representability Theorem of [Lur17,
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Theorem 1.4.1.2] yields that a reduced cohomology theory functor from the ∞-category of
finite pointed spaces with coefficients in C is always representable. Therefore, the ∞-category
Sp(C) can be both interpreted as the∞-category of reduced cohomology theories over finite
pointed spaces with values in C, or as the∞-category of couples (X , n), where X is an object
in C and n is an integer. The suspension ∞-functor ΣSp(C) simply sends (X , n) to (X , n+ 1):
this is obviously an autoequivalence.

The above discussion justifies the following fundamental definition.

Definition 3.3.10. The stable∞-category, or the∞-category of spectra, is Sp := Sp(S).

Some algebraic properties of the∞-category of spectra can be spelled out only after a fast
survey on the theory of∞-operads and monoidal∞-categories, that we postpone to Section 3.4.
For the moment, we will settle for the following: some of these are immediate consequences of
results mentioned in this section.

Definition 3.3.11. Consider the∞-functor Ω∞ : Sp→ S. It is accessible, preserves all sifted
colimits, and preserves all limits. In particular, it admits a left adjoint Σ∞+ : S→ Sp that we call
the suspension spectrum∞-functor.

Proposition 3.3.12 ([Lur17, Proposition 1.3.4.6]). Let Sp⩾0 be the full sub-∞-category of Sp
spanned under extensions and colimits by the essential image of Σ∞+ . Dually, let Sp⩽−1 be the full
sub-∞-category spanned by those spectra whose image under the∞-loop∞-functor is contractible.
Then these data determine an accessible t-structure on Sp whose heart is equivalent to the abelian
category of abelian groups.

Remark 3.3.13. Proposition 3.3.12 deserves to be carefully analyzed.

(1) The fact that connective spectra come from the suspension spectrum of spaces is the
∞-categorical statement of the fact that ∞-loop spaces are equivalent to connective
spectra: if X is a space, then Ω∞Σ∞+ X is the free ∞-group completion X , and the
homotopy groups of this∞-loop space compute the stable homotopy groups of X ,

(2) The coconnective spectra capture algebraic properties of stable homotopy groups that
cannot come from the homotopy of∞-loop spaces, since they are obviously concentrated
in only non-negative degrees.

(3) For a base commutative ring |, we have already defined a stable derived∞-category
D(|). Moreover, Theorem 3.2.10 guarantees that the bounded stable derived ∞-
category D(|) is universal among stable∞-categories equipped with a left complete
t-structure whose heart is equivalent to the usual abelian category Mod♥|

2 of |-modules.
Hence, for any commutative ring |, the exact functor

Mod♥|
oblv|−→ Ab −˓→ Sp

produces an exact and conservative∞-functor

H: D(|) −→ Sp,
2This notation is surely peculiar, but it is motivated by the fact that we shall soon denote the full stable derived

∞-category D(|) of |-modules as Mod|, see Notation 3.5.19.
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that we call the Eilenberg-MacLane spectrum∞-functor. This is a∞-functor between
presentable ∞-categories, hence by the Adjoint Functor Theorem 2.9.3 it admits
both a left and right adjoint: in particular, its left adjoint will be realized as some
sort of relative tensor product ∞-functor (Remark 3.5.13). However, in general it
is not essentially surjective or fully faithful: for example, in Sp the mapping space
MapSp(Z/pZ, Z/pZ) has non-trivial higher homotopy groups, since there exist elements
ξ ∈ πnMapSp(Z/pZ, Z/pZ)∼= Ext−n

Sp (Z/pZ, Z/pZ) corresponding to the (linear dual of)
stable cohomology operations, i.e., natural transformations of cohomology theories

Sqn : HZ/pZ −→ HZ/pZ[n].

On the other hand, in D(Z/pZ) the mapping space from Z/pZ to Z/pZ[n] is equivalent
to Z/pZ[n]. It is however true that for | = Q the Eilenberg-Maclane spectrum ∞-
functor is fully faithful.

(4) When we will be able to talk about monoidal and closed ∞-categories, we will see that
Sp is symmetric monoidal via the smash product and it is enriched over itself, i.e., there
exists a full spectrum of maps between spectra (cfr. Remark 3.5.4). Considering the
suspension spectrum Σ∞+ X over a space X and the spectrum E representing some sort
of generalized (co)homology theory, we will see that E ∧Σ∞+ X computes the homology
of X with respect to E, while the mapping spectrum MapSp

�

Σ∞+ X , E
�

computes the
cohomology of X with respect to E. In particular, for | a ordinary commutative ring
and for E := H| then

C•(X ;|) := H|∧Σ∞+ X

computes the singular homology of X with coefficients in |, and

C•(X ;|) :=MapSp

�

Σ∞+ X , H|
�

computes the singular cohomology of X with coefficients in |.

3.4. Digression: monoidal ∞-categories and ∞-operads. When doing classical algebraic
geometry, the key ingredient of the theory is the concept of commutative rings, the fundamental
objects which model – at least locally – schemes and algebraic spaces. Rings and commutative
rings can be thought of as monoids and commutative monoids in the abelian category Ab⊗

endowed with the symmetric monoidal structure given by the tensor product of abelian groups.
In the ∞-categorical world, we have seen that the natural candidate for replacing the category
of abelian groups is the stable∞-category Sp of spectra, so we would like to define a symmetric
monoidal structure generalizing the tensor product of abelian groups in order to consider
commutative rings therein. In classical algebraic topology, the stable homotopy category hSp
has indeed a monoidal structure given by the smash product so we would like to be able to put a
∞-categorical version of a smash product; yet we soon stumble upon some important obstacles
messing with our goal: the coherencies and diagrams that we require to commute in order to
define a monoidal structure are way more and way more complicated than one could imagine
when first delving into homotopy theory, and things get worse if we want it to be commutative
as well.
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Example 3.4.1. In classical category theory and algebra, knowing the commutative behavior of
the multiplication on any couple of elements in an associative group A is already enough to
deduce the associativity for arbitrary n-uples: for example, in the case n= 3, we know that

abc = a(bc) = a(cb) = (ac)b = (ca)b = c(ab) = c(ba) = (cb)a = (bc)a = b(ca) = b(ac).

Hence, if we denote by θ : A×A→ A×A the function that swaps factors in the Cartesian product
and m(n) : A×n −→ A the multiplication of n elements, knowing that there exists a 2-simplex (the
identity) which fills the diagram

A× A A× A

A

θ

m(2) m(2)

is enough to deduce the existence of a 3-simplex (which is again the identity) which fills the
diagram

A×3

A×3 A×3

A×3

A×3A×3

A.

id×θ id×θ

id×θ

θ × id

θ × idθ × id

m(3) m(3)

m(3)m(3)

This argument holds for all n-simplices. Yet, following the principle that in homotopical algebra
we need to remember all the homotopy coherencies, passing to the∞-categorical world things get
messier. For instance, in the above example we have multiple choices of 2-simplices testifying
to the commutativity of 2 elements (i.e., of homotopies between some way of multiplying three
elements and some other), so it is not enough to specify one commutativity 2-simplex in order
to deduce a commutativity 3-simplex, let alone to deduce all n-simplices for n⩾ 4.

The above issue suggests another problem: in homotopy theory, an object can be commutative,
but not completely. The reason why we do not see this phenomenon in ordinary categorical
algebra can be motivated as follows: for the moment, we shall say that a monoid X in a
symmetric monoidal ∞-category C is n-fold commutative if it is "commutative up to level
n"3, where we mean that X is associative if it is 1-fold commutative, and it is (completely)
commutative if it is ∞-fold commutative. Then, objects in an n-category which are (n+ 1)-fold
commutative are also (n+ k)-fold commutative for any k ⩾ 1.

Example 3.4.2. A 2-commutative monoid in the category of sets is always fully commutative,
as showed in the previous example. However, in the 2-category of ordinary (small) categories

3This may look esoteric – and for sure it is, in many regards – but actually this is way closer to the correct
formalization than one could think at first glance: we shall soon see that what we really mean is that X is an
algebra for the En-operad, that we will describe in Construction 3.4.25.
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we already taste the distinction, because we have 1-fold commutative monoids (monoidal
categories), 2-fold commutative monoids (braided monoidal categories), and 3-fold commutative
monoids (symmetric monoidal categories): there is a difference when the natural isomorphism
θ−1 ◦ θ : X × Y → X × Y , and when such natural isomorphism is precisely the identity.

To sum it up: since one has to declare all the higher homotopies testifying to the degree of
commutativity of a monoid, we have to settle with the fact that commutativity becomes a piece
of structure on an associative monoid. This is quite an issue: in ordinary algebra, to specify a
ring structure on an abelian group we simply say how the multiplication acts on two elements;
a similar thing holds also when we want to specify a monoidal structure on a category. Now,
we are instead asked of saying how the multiplication or the monoidal structure behaves with
respect to all n-uples of objects. In order to face this problem, we shall work as follows.

(1) First, we encode all the coherencies that we want our operation to satisfy in a more
compact and tractable combinatorial object, that we call an ∞-operad O. Informally,
this is a multicategory of colors (i.e., the amount of objects which are necessary to define
the operation) together with all formal multilinear maps from an n-uple of colors to
another one. (The fact that we need more than one color can be seen, for example,
in the case of modules: we need to specify simultaneosuly both an algebra and the
module over which it acts, see Construction 3.4.18.)

(2) If we have an ∞-category C with a natural candidate for a monoidal structure, we
consider it as the underlying ∞-category of an ∞-operad C⊗, which represents the
"nebula" of coherencies that the monoidal structure of Cmust satisfy. In a very sketchy
way, we could sum up this step by saying that we want to specify not only the tensor
product on pairs of objects, but arbitrary tensor products on n-uples of objects of C, for
every n⩾ 2.

(3) Finally, we define a reasonable notion of maps of∞-operads and say that an algebra
for the∞-operad O in C is a map of∞-operads O→ C satisfying some properties.

The theory of operads is a, quite complicated indeed, tool that we introduce in order to be able
to talk about symmetric monoidal ∞-categories and ∞-categories of algebras and modules;
historically, they were introduced precisely to study objects equipped with operations and
structures defined only up to homotopy, in order to study the theory of ∞-loop spaces. The
reader is warned: this section is highly technical. However, we will see in Section 3.5 how
in many cases of interest we can bypass this highly involved machinery and think of (some)
algebras we want to study in the stable ∞-category as way more familiar algebraic objects
defined in categories of chain complexes (see Theorems 3.5.18, 3.5.21 and 3.5.23).

Notation 3.4.3. For I a finite set, let I∗ := {∗}
∐︁

I be the set I with an extra point added. Let
Fin∗ be the skeleton of the ordinary category of finite pointed sets Setfin

∗ : i.e., objects are sets
〈n〉 := {∗, 1, . . . , n} for any n⩾ 0 and maps 〈n〉 → 〈m〉 are point-preserving maps.

(1) We shall denote the set obtained by 〈n〉 discarding the base-point {∗} byf 〈n〉� .
(2) We shall say that a map f : 〈n〉 → 〈m〉 is inert if for any element i ∈ 〈m〉� its preimage

under f consists precisely of one element.
(3) We shall say that a map f : 〈n〉 → 〈m〉 is active if f −1(∗) = {∗} .
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(4) We shall denote by ρi : 〈n〉 → 〈1〉 the unique inert map whose fiber over 1 is i.
(5) We shall denote by β : 〈n〉 → 〈1〉 the unique active map.

Definition 3.4.4 ([Lur17, Definition 2.1.1.10 and Remark 2.1.1.14]). An ∞-operad is a ∞-
functor p : O⊗→ Fin∗ satisfying the following properties.

(1) Let O⊗〈n〉 denote the fiber of 〈n〉 along p. Then for every object C in O⊗〈n〉 and for every

inert map f : 〈n〉 → 〈m〉 there exists a p-coCartesian morphism f : C → C ′ lifting f .
(2) For any f : 〈n〉 → 〈m〉 and any C in O⊗〈n〉 and C ′ in O⊗〈m〉, let us denote by Map f

O⊗(C , C ′) be
the union of the connected components of the space MapO⊗(C , C ′) which lie over f . Let
C ′→ C ′i be a p-coCartesian lift of ρi : 〈m〉 → 〈1〉 for all 1 ⩽ i ⩽ m. Then composition
induces a natural homotopy equivalence

Map f
O⊗

�

C , C ′
� ≃
−→
∏︂

1⩽i⩽m

Mapρ
i◦ f

O⊗

�

C , C ′i
�

.

(3) For each n⩾ 0, the∞-functors
¦

ρi
! : O⊗〈n〉→ O⊗〈1〉

©

induce an equivalence of∞-categories

O⊗〈n〉
≃
−→ On

〈1〉.

We shall often abuse notations when referring to an ∞-operad O⊗ and avoid indicating the
fiber map p.

Remark 3.4.5. What we just asked for in Definition 3.4.4? Let us review in a bit more detail
those three conditions.

(1) Let us start from 3.4.4.(3). This guarantees that we have a "honest"∞-category O := O〈1〉,
and the fibers O〈n〉 are just n-fold products of O: an object C in O〈n〉 is just a collection of
n objects C1 ⊕ . . .⊕ Cn lying in O. In particular, for n= 0, we have O〈0〉 ≃ O0 ≃ {∗}: let
us denote by 1O the essentially unique object determined by this equivalence.

(2) For any inert map f : 〈n〉 → 〈m〉 in Fin∗, the existence of p-coCartesian lifts in Definition
3.4.4.(1) guarantees that we have a well defined∞-functor

f! : O
n −→ Om.

This∞-functor takes an object C := (C1, . . . , Cn) to an object C ′ := (C ′1, . . . , C ′m) described
informally as follows. If the preimage of i ∈ 〈m〉 under f is empty, then C ′i := 1O; if the
preimage of i under f consists only of an element f −1(i), then C ′i := C f −1(i).

(3) The homotopy equivalence in Definition 3.4.4.(2) guarantees that we do not need
to know all maps C1 ⊕ . . .⊕ Cn → C ′1 ⊕ . . .⊕ C ′m, because we can recover them in an
essentially unique way as a collection of m maps C1⊕ . . .⊕Cn→ Ci, with i ranging from
1 to m.

Notation 3.4.6. Let p : O⊗→ Fin∗ be an ∞-operad. We shall denote by MulO
�

{Ci}i∈〈n〉� , D
�

the
union of the connected components in MapO⊗

�

{Ci}i∈〈n〉� , D
�

containing all the maps C1 ⊕ . . .⊕
Cn→ D lying over β : 〈n〉 → 〈1〉.
This has to be thought of as a space of abstract multilinear maps which can be composed and
satisfy some sort of axioms only up to coherent homotopy.
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Example 3.4.7. We collect here some important examples and constructions of both∞-operads
and monoidal∞-categories.

(1) The most elementary example of an∞-operad is the commutative∞-operad Comm⊗ :=
Fin∗ itself: this provides an∞-operad whose underlying∞-category Comm consists of
the single object a := 〈1〉. For any possible object 〈n〉, we have a set of n-linear maps
α: 〈n〉 → 〈1〉 which are completely determined by the choice of a subset I ⊆ 〈n〉� whose
image under α is the singleton {1}. In particular, the map α is invariant under the action
of any permutation σ ∈ Σn which fixes I . Thinking of 〈n〉 as an abstract n-fold tensor
product a(1)⊗. . .⊗a(n), the above discussion can be read as follows: for anyσ ∈ Σn such
that σ(I) = I , the n-linear maps a(1)⊗ . . .⊗ a(n)→ a and a(σ(1))⊗ . . .⊗ a(σ(n))→ a

are the same. In particular, if I = {1, . . . , n} is the whole set 〈n〉� , then we have a
unique n-linear map a(1)⊗ . . .⊗ a(n)→ a (corresponding to β : 〈n〉 → 〈1〉) which is
invariant under any permutation of the factors in the domain. This justifies the adjective
commutative: this∞-operad indeed encodes a fully commutative multiplication.

(2) In classical category theory, one defines colored operads as a collection of colors (or
objects), together with a set of multilinear maps

σ ∈Mul
�

{X i}i=1,...,n , Y
�

for any (n+ 1)-uple of colors X i and Y , which can be composed in an associative way
and such that by discarding n-linear maps for n⩾ 2 one gets a honest category. These,
in particular, are all∞-operads.

(3) One notable example of a classical operad is the associative operad Assoc⊗, which is
the operad with same objects as Fin∗, but where morphisms 〈n〉 → 〈m〉 correspond to
pairs consisting of a honest map α between finite pointed sets, together with a linear
ordering over the fiber α−1( j) for any j ∈ 〈m〉. To be clearer, let a denote the element
〈1〉 (which corresponds to the unique object of the underlying∞-category ∆0 ≃ Assoc
of such ∞-operad): then, for any n we ask MulAssoc

�

{a}1⩽i⩽n , a
�

to be the set of linear
orderings of {1, . . . , n}: for any integer n we have n! possible linear orderings, hence
n! possible n-linear operations a⊗n→ a, corresponding to all the possible ways we can
permute the factors in the tensor product a⊗n (a priori, not equivalent one to the other).

(4) Another classical example is the Lie operad Lie: in general, since the axioms for the Lie
bracket involve an additive structure, one has to work with the L∞-operad, but if one
is interested in ordinary (or homotopy-theoretic versions of the ordinary) Lie algebras
in |-modules we can present the operad Lie as the |-linear operad on one object 1 and
generated by a single 2-ary operation

[−,−] ∈MulLie({1, 1} , 1)

satisfying relations

[−, [−,−]] + [−, [−,−]]τ+ [−, [−,−]]τ2 = 0 and [−,−] + [−,−]θ = 0,

where τ is a 3-cycle in Σ3 and θ is a 2-cycle of Σ2.
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Notation 3.4.8. Given an∞-operad O⊗→ Fin∗, we shall say that a map f in O⊗ is inert if it is
a p-coCartesian lift of an inert map p( f ) of Fin∗. We shall say that a map f is active if it is a lift
of an active map p( f ).

Definition 3.4.9.

(1) Let O⊗ and O′⊗ two∞-operads. A map of∞-operads is an∞-functor O⊗→ O′⊗ which
commutes with the fiber maps over Fin∗ and which preserves inert morphisms.

(2) Let p : C⊗→ O⊗ be a coCartesian fibration of∞-categories, where O⊗ is an∞-operad.
We will say that p is a coCartesian fibration of ∞-operads if the composition C⊗ →
O⊗ → Fin∗ turns C⊗ into an ∞-operad. In this case, we shall say that C := C⊗〈1〉 is a
O-monoidal∞-category.

(3) Let C⊗ be an O-monoidal∞-category, and let O′→ O be any map of∞-operads. We
denote by AlgO′/O(C) the sub-∞-category of Fun(O′, C) spanned by the maps of ∞-
operads which commute with the projections to O, and we call it the ∞-category of
O-algebra objects in C.

Remark 3.4.10. Again, it is useful to look a bit more carefully at Definition 3.4.9.(1). First,
[Lur17, Proposition 2.1.2.12] tells us that the condition of C⊗ → O⊗ being a coCartesian
fibration of ∞-operads is equivalent to asking that for any map f ∈MulO⊗

�

{X i}1⩽i⩽n , Y
�

we
have a choice of coCartesian lifts which provide an∞-functor C{X i}1⩽i⩽n

→ CY . If moreover such
f is an inert map {X i}1⩽i⩽n→ X i in O⊗, then the induced∞-functor

f! : C{X i}1⩽i⩽n

≃
−→
∏︂

1⩽i⩽n

CX i

is an equivalence of ∞-categories. So, suppose we have a O-monoidal ∞-category C⊗. An
O′-algebra object is a map O′

⊗→ C⊗ which commutes with the projections p : C⊗→ O⊗ and
O′→ Owhich selects an object CX in C for any object X in O′, and such that for any n-linear
map f ∈MulO′⊗

�

{X i}i∈〈n〉 , Y
�

we have an∞-functor that we will denote by

⊗ f :
∏︂

1⩽i⩽n

CX i
−→ CY .

The kind of conditions that these maps have to satisfy (associativity, commutativity...) is encoded
in all the possible, different choices of coCartesian lifts of n-linear maps {X i} → Y . We shall see
some explicit computations in Example 3.4.13 and in Example 3.4.26.

We are ready to state the definition of a symmetric monoidal∞-category, which is a particular
case of Definition 3.4.9.(2).

Definition 3.4.11.

(1) A monoidal∞-category C⊗ is an Assoc-monoidal∞-category.
(2) A symmetric monoidal∞-category C⊗ is a Comm-monoidal∞-category.

In both cases, we shall denote by C the underlying ∞-category of C⊗, i.e., the fiber of the
coCartesian fibration C⊗→ Comm⊗ over 〈1〉.

(3) Let p : C⊗ → Fin∗ and D⊗ → Fin∗ be two symmetric monoidal ∞-categories. A lax
monoidal∞-functor is a map of∞-operads F : C⊗ −→ D⊗.
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(4) Let p : C⊗→ Fin∗ and D⊗→ Fin∗ be two symmetric monoidal∞-categories. A strongly
monoidal∞-functor is a lax monoidal∞-functor which carries p-coCartesian morphisms
in C⊗ to q-coCartesian morphisms in D⊗.

Remark 3.4.12 (Heuristics on Definition 3.4.11). Let us look at Definition 3.4.11.(2). In virtue
of the discussion provided in Remark 3.4.10, it is clear that since ρi : 〈n〉 → 〈1〉 is inert for every
n and every i, we have simply imposed Condition 3.4.4.(3) in Definition 3.4.4 to be satisfied
for the∞-operad C⊗, i.e., we have asked for an equivalence

〈ρi〉1⩽i⩽n : C⊗〈n〉
≃
−→ C×n.

Moreover, the coCartesianity condition on the fibration guarantees that for all the active
morphisms 〈n〉 → 〈1〉 collapsing all elements except the base point to 1, we have an n-fold
tensor product∞-functor

⊗: C×n −→ C

which is moreover invariant under the autoequivalence

C×n ≃ C×n

obtained by the coCartesian lift of any permutation of the set {1, . . . , n}, since projecting the
set {1, . . . , n} to the singleton {1} is invariant under any permutation of the set {1, . . . , n}. In
particular, we are imposing a homotopy-coherent commutative monoidal structure on C.
On the other hand, if we ask only for a monoidal ∞-category C⊗ according to Definition
3.4.11.(1), we have a coCartesian fibration C⊗ → Assoc⊗. Notice that in Assoc⊗ the inert
morphisms 〈n〉 → 〈1〉 are still the same inert morphisms as in Comm⊗, but the collection
of all n-linear morphisms is larger: for any morphism α: 〈n〉 → 〈1〉 in Comm⊗, we have n!
maps (α,≼): 〈n〉 → 〈1〉 in Assoc⊗ lying over α, corresponding to all possible linear orderings
on {1, . . . , n} . In particular, a lift of any of those n! different n-linear maps (α,≼) yields a
well-defined tensor product∞-functor

(α,≼)! : C×n −→ C.

However, a priori this monoidal structure is not invariant under shuffles of factors anymore,
because shuffling does not respect linear orderings; this means that we are only imposing a
homotopy-coherent associative monoidal structure on C. Notice that if we start with a symmetric
monoidal ∞-category C⊗→ Comm⊗, the fibration Assoc⊗→ Comm⊗ allows us to forget C⊗

to a merely monoidal ∞-category C⊗ ×Comm⊗ Assoc⊗, whose underlying ∞-category is the
same as the one of C⊗ (because over 〈1〉, the fibration Assoc⊗→ Comm⊗ is an equivalence of
∞-categories).
Finally, let us focus on Definitions 3.4.11.(3) and 3.4.11.(4). A lax monoidal ∞-functor is
a quite fancy way to encode the idea of an ∞-functor which, even if does not preserve the
monoidal structure, still is sufficiently compatible with it, in the following sense. For every
objects C and C ′ of C := C⊗〈1〉, and denoting by 1C and 1D the unit for the monoidal structures
on C and D respectively, one has maps

1D −→ F(1C) and F(C)⊗D F(C ′) −→ F(C ⊗C C ′)
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which satisfy some coherency conditions. In particular, lax monoidal ∞-functors send algebras
for any operad O in C to algebras for the same operad in D. A strongly monoidal ∞-functor is
a lax monoidal∞-functor for which the above maps are actually equivalences. In particular,
strongly monoidal∞-functors preserve not only algebras for any operad, but also coalgebras
for any cooperad.

Example 3.4.13. Let us study more carefully, for some∞-operads O of special interest, what a
O-algebra in a (symmetric) monoidal∞-category C is.

(1) Given a symmetric monoidal ∞-category C⊗, the ∞-category AlgComm(C) of Comm-
algebras is the homotopy coherent way to define the∞-category of (unitary) commu-
tative algebras in C, hence we shall denote it by CAlg(C). Indeed, a Comm-algebra
is just a section of the fibration C⊗→ Comm⊗, which corresponds to the choice of an
object A of C (corresponding to the image of 〈1〉), with a pointing by the unit 1C→ A
(corresponding to the unique map 〈0〉 → 〈1〉) and a collection of multiplication maps

A⊗n −→ A

corresponding to all possible n-linear maps 〈n〉 → 〈1〉. The fact that they are all
homotopy-coherently associative and commutative is a consequence of an analogous
discussion to the one of Remark 3.4.12: therefore, we shall call Comm-algebras in C⊗

simply as commutative algebras of C.
(2) Let us now consider the associative∞-operad Assoc⊗ of Example 3.4.7.(3): let us recall

that this is the operad on one object a such that for any n the set of n-linear maps
MulAssoc

�

{a}1⩽i⩽n , a
�

is the set of linear orderings of {1, . . . , n}. In particular, an Assoc-
algebra in a monoidal ∞-category C⊗ is a section Assoc⊗ → C⊗ of the coCartesian
fibration C⊗→ Assoc⊗. This boils down to the datum of an object A of C corresponding
to a together with a set of n! possible n-linear operations A⊗n → A for any n. If we
denote the j-th factor in A⊗n as A( j), so to write A⊗n as A(1)⊗ . . .⊗A(n), then it is easy to
see that for any linear ordering of {1, . . . , n} corresponding to a permutation in θ ∈ Σn

there exists a unique multiplication map

A(θ (1))⊗ . . .⊗ A(θ (n)) −→ A.

This means that, as long as we keep the indices fixed, there exists a unique map A⊗n→ A
(i.e., it does not matter where we put the brackets in multiplication), but whenever we
swap some of the factors we have another, a priori inequivalent, multiplication. We can
see that this operad models precisely the associative algebras, hence we shall denote
AlgAssoc(C) simply as Alg(C) and we will shall refer to Assoc-algebras in Cas associative
algebras of C.

(3) In ordinary category theory, any category C admitting all products or coproducts
admits a Cartesian or coCartesian symmetric monoidal structure, respectively, where
the monoidal structure is given by taking products and coproducts. This holds in the
∞-categorical setting as well: if C is a∞-category admitting all limits or colimits, then
there is an essentially unique way to promote C to a Cartesian (C×) or coCartesian (C

∐︁

)
symmetric monoidal ∞-category, where the monoidal structure is given by products or
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coproducts respectively. In this case, we have a natural equivalence of∞-categories

C≃ cCcAlg
�

C×
�

and C≃ CAlg
�

C
∐︁

�

,

where cCcAlg denotes the ∞-category of cocommutative coalgebras of C4. See [Lur17,
Proposition 2.4.1.5].

(4) In particular, Catd∞ and S admit a Cartesian symmetric monoidal structure. At this
point, one could ask whether the notion of O-algebras in Catd∞ and the notion of O-
monoidal ∞-categories coincide. Let us remark that a O-algebra in Catd∞ is a map of
∞-operads O⊗→ Catd

×
∞, which in particular has an "underlying ∞-functor" O→ Catd∞.

By the∞-categorical Grothendieck construction of Theorem 2.7.13, this is equivalent
to a coCartesian fibration of ∞-categories C→ O. Such coCartesian fibration can
be promoted to a coCartesian fibration of ∞-operads precisely if the corresponding
∞-functor O→ Catd∞ can be promoted to a map of∞-operads: see for example [Lur17,
Example 2.4.2.4]. Hence, the two notions coincide.

(5) Notice that the∞-category of O′-algebras in a O-monoidal∞-category C is, in particular,
a∞-category of∞-functors. By evaluating an∞-functor on any object X in O′ one has
a forgetful ∞-functor AlgO′(C)→ Cwhich can be promoted to a map of ∞-operads
over O. This is simply a fancy way to say that if C is O-monoidal, then the ∞-category
of O′-algebras for any∞-operad O′ is again O-monoidal via the underlying monoidal
structure of C, and the forgetful∞-functor is strongly monoidal. For an even fancier
way to put it, see [Lur17, Example 3.2.4.4].

We want to spell out some general properties of ∞-categories of algebras in a monoidal ∞-
category C. In the following, we shall often assume the following (not so restrictive) condition
on our (symmetric) monoidal∞-categories.

Definition 3.4.14. Let q : C⊗→ O⊗ be an O-monoidal ∞-category. We say that q is compatible
with colimits separately in each variable if for every multilinear map ϕ ∈MulO

�

{X i}1⩽i⩽n , Y
�

,
the induced∞-functor

⊗ϕ :
∏︂

1⩽i⩽n

CX −→ CY

commutes with colimits separately in each variable.

Example 3.4.15. If O⊗ = Comm⊗ or O⊗ = Assoc⊗, then we have only one object (namely, a in
the notation of Examples 3.4.7.(1) and 3.4.7.(3)) and C := Ca for any (symmetric) monoidal
∞-category C⊗. Therefore, in this case Definition 3.4.14 means precisely that for every n⩾ 2,
for every i ∈ [1, n], for every (n− 1)-uple of objects X :=

�

X1 . . . Xb i, . . . Xn

	

of C and for every
∞-functor ιi,X : C→ C×n described informally as

Y ↦→ (X1, . . . , X i−1, Y, X i+1, . . . Xn),

the composition

C
ιi,X
−→ C×n ⊗

−→ C
4This relies on a definition of ∞-cooperads: we are not interested in doing it here, but we are confident that at

this point it is believable enough that theory is somewhat dual to this story – but with some subtleties! See for
example [FG12, Section 3.5].
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commutes with colimits. For this reason, in this case we shall equivalently say that the monoidal
structure of C commutes with colimits separately in each variable.

Proposition 3.4.16 (General features of ∞-categories of algebras, [Lur17, Chapter 3]). Let
q : C⊗→ Comm⊗ be a symmetric monoidal ∞-category, and suppose that the monoidal structure
is compatible with colimits separately in each variable. Let O⊗ be an∞-operad which is small as
an∞-category, and consider the∞-category AlgO(C) of O-algebras in C⊗.

(1) If C := C⊗〈1〉 is presentable, then AlgO(C) is presentable ([Lur17, Corollary 3.2.3.5]).
(2) Let evX : AlgO(C) → CX be the ∞-functor that evaluates an O-algebra at the object X

of O⊗ (if O has only one object, then this is just the forgetful ∞-functor that forgets the
algebra structure on an object of C). A diagram K → AlgO(C) admits a limit if and only
if the composition

K −→ AlgO(C)
evX−→ C

admits a limit for every X ∈ O. If this is the case, then K → AlgO(C) admits a limit which
is preserved by the evaluation∞-functors ([Lur17, Corollary 3.2.2.5]).

(3) Let X be an object in O and let C be an object in CX (if O has only one object, this is just
an object of C). Then there exists an O-algebra FreeO(X ) and a map X → FreeO(X ) which
exhibits FreeO(X ) as the free O-algebra generated by X ([Lur17, Proposition 3.1.3.13]). If
O has only one object, then this yields an adjunction

FreeO: C−−⇀↽−− AlgO(C): oblvO .

In particular, if O⊗ is the associative or commutative ∞-operad, all the above applies. In the latter
case, the free commutative algebra∞-functor is given by the assignation

X ↦→
⨁︂

n⩾0

Symn
C
(X ) :=
⨁︂

n⩾0

�

X⊗n/Σn

�

,

where Σn is the symmetric group on n letters which acts on X⊗n by swapping factors.

(4) If O⊗ = Comm⊗, then coproducts in CAlg(C) := AlgComm(C) are computed by the under-
lying tensor product in C ([Lur17, Proposition 3.2.4.7]).

Warning 3.4.17. The notations in Proposition 3.4.16 can be misleading. If we work in the
stable derived∞-category of a commutative ring | equipped with the usual (derived) tensor
product of chain complexes, then the free commutative algebra object generated by a chain
complex M• in general does not agree with the polynomial algebra on some bifibrant resolution
of M•, unless | is a Q-algebra. For example, if | = Fp and M := Fp[0], then the underived
symmetric Fp-algebra over Fp is Fp[t] and so we have a natural map of E∞-algebras

FreeCAlg

�

Fp

�

−→ Fp[t].

However, this map is not an equivalence. Indeed, Fp[t] is a discrete commutative ring which is
flat as a derived Fp-algebra: this means that H0(Fp[t]) is flat over H0(Fp), and that the homology
of degree n of Fp[t] is obtained by the one of Fp by simple base change over H0(Fp[t]); in
particular it is trivial for n> 0. On the other hand, the homology of FreeCAlg

�

Fp

�

is not trivial
in higher degrees: more precisely, the homology of FreeCAlg

�

Fp

�

in degree n is given by the
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homology group
Hn

�

FreeCAlg

�

Fp

��∼=
⨁︂

k⩾0

Hn

�

Σk, Fp

�

which remembers the information concerning power operations on mod p cohomology. This
heuristically means that in the homotopical setting objects in characteristic p or in mixed
characteristic retain some information of topological nature.

Construction 3.4.18 (Modules over associative algebras). Until this point, we presented only∞-
operads with a single color (i.e., such that their underlying∞-category has only one object). One
could ask for some properly colored∞-operad: it turns out that some of the most fundamental
examples of our theory are really colored∞-examples. Indeed, we have three∞-operads LM⊗,
RM⊗ and BM⊗, parametrizing left modules, right modules and bimodules, respectively. Their
definitions can be found in [Lur17, Sections 4.2.1 and 4.3.1]: here, we describe in full details
only the structure of LM⊗.

(1) We have two colors a and m, which must be thought of as objects parametrizing an
associative algebra and a module over it.

(2) The set of multilinear maps in LM⊗ is described as follows. Let {X i}1⩽i⩽n be a collection
of n objects in LM⊗.
a. If all X i ’s are a, we define MulLM

�

{X i}1⩽i⩽n , a
�

to be the set of linear orderings of
the set {1, . . . , n}.

b. If all X j ’s are a except for one X j = m, we define MulLM

�

{X i}1⩽i⩽n , m
�

to be the set
of linear orderings on {1, . . . , n} such that n is the maximum with respect to such
orderings. This means that, if we think of a linear ordering on {1, . . . n} as a totally
ordered set {i1 < . . .< in}, corresponding to the inverse of the permutation σ ∈ Σn

sending j ↦→ i j, then we want in to be j.
c. In any other case, MulLM

�

{X i}1⩽i⩽n , Y
�

is empty.
(3) The composition is given by composition of linear orderings.

By similar arguments to the ones provided in Example 3.4.13.(2), we see that a LM-algebra in
a monoidal∞-category C⊗ selects two objects A and M , such that A is an associative algebra
(indeed, the n-linear maps from a⊗n to a in LM⊗ are precisely the same as the n-linear maps
from a⊗n to a in Assoc⊗) and M is a left module over A: this justifies the notation LMod(C)
for the∞-category AlgLM(C). The∞-operad RM⊗ is defined in a very similar way, and the
∞-category RM-algebras in a monoidal∞-category Cwill be denoted by RMod(C). Finally;
the∞-operad BM⊗ intertwines these two definitions by specifying three colors a, a′, and m,
such that a and a′ are both associative algebras, and m is a left a-module and a right a′-module
in a compatible way: for this reason, we shall denote the ∞-category of BM-algebras in a
monoidal∞-category C as BMod(C).
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Remark 3.4.19. For any symmetric monoidal∞-category C, we have a diagram of∞-categories

CAlg(C)

Alg(C)

LMod(C) BMod(C) RMod(C)

oblvComm

oblvRMod oblvLMod

oblvRModoblvLMod

oblvR
BModoblvL

BMod

where each∞-functor is described as follows.

(1) The∞-functor oblvComm CAlg(C)→ Alg(C) is induced by precomposing a map of∞-
operads Comm⊗ → C⊗ with the fibration Assoc⊗ → Comm⊗. This ∞-functor simply
takes a commutative algebra A in C and forgets its commutative structure to a merely
associative one.

(2) The∞-functors oblvLMod : LMod(C)→ Alg(C) and oblvRMod : RMod(C)→ Alg(C) are
again induced by precomposing maps of ∞-operads LM⊗ → C⊗ annd RM⊗ → C⊗

with the natural inclusions Assoc⊗ ˓→LM⊗ and Assoc⊗ ˓→RM⊗, respectively. They
forget the datum of the module object of C retaining only the associative algebra.
Similar arguments hold for the ∞-functors oblvL

BMod and oblvR
BMod, which for a fixed

bimodule object (A, M , A′) remember either the associative algebra A′ or the associative
algebra A, respectively. It is clear that if A and A′ are commutative then these forgetful
∞-functors actually factor through CAlg(C).

(3) The∞-functors oblvRMod : BMod(C)→ LMod(C) and oblvLMod : BMod(C)→ LMod(C)
are induced by precomposing a map of ∞-operads BM⊗ → C⊗ with the natural
inclusions LM⊗ ˓→BM⊗ and RM⊗ ˓→BM⊗. Given a bimodule (A, M , A′) in C, the
first∞-functor forgets the datum of A′ and the second forgets the datum of A, producing
the left module (A, M) and the right module (M , A′), respectively. The choice of notation
for these∞-functors could appear a bit lazy at first glance: a priori, it may seem that it
clashes with the notations for the∞-functors oblvLMod and oblvRMod that we defined in
the previous point. However, Remark 3.4.22 guarantees that this is not the case: we
are indeed forgetting some either left or right module structure.

(4) The ∞-functor Alg(C) → BMod(C) is induced by the forgetful map of ∞-operads
BM⊗ → Assoc⊗ described by sending the colors a, a′ and m to the single color a in
Assoc⊗, and by sending the multilinear map a⊗i ⊗ m ⊗ a′⊗n−i−1 → m corresponding
to some suitable linear ordering on the set {1, . . . n} to the multilinear map a⊗n → a

corresponding to the same linear ordering in Assoc⊗. In particular, such ∞-functors
takes an associative algebra A and considers it as a bimodule over itself.

Definition 3.4.20. If we fix an associative algebra A in C, the fiber of A under the ∞-
functors oblvLMod : LMod(C)→ Alg(C) and oblvRMod : RMod(C)→ Alg(C) yield∞-categories
LModA(C) and RModA(C), the ∞-categories of left or right A-modules, respectively. Similarly,
if we fix associative algebras A and B in C, the fiber A BModB(C) of (A, B) under the forgetful
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∞-functor
oblvL

BMod×oblvR
BMod : BMod(C) −→ Alg(C)×Alg(C)

yields the∞-category of (A, B)-bimodules.

Proposition 3.4.21 (Useful properties of∞-categories of modules, [Lur17, Sections 4.2 and
4.3]). Let C⊗ be a symmetric monoidal∞-category and let A be an associative algebra in C.

(1) If C is presentable, then LModA(C) and RModA(C) are presentable.
(2) Limits in LModA(C) and RModA(C) are always detected by the forgetful ∞-functor to C.

If the monoidal structure of C commutes with colimits separately in each variable, the
same statement holds for colimits. In particular, if C is stable then also LModA(C) and
RModA(C) are stable.

(3) The ∞-categories LModA(C) and RModA(C) are respectively right and left tensored over
C, i.e., we have actions

LModA(C)× C−→ LModA(C)

and
C×RModA(C) −→ RModA(C)

given by the underlying tensor product in C. If the monoidal structure of C commutes with
colimits separately in each variable, then both actions commute with colimits separately in
each variable.

Remark 3.4.22. Let C⊗ be a symmetric monoidal∞-category and let A and B be associative
algebras of C. Thanks to the actions described in Proposition 3.4.21.(3), we can consider right
B-modules with a left action of A and left A-modules with a right action of B, and one has
equivalences of∞-categories

A BModB(C)≃ LModA(RModB(C))≃ RModB(LModA(C))

thanks to [Lur17, Theorem 4.3.2.7]. In particular, the content of Proposition 3.4.21.(1) and
the statement on limits of Proposition 3.4.21.(2) apply also to A BModB(C). If moreover the
symmetric monoidal structure of C commutes with colimits separately in each variable, then
the statement on colimits of Proposition 3.4.21.(2) applies to A BModB(C) as well.

Warning 3.4.23. If A is a commutative algebra, then there is an equivalence of∞-categories

LModA(C)≃ RModA(C) =: ModA(C)

but BModA(C) can be very different from both LModA(C) and RModA(C), even if A is commu-
tative. Indeed, BModA(C) is equivalent to the∞-category of left A⊗ Arev-modules, where ⊗ is
the monoidal structure on C and Arev is A itself seen as an associative algebra via the "opposite"
multiplication. (To be more formal, if A corresponds to the map of∞-operads f : Assoc⊗→ C⊗,
then Arev corresponds to the map of ∞-operads obtained by precomposing f with the autoin-
volution of Assoc⊗, sending a linear ordering of the set {1, . . . , n} to its opposite linear order.)
In particular, if A is commutative and A⊗ A ̸≃ A, then the∞-category of A-bimodules is often
different from the∞-category of A-modules. In any case, we do have a forgetful∞-functor

ModA(C) −→ BModA(C).
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Remark 3.4.24. Considering modules over associative algebras is actually a functorial operation,
in the following sense. The∞-functors

oblvLMod : LMod(C) −→ Alg(C) and oblvRMod : RMod(C) −→ Alg(C)

are both Cartesian and coCartesian fibrations, hence the Grothendieck construction of Theo-
rem 2.7.13 provides∞-functors

LMod−(C): Alg(C) −→ Catd∞ and RMod−(C): Alg(C) −→ Catd∞,

which assign to any associative algebra A its ∞-category of either left or right modules, in
an ∞-functorial way. This association can be regarded either as a covariant one (given a
morphism f : A→ B the induced ∞-functor LModA(C)→ LModB(C) is the base change of a
left A-module along f ) or as a contravariant one (given a morphism f : A→ B, the induced
∞-functor LModB(C) → LModA(C) forgets the left B-module structure along f ). Similarly,
using cleverly Remark 3.4.22, we obtain an∞-functor

−BMod−(C): Alg(C)op ×Alg(C) −→ Catd∞,

which sends a pair (A, A′) of associative algebras to the ∞-category ABModA′(C) of (A, A′)-
bimodules; if A = A′, we shall simply denote such ∞-category as BModA(C). Again, this
association is both covariant and contravariant in both arguments.

We now present a class of ∞-operads via a topologically enriched model: the little cubes
∞-operads Ek. This is a particularly relevant class for our scopes because of the following
reasons.

(1) For k = 0, the∞-operad E0 classifies objects pointed by the monoidal unit of C.
(2) For k = 1, the∞-operad E1 is equivalent to the operad Assoc.
(3) For any k ⩾ 2, the∞-operad Ek classifies algebras which are "k-fold commutative". In

particular, we have a filtered diagram of∞-operads

E0 −˓→ E1 −˓→ E2 −˓→ . . . −˓→ Ek −˓→ . . .

whose colimit E∞ is equivalent to the∞-operad Comm.

Construction 3.4.25 (Little cubes∞-operad, [Lur17, Chapter 5]). For any k ⩾ 0, let us denote
by □k the standard k-dimensional cube [−1,1]k ⊆ Rk. We say that a rectilinear embedding
f : □k→ □k is a map described in each component as fi(x) = ai x i + bi, for some real constants
ai > 0 and bi. For any finite set S considered as a discrete topological space, we say that a map
f : □k×S→ □k is a rectilinear embedding if it is an open embedding and fs : □k×{s} ∼= □k→ □k

is rectilinear in the previous sense for any s ∈ S. For any finite set S, the set

Rect
�

□k × S, □k
�

:=
�

f : □k × S→ □k | f is a rectilinear embedding
	

can be interpreted as a subset of
�

R2k
�S

, and it inherits a natural subspace topology. For any
k ⩾ 0 we define a topologically enriched category tE⊗k as follows.

(1) It has all finite pointed sets 〈n〉 ∈ Fin∗ as objects.
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(2) The topological space HomtE⊗k
(〈n〉, 〈m〉) is the set of (n+ 1)-uples

�

α, 〈 f j〉 j∈〈m〉�
�

, where
α: 〈n〉 → 〈m〉 is a map of pointed sets and f j : □k ×α−1( j)→ □k is a rectilinear embed-
ding. The topology is induced by the presentation

HomtE⊗k
(〈n〉, 〈m〉) :=

∐︂

α: 〈n〉→〈m〉

∏︂

1⩽ j⩽m

Rect
�

□k ×α−1( j), □k
�

.

We have an associated ∞-category E⊗k , and the natural forgetful ∞-functor E⊗k → Fin∗ turns
E⊗k into an ∞-operad, whose underlying ∞-category is the ∞-category Ek := E⊗k ×Fin∗ {〈1〉}
consisting of only one object, which is 〈1〉 itself, with the following spaces of maps. The
associated unpointed set 〈1〉� of 〈1〉 is the point {1}. We have now two possible pointed maps
from 〈1〉 to itself: the non-active map α (i.e., the one that factors through the base point {∗})
and the active map β (i.e., the identity). The map α has an attached topological space of empty
rectilinear embeddings, so this is simply a point. For the case of the active map β , we have
instead a proper topological space of rectilinear embeddings from □k to itself. This space is
homeomorphic to a complex polytope in R2k, hence it is contractible.
In particular, for any k ⩾ 0, an Ek-algebra in a symmetric monoidal ∞-category C⊗ is the
datum of an object X , with no non-trivial maps X → X . The space of multilinear maps from
〈n〉 to 〈1〉 encodes a multiplication X⊗n → X , with some rules that have to be satisfied up to
coherent homotopy. The space of multilinear maps from 〈0〉 to 〈1〉 encodes the notion of a
pointing 1C→ X – i.e., the multiplication defined by the∞-operad Ek is actually unitary for
any k. We shall see how this works in fuller detail in the following example.

Example 3.4.26. Let us study E⊗k via this presentation in greater detail for some relevant k’s.

(1) For k = 0, □k ∼= {∗} is just a point. The description of the underlying ∞-category of
E0 is the same as the one shown in Construction 3.4.25, so let us look at the space of
multilinear maps HomtE⊗k

(〈n〉, 〈m〉). Suppose that α: 〈n〉 → 〈m〉 is such that there exists

an element j ∈ 〈m〉� such that
|︁

|︁α−1( j)
|︁

|︁> 1: then
∏︂

1⩽k⩽m

Rect
�

{∗} ×α−1(k), {∗}
�

would be a product of topological spaces with one factor corresponding to rectilinear
embeddings {∗} ×α−1( j)→ {∗}. Since a rectilinear embedding is in particular an open
embedding, this space is empty, hence the whole product is empty. On the other hand,
if for any j ∈ 〈m〉� the fiber is at most a single point, then

∏︂

1⩽k⩽m

Rect
�

{∗} ×α−1(k), {∗}
�

is a product of points, hence a point itself.
This tells us that the space MulE⊗0 (〈n〉, 〈1〉) is empty except for n = 0 and for n = 1.This
means that an E0-algebra X in a symmetric monoidal ∞-category C consists only of
the datum of a pointing 1C→ X (corresponding to the multilinear map 〈0〉 → 〈1〉),
with the identity as the only linear map X → X . We have a canonical equivalence of
∞-categories

C
1C/
≃ AlgE0

(C).
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(2) For k = 1, E⊗1 is an∞-operad on a single pointed object I := [−1,1]. For any pointed
map of finite sets α: 〈n〉 → 〈m〉 and any j ∈ 〈m〉� , a rectilinear embedding f : I×α−1( j)→
I induces a linear ordering on α−1( j) as follows: for any h and k in α−1( j) we say that
h ≼ k if f (t, h) ⩽ f (t ′, k) for any couple of points t and t ′ in I. More precisely, if
α−1( j) = { j1, . . . , jn} then

I×α−1( j)∼=
∐︂

1⩽k⩽n

I(k),

where (k) denotes that we are labeling the k-th interval in the sequence. Considering
I with its standard linear order inherited by R, the linear order on α−1( j) is given by
remembering the order with which we embed the intervals I(k) inside I. Viceversa,
knowing a linear order ≼ on α−1( j) produces a contractible collection of rectilinear
embeddings of I× α−1( j) → I subject to the condition that I(h) is embedded to the
left of I(k) if h≼ k. In particular, E⊗1 is equivalent as an∞-operad to Assoc⊗: the fact
that the operation is associative but not commutative is encoded in the fact that, in the
1-dimensional square, we do not have enough space to swap two embedded intervals
in a continuous fashion. In particular, for any symmetric monoidal∞-category Cwe
have a canonical equivalence

AlgE1
(C)≃ Alg(C).

(3) For k ⩾ 2, let us study the space of multilinear maps lying over the active map
β : 〈2〉 → 〈1〉. The space of rectilinear embeddings in this case is a conctractible
space of configurations of two k-disks inside □k, which parametrizes a non-trivial mul-
tiplication X ⊗ X → X . Notice now that for any n ⩾ 3, every space of configurations
of n possible k-disks inside □k is contractible, since we can rotate and move them
inside □k in order to change from a configuration to another: so, the multiplication
of an E⩾2-algebra X is indeed always commutative. Yet, following the principle that
∞-category theory remembers the datum of the homotopy coherencies, we have now
that the space of homotopies between configurations is way different changing the
integer k: increasing the topological dimension, we have more degrees of freedom for
moving our smaller k-disks inside a larger k-disk. More formally, the space of rectilinear
embeddings □k × I → □k is (k− 1)-connected, i.e., it has trivial homotopy groups for
n⩽ k− 2 ([Lur17, Proposition 5.1.4.4]). Notice that this matches our computation for
the case k = 0 (every space is (−2)-connected, but it is (−1)-connected only if it is not
empty) and k = 1 (we have always non-empty spaces, hence (−1)-connected, which
are connected only when I is just a singleton).

(4) For any k, the∞-operad E⊗k embeds in the∞-operad E⊗k+1 by taking the product of a
rectilinear embedding □k × I → □k with the identity on another copy of the interval I.
This produces a tower of∞-operads whose colimit

E⊗∞ := colim
k⩾0
E⊗k

is characterized by the fact that the space of rectilinear embeddings of the "infinite-
dimensional disk" to itself is fully contractible (because it has to be (k− 1)-connective
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for any integer k). In particular, E⊗∞ ≃ Comm⊗ and an E∞-algebra in a symmetric
monoidal∞-category C⊗ is simply a fully commutative algebra, i.e., we have a natural
equivalence of∞-categories

CAlg(C)≃ AlgE∞(C).

Warning 3.4.27. For any 0⩽ k < h⩽∞, an Eh-algebra in a symmetric monoidal∞-category –
thought as map of ∞-operads f : E⊗h → C⊗ over Comm⊗ – can be turned into an Ek-algebra by
precomposing f with the inclusion of ∞-operads E⊗k ˓→ E

⊗
h . This produces a chain of forgetful

∞-functors

CAlg(C)
oblvCAlg
−→ . . . −→ AlgEk+1

(C)
oblvEk+1−→ AlgEk

(C)
oblvEk−→ AlgEk−1

(C) −→ . . . −→ AlgE0
(C)≃ C

1C/
.

These ∞-functors are not fully faithful. Notice that, in ordinary algebra, forgetting the com-
mutativity of a monoid, a group or a ring is indeed a fully faithful operation: maps of abelian
groups and commutative rings and monoids are simply maps of groups, rings and monoids, and
the commutativity is preserved automatically because in this setting commutativity is a property.
On the other hand, in the homotopical world a map of Ek-algebras f : A→ B is a map of the
underlying associative algebras together with the datum of a transformation of the simplices
testifying to the Ek-commutativity of A into simplices testifying to the Ek-commutativity of B.
Differently from what happened in the discrete case, this assignation is not determined uniquely
from the map of the underlying associative algebras.

We conclude this section with a fundamental theorem concerning the little disk operad.

Theorem 3.4.28 (Dunn Additivity, [Lur17, Theorem 5.1.2.2]). Let k, k′ ⩾ 0 be integers. Then
for any monoidal∞-category C there is an equivalence of∞-categories

AlgEk+k′
(C)≃ AlgEk

�

AlgEk′
(C)
�

,

where AlgEk′
(C) is considered as a monoidal∞-category via the underlying tensor product of C

(Example 3.4.13.(5)).

Theorem 3.4.28 formalizes the idea that we were hinting at in the introduction of Section 3.3:
n-fold H-spaces are spaces equipped with n different associative (but only up to homotopy!)
operations, which are compatible one with the other. Indeed, with our brand new terminology,
May’s Theorem can be read as follows.

Theorem 3.4.29 (May’s Delooping, [Lur17, Theorem 5.2.6.10]). For any k > 0, let S⩾k
∗ be the

∞-category spanned by (k− 1)-connected pointed spaces. Then the iterated loop∞-functor

Ωk : S⩾k
∗ −→ AlgEk

(S)

is a fully faithful ∞-functor, whose essential image is spanned by the ∞-category Alggp
Ek
(C) of

group-like Ek-monoids in spaces, i.e., topological Ek-monoids M for which π0M is a group5. An
explicit inverse is provided by the k-fold delooping∞-functor

Bk : Alggp
Ek
(C) −→ S⩾k

∗ .
5In general, a homotopy-associative monoid structure over a nice topological space only provides its set of

path-connected components a monoid structure, without an inverse.
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3.5. Algebra in the stable ∞-category. The concepts presented in Section 3.4 allow us to
deepen the characterization of the∞-category Sp of spectra, and in particular to do algebra in it:
the theory of spectral algebraic geometry serves as a middle ground between homotopical algebra
and homological algebra, allowing to study objects which behave like "homotopy coherent
commutative rings" with the tools of algebraic geometry (e.g., by looking at derived stacks which
locally look like homotopy coherent coherent rings and at their∞-categories of quasi-coherent
sheaves), while at the same time providing a more well-rounded foundation to the theory of
derived functors and derived categories of schemes.

Theorem 3.5.1 ([Lur17, Corollary 4.8.2.19]). The ∞-category of spectra Sp is a stable and
presentable ∞-category and can be equipped with a symmetric monoidal structure provided by the
smash product of spectra

∧: Sp× Sp −→ Sp.

The smash product is characterized in an essentially unique way by the requirements that it
commutes with colimits separately in each variable and that the sphere spectrum

S := Σ∞+ ({∗})

acts as the unit for such monoidal structure. Moreover, for any stable and presentable∞-category
C equipped with a symmetric monoidal structure compatible with colimits separately in each
variable, there exists an essentially unique colimit preserving and strongly monoidal∞-functor
Sp→ C.

Theorem 3.5.1 is a "stable variant" of the following statement: the ∞-category Sof spaces
with its Cartesian monoidal structure is universal among presentable∞-categories equipped
with a symmetric monoidal structure which is compatible with colimits separately in each
variable. Indeed, for any presentable ∞-category C as such, we have an essentially unique
∞-functor

S−→ C

characterized by the requirement that it is strongly monoidal and that the point {∗} is sent to
the unit 1C for the monoidal structure of C. If C is also stable, then the universal property
of the stabilization of an ∞-category yields that S→ C factors through Sp(S) =: Sp. This
statement can be further refined as follows. First, let us remark that the ∞-category PrL of
presentable∞-categories and left adjoints between them admits a non-trivial model structure
(i.e., not induced by the product of∞-categories in Catd∞).

Theorem 3.5.2 ([Lur17, Section 4.8.1]). The ∞-category PrL of presentable ∞-categories is
endowed with a closed symmetric monoidal tensor product ⊗, for which the unit is the ∞-category
of spaces S. If FunR(C, D) denotes the∞-category of limit-preserving∞-functors between C and
D, then for every presentable∞-categories C and D one has

C⊗ D≃ FunR(Cop, D).

Such monoidal structure commutes with colimits of presentable ∞-categories seprately in each
variable (Definition 3.4.14), and objects in the∞-category ofEk-algebras in

�

PrL
�⊗

can be identified
with Ek-monoidal presentable∞-categories whose monoidal structure is compatible with colimits
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separately in each variable. The symmetric monoidal structure on PrL enjoys the following universal
property: any∞-functor C× D→ Ewhich commutes with colimits separately in each variable
factors in an essentially unique way via an∞-functor C× D→ C⊗ D.

Theorem 3.5.3 ([Lur17, Section 4.8.2]). The ∞-category Sp is an E∞-algebra object of PrL

endowed with the symmetric monoidal structure of Theorem 3.5.2, and the forgetful∞-functor

ModSp

�

PrL
�

−→ PrL

is fully faithful. Its essential image is the full sub-∞-category Stabpr
∞ ⊆ PrL spanned by presentable

and stable∞-categories.

Remark 3.5.4. Let C be a presentable and stable ∞-category. Then, Theorem 3.5.3 tells us
that C is a Sp-module in PrL, hence we have an∞-functor

Sp× C−→ C

which exhibits C as a module over Sp and which is compatible with colimits separately in each
variable. In particular, for any objects C and D in C the contravariant ∞-functor Spop −→
S determined by the assignation X ↦→ MapC(X × C , D) sends colimits to limits, hence it is
representable by a spectrum Map(C , D) in virtue of [Lur09, Proposition 5.5.2.2]. It follows that
the∞-functor

Cop × C−→ Fun(Spop, S)

sending a couple of objects (C , D) to the mapping space MapC(−× C , D) lands in the essential
image of the Yoneda embeddingH: Sp→ Fun(Spop, S), hence after composing with a homotopy
inverse toH we obtain a honest∞-functor

Map
C

: Cop × C−→ Sp

producing a full spectrum of maps between objects of C. In the following, when dealing with
stable and presentable∞-categories, we shall always consider the mapping spectrum of maps
between objects, instead of the usual mapping space.

Considering Ek-algebras for the smash product in the ∞-category of spectra yields the
starting point of homotopical algebra.

Definition 3.5.5 ([Lur17, Definition 7.1.0.1]). Fix an element k ∈ N⩾1 ∪ {∞}. An Ek-ring
spectrum is an Ek-algebra object in the symmetric monoidal∞-category of spectra.

Notation 3.5.6. In the following, we shall suppress some notation and simply denote by AlgEk

the ∞-category of Ek-ring spectra. In the case k = 1, we shall further compactify the notations
and simply denote AlgE1

, the ∞-category of associative ring spectra, as Alg; similarly, for k =∞,
we shall denote AlgE∞ , the∞-category of commutative ring spectra, as CAlg.

Remark 3.5.7. Let R be a discrete Ek-ring spectrum, i.e., πiR∼= 0 for any i ̸= 0. Then R belongs
to the heart of the t-structure on Sp of Proposition 3.3.12, which is equivalent to the ordinary
abelian category Ab of abelian groups. In this case, R can be regarded as an Ek-ring object in Ab:
for k = 1 this means that R is an ordinary associative ring, while for any k ⩾ 2 this means that R
is an ordinary commutative ring. On the converse, any ordinary associative or commutative ring
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can be considered as a discrete E1- or E∞-ring spectrum, respectively: this means that the theory
of ring spectra contains properly the theory of ordinary rings from classical algebra. Notice that
at the level of discrete rings, either a ring is commutative or it is not: indeed, if C is an n-category
(i.e., it has only trivial k-morphisms for k > n), then Ek-algebras are naturally equivalent to
E∞-algebras for any k ⩾ n+ 1 ([Lur17, Corollary 5.1.1.7]). Conceptually this is motivated
as follows: for any k > n, we only have trivial k-simplices producing homotopies between
(k− 1)-morphisms, hence either there is a k-simplex testifying to the (k− 1)-commutativity, or
there is not. In particular, k-fold commutativity becomes a property, and not a structure.

The discussion carried out in Remark 3.4.24 yields an∞-functor

LMod− : Alg −→ Catd∞

sending an associative ring spectrum R to its∞-category of left R-modules in spectra LModR :=
LModR(Sp); an analogous claim holds also for the ∞-functor RMod: Alg→ Catd∞. Actually,
for any k ⩾ 1 and for any Ek-ring spectrum R, the∞-categories LModR and RModR are stable
([Lur17, Corollary 7.1.1.5]) and presentable ([Lur17, Corollary 4.2.3.7]): this follows from the
fact that for any symmetric monoidal ∞-category C . It turns out that it is quite simple to
determine which stable and presentable∞-categories arise in this way.

Theorem 3.5.8 ([Lur17, Theorems 4.8.5.16 and 7.1.2.1 and Proposition 7.1.2.6]). Let Alg∧

be the ∞-category of associative ring spectra, endowed with the symmetric monoidal structure
provided by Example 3.4.13.(5), and let

�

Stabpr
∞

�⊗
Sp/

:=ModSp

�

PrL
�⊗

Sp/

be the ∞-category of stable presentable ∞-categories, endowed with the symmetric monoidal
structure induced by the on PrL described in Theorem 3.5.26. Then the∞-functor

LMod− : Alg −→
�

Stabpr
∞

�⊗
Sp/

(3.5.9)

is a fully faithful, colimit-preserving and strongly monoidal∞-functor. In particular, using Theo-
rem 3.4.28, one has a fully faithful embedding

LMod− : AlgEk
−→ AlgEk−1

�

ModSp

�

PrL
��

. (3.5.10)

A presentable and stable∞-category C belongs to the essential image of the embedding 3.5.9 if
and only if the object F(S) determined by the pointing F : Sp→ C is a compact generator of C,
i.e., if and only if the∞-functor

Map
C
(F(S), −): C−→ Sp

is a conservative∞-functor which commutes with filtered colimits. If moreover C is equipped with
an Ek−1-monoidal structure compatible with colimits separately in each variable, then it belongs to
the essential image of the embedding 3.5.10 if and only if the unit 1C is a compact generator in the
above sense.

6Notice that if C and D are presentable and stable, then C⊗ D is again presentable and stable. The only
caveat is that the unit is Sp instead of S.
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Warning 3.5.11. For any stable and presentable ∞-category C, given a compact generator C
one has an equivalence of stable and presentable∞-categories

C≃ LModMapC(C ,C).

In particular, if C≃ LModR for an associative ring spectrum R, any other compact generator C
yields a Morita equivalence of stable and presentable∞-categories

LModR ≃ LModMapR(C ,C),

where MapR(C , C) is seen as an associative ring spectrum via composition of maps. In particular,
R and MapR(C , C) can be very different one from the other: for example, if R = H| is the
Eilenberg-Maclane ring spectrum associated to a field, then C := H|n is a compact generator of
the∞-category of H|-modules in the above sense for any integer n, and in particular one has
an equivalence of∞-categories

ModH| ≃ LModH Mn×n(|).

This is why it is crucial, in the hypothesis of Theorem 3.5.8, that our∞-category is pointed by a
colimit preserving ∞-functor F : Sp→ C: in the above situation, without the pointing Sp→ C,
which is completely determined by the image of the sphere spectrum S, we would not be able
to distinguish between LModR and LModMapR(C ,C), hence the∞-functor would be far from being
a fully faithful embedding.

Construction 3.5.12. In the limiting case k =∞, Theorem 3.5.8 says that for a commutative
ring spectrum R the∞-category

ModR := LModR ≃ RModR

is a stable and presentable∞-category which is moreover symmetric monoidal. The symmetric
monoidal structure on ModR is provided by the relative tensor product over R, which generalizes
the derived tensor product over ordinary commutative rings. Given two R-modules M and N ,
we define their relative tensor product over R via a bar construction, i.e., by taking the geometric
realization of the simplicial R-bimodule

M ⊗R N := colim
n∈N

�

. . . M ∧ R∧3 ∧ N M ∧ R∧2 × N M ∧ R∧ N M ∧ N
�

.

In the simplicial R-bimodule above, the face maps

M ∧ R∧n ∧ N −→ M ∧ R∧(n−1) ∧ N

encode the actions of the first copy of R over M , of the last copy of R over n, and all possible
multiplications between the i-th and the (i + 1)-th copies of R, for i ranging from 1 to n− 1; on
the other hand, the degeneracy maps

M ∧ R∧(n−1) ∧ N −→ M ∧ R∧n ∧ N

are described by inserting the unit 1R in the i-th position, for i ranging from 1 to n. This is the
core content of the, otherwise very technical, [Lur17, Section 4.4.2].
The relative tensor product over a commutative ring spectrum R, just like the smash product,
commutes with colimits separately in each variable and admits R as its unit. Moreover, it
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is associative up to canonical homotopy: for two commutative ring spectra R and S, given
an R-module M , an S-module N and an (R, S)-bimodule P one has a contractible space of
equivalences between (M ⊗R P)⊗S N and M ⊗R (P⊗S N). This implies that for any commutative
ring spectrum R, and for any R-module S which is a commutative algebra for the relative tensor
product over R, one has equivalences of symmetric monoidal∞-categories

ModS(ModR)≃ModS.

Remark 3.5.13. Let R and S be commutative ring spectra, and suppose we have a map of
commutative ring spectra f : R → S. The discussion of Remark 3.4.24 provides a forgetful
∞-functor

oblvS := f ∗ : ModS −→ModR

which in virtue of Proposition 3.4.21 is an ∞-functor between presentable ∞-categories which
commutes with all limits and colimits. In particular, it admits two adjoint.

(1) The left adjoint
−⊗R S : ModR −→ModS

is the base change∞-functor. At the level of the underlying spectra, this∞-functor is
precisely described by sending an R-module M to the relative tensor product M ⊗R S
defined in Construction 3.5.12, where we view S as an (R, S)-bimodule via f .

(2) The right adjoint
MapR(S, −): ModR −→ModS

takes an R-module M to the mapping spectrum of R-linear maps MapR(S, M), which
admits an S-module structure informally described by acting with scalars in S on the
domain of a map ϕ : S→ M .

The canonical associativity of the relative tensor product assures that the left adjoint is strongly
monoidal with respect to the relative tensor product on both ModR and ModS.

The symmetric monoidal structure on ModR given by the relative tensor product of Con-
struction 3.5.12 allows us to consider Ek-algebra objects in it, and this motivates the following.

Definition 3.5.14. Let R be a commutative ring spectrum, and let Mod⊗R be the ∞-category of
R-modules in spectra endowed with the relative tensor product. An R-Ek-algebra (or Ek-algebra
over R) is an Ek-algebra in Mod⊗R . We denote the∞-category of R-Ek-algebras as R-AlgEk

.

Notation 3.5.15. Again, if k = 1 or k = ∞, an R-Ek-algebra is simply an associative or
commutative R-algebra, respectively. In this case, we shall adopt the notations R-Alg and
R-CAlg, or more frequently the notations AlgR and CAlgR, to denote the ∞-categories of E1-
and E∞-algebras over R, respectively.
If moreover R =: | is a discrete commutative ring, we shall compactify notations and write Alg|
and CAlg| instead of AlgH| and CAlgH|.

Remark 3.5.16.

(1) The discussion of Remark 3.5.13 guarantees that the adjunction

−⊗R S : ModR −−⇀↽−−ModS : oblvS
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lifts to an adjunction at the level of Ek-algebra objects for any k ⩾ 0, because the left
adjoint∞-functors is strongly monoidal, hence the right adjoint is lax monoidal, and
both preserve algebra objects for any∞-operad. In particular, we have an adjunction

−⊗R S : R-AlgEk
−−⇀↽−− S-AlgEk

: oblvS .

(2) In ordinary commutative algebra, we can see a commutative R-algebra S either as a
commutative ring object in the category of R-modules with respect to the relative tensor
product, or as a commutative ring equipped with a ring map ϕ : R→ S. This holds as
well in the homotopical setting ([Lur17, Corollary 3.4.1.7]): we have an equivalence of
∞-categories

CAlgR := CAlg(ModR)≃ (CAlg)R/.

Under this equivalence, the forgetful∞-functor oblvS : CAlgS → CAlgR agrees with the
pullback∞-functor ϕ∗.

We conclude this chapter, and these notes, with some results about rigidification of algebras,
commutative algebras, and modules in the ∞-category of spectra. First, let us remark the
following fact. Let M⊗ be a model category equipped with a (symmetric) monoidal structure ⊗
sufficiently compatible with the model structure, i.e., 1M is cofibrant, the monoidal structure is
closed, and

−⊗−: M×M−→M

is a Quillen bifunctor. Then, its hammock localization (Definition 2.3.1) C := LH (M, W) is a
(symmetric) monoidal ∞-category, and the monoidal structure is induced by the one on M by
taking the derived tensor product ([Lur17, Section 4.7.1]). We want to be able to answer to the
following questions.

Question 3.5.17.

(1) Let A be an associative algebra in C⊗. Is A equivalent to a strictly unital and associative
algebra A in M⊗?

(2) Let A be a commutative algebra in C⊗. Is A equivalent to a strictly unital and commutative
algebra A in M⊗?

(3) Recall that the Eilenberg-Maclane spectrum ∞-functor (Remark 3.5.7) provides a way to
view ordinary (commutative) rings as discrete (commutative) ring spectra. In particular,
given an ordinary ring | we can either consider the stable derived ∞-category D(|) of
left |-modules, or the stable ∞-category LModH| of left H|-modules in the ∞-category of
spectra. How are these two objects related?

It turns out that we can answer pretty neatly to all of the above. We shall start from Question
3.5.17.(3)

Theorem 3.5.18 ([Lur17, Sections 7.1.1 and 7.1.2]). Let R be a ring spectrum, and let LModR

be the∞-category of left R-modules in spectra. Then LModR is equipped with a t-structure, where
connective objects are those modules whose stable homotopy groups are 0 in negative degrees7, and

7If R is itself connective as a spectrum, then coconnective objects are indeed modules whose stable homotopy
groups are 0 in positive degrees; however, in general this is not true!
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LMod♥R is equivalent to the ordinary abelian category of left π0R-modules. The universal property
of the bounded stable derived∞-category D−(π0R) (Theorem 3.2.10) provides an∞-functor

D−(π0R) −→ LModR

which is fully faithful if and only if R is discrete. In particular, in this case one has R≃ π0R and an
equivalence of∞-categories

D(R)≃ LModR.

If R is discrete and commutative, then the above equivalence is strongly monoidal.

Notation 3.5.19. Theorem 3.5.18 implies in particular that for a discrete commutative ring |
the stable/dg derived∞-category of |-modules is equivalent to the∞-category of H|-modules,
and that the relative tensor product of H|-modules agrees with the usual derived tensor product
of |-modules. This justifies the choice of denoting the stable derived ∞-category of |-modules
simply as Mod|, which is widely adopted in derived algebraic geometry.

Remark 3.5.20 (Characterization of perfect complexes in homotopical algebra, [Lur17, Propo-
sition 7.2.4.4]). In ordinary homological algebra, one defines perfect complexes of |-modules as
those objects in the (triangulated) derived category of | which are quasi-isomorphic to bounded
complexes of finitely generated and projective |-modules. Under the equivalence provided by
Theorem 3.5.18, we can characterize the ∞-category Perf| of perfect |-modules either as the
smallest stable sub-∞-category of Mod| containing | and closed under finite colimits, or as the
full sub-∞-category of Mod| over which the |-linear duality∞-functor

Map|(−, |): Perf| −→ Perfop
|

is an equivalence. Alternatively, Perf| is the full sub-∞-category of Mod| spanned by compact
objects, i.e., objects M for which the∞-functor

Map|(M , −): Mod| −→ S

commutes with filtered colimits.

Next, let us focus on Question 3.5.17.(1). While this result can be heavily refined in more
general terms for a large class of monoidal model categories, we shall consider M⊗ to be either
the model category C•(|)⊗ of chain complexes over a base commutative ring | equipped with the
Künneth tensor product, or the model category sMod⊗| of simplicial |-modules with degree-wise
tensor product.

Theorem 3.5.21 ([Lur17, Proposition 4.1.8.3 and Theorem 4.1.8.4]). Let M⊗ be as above. Then
the category of associative algebras in M⊗ admits a combinatorial model structure, where weak
equivalences and fibrations are detected by the forgetful functor

oblvAlg : Alg(M) −→M.

In particular, the forgetful functor becomes a right Quillen functor.
Taking the hammock localization of such model structure, one has an equivalence of∞-categories

LH (Alg(M), W)≃ Alg
�

LH (M, W)
�

.
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Remark 3.5.22. Let us spell out more concretely the consequences of Theorem 3.5.21. Let M :=
C•(|) be the symmetric monoidal model category of chain complexes of |-modules. An algebra
A• in C•(|) is a chain complex endowed with a collection of graded bilinear multiplications

·: Ap ⊗| Aq −→ Ap+q

such that the differential is a graded derivation for this product, i.e.,

d(a · b) = d(a) · b+ (−1)|a|a · d(b).

Let dgAlg| be the category of differential graded algebras over |,. Then Theorem 3.5.21 tells us
that dgAlg| is model category where weak equivalences are quasi-isomorphisms and fibrations
are surjections in each degree (Theorem 1.3.11), and we have an equivalence of ∞-categories

LH
�

dgAlg|, W
�

≃ Alg
�

LH (C•(|), W)
�

.

The right hand side in the above equivalence is actually equivalent to the dg enhancement of
the abelian |-linear category C•(|) discussed in Construction 3.2.5, which is a model for the
stable derived∞-category of |. In particular, we have a chain of equivalences

LH
�

dgAlg|, W
�

≃ Alg
�

LH (C•(|), W)
�

≃ Alg(D(|))
Thm 3.5.18
≃ Alg(Mod|).

This tells us the following: |-E1-algebras in spectra can be rectified to strict unital and associative
differential graded |-algebras.

We finally deal with Question 3.5.17.(2). Differently from the case of merely associative
algebras, the answer to this problem is strictly weaker: we have to restrict ourselves to consider
only those E∞-ring spectra which are HQ-algebras. The core problem is that in order to have
an analogous result to Theorem 3.5.21 we need some stronger compatibility with the monoidal
structure on a model category M⊗ and the class of its cofibrations – namely, we want every n-th
symmetric power of a cofibration to be a cofibration as well in the model category of objects of
M equipped with an action of the symmetric group Σn. This is an algebraic/category-theoretical
property that yields a free action of Σn on an n-fold tensor product X⊗n

Theorem 3.5.23. Let | be an ordinary commutative |-algebra, and let M⊗ be either the category
of chain complexes over | equipped with the Künneth tensor product, or the category of simplicial
|-modules equipped with the degree-wise tensor product. Then the category of commutative algebras
in M⊗ admits a combinatorial model structure, where weak equivalences and fibrations are detected
by the forgetful functor

oblvCAlg : CAlg(M) −→M.

In particular, the forgetful functor becomes a right Quillen functor.
Taking the hammock localization of such model structure, one has an equivalence of∞-categories

LH (CAlg(M), W)≃ CAlg
�

LH (M, W)
�

.

Remark 3.5.24. A commutative algebra A• in C•(|) is called commutative differential graded
|-algebra. Unraveling the definitions, we see that a commutative differential graded |-algebra
is just a differential graded |-algebra which is moreover graded-commutative, i.e.,

a · b = (−1)|a|·|b|b · a,
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where the sign comes from the fact that the symmetry isomorphism between C•⊗|D• and D•⊗|C•
is given by sending an homogeneous element c⊗ d of degree |c| · |d| to (−1)|c|·|d|d ⊗ C . Arguing
as in Remark 3.5.22, Remark 3.5.22 yields that if | contains the field of rational numbers then the
category cdga| of differential graded commutative |-algebras admits a model structure (where
again weak equivalences are quasi-isomorphisms and fibrations are surjections in every degree),
and |-E∞-algebras in spectra are modeled by commutative differential graded |-algebras, i.e.,

CAlg| ≃ LH
�

cdga|, W
�

.

Warning 3.5.25 ([Lur17, Warning 7.1.4.21]). When | is not a Q-algebra, the category of
commutative differential graded algebras over | cannot be endowed with a model structure
turning the forgetful functor to chain complexes into a right Quillen functor. On the other
hand, simplicial commutative |-algebras (i.e., simplicial objects in the category of commutative
|-algebras) can always be equipped with a model structure defined as in Theorem 3.5.23:
weak equivalences and fibrations are detected by the forgetful functor to simplicial |-modules,
turning it into a right Quillen functor. There exists an∞-functor

LH
�

sCAlg|, W
�

−→ CAlg| := CAlg(Mod|)

but it is not an equivalence if | is not a Q-algebra.

3.6. Some exercises.

(1) Prove some of the exercises and statements left unproved in this section. (Hint: if the
statement is a theorem, usually it is quite difficult to do it on your own.)

(2) Let C⩾0 be a full presentable sub-∞-category of a presentable stable ∞-caategory
C which is stable under colimits. Prove that there exists a t-structure on C whose
∞-category of connective objects coincides with C⩾0, and for an object X in Cwrite
explicitly how the fiber sequence

τ⩾0X −→ X −→ τ⩽−1X

is defined.
(3) Let | be an ordinary commutative ring of characteristic 0, and let M a discrete free
|-module in the usual sense. What is Sym|(M[1])?

(4) Prove that an ordinary discrete commutative ring R is finitely presented if and only if
the functor

HomCAlg♥R
(R, −): CAlg♥R −→ Set

commutes with filtered colimits.
(5) Let M be a |-module, for | an E∞-ring spectrum, and let Sym| : Mod| −→ CAlg| denote

the free commutative |-E∞-ring spectrum∞-functor. Show that

Sym|(M) |

| Sym|(M[1])

f

f g

g
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is a pushout in the∞-category of CAlg|, where f is induced by the map of |-modules
M → 0 and where g is the structure morphism.

(6) Let |[ϵ] the free commutative |-algebra on |[1]. Show that |[ϵ] is equivalent to the
square-zero extension |⊕ |[1]. Prove that | is not a perfect |[ϵ]-module.

(7) Prove that for a commutative ring spectrum | the forgetful ∞-functor CAlg|→ Alg| is
not fully faithful (Warning 3.4.27) with the following example. Let | be an ordinary
commutative ring containing the field Q of rational numbers, and let

|[x , y] := Sym|(|⊕ |)

be the free commutative |-algebra in two variables. Let oblvCAlg : CAlg| −→ Alg| be
the forgetful ∞-functor from the ∞-category of commutative |-algebra spectra to
the∞-category of associative |-algebra spectra. Let A be the commutative |-algebra
spectrum given by | in homological degrees 0 and 1, with square zero multiplication.
Show that

MapCAlg|
(|[x , y], A), ̸≃MapAlg|

�

oblvCAlg(|[x , y]) oblvCAlg(A)
�

.

(Hint: use the model structures on differential graded algebras of Theorems 3.5.21
and 3.5.23.)
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