

Alinientos

para Achacultur

Alta

NYC | 22 August 2023

Stephen Gunther **Director: Consulting and Applied Sciences**

for Aquaculture

SK

K I

NO

ECISI

We are a team of aquaculture experts developing data-driven solutions that help the global aquaculture industry flourish

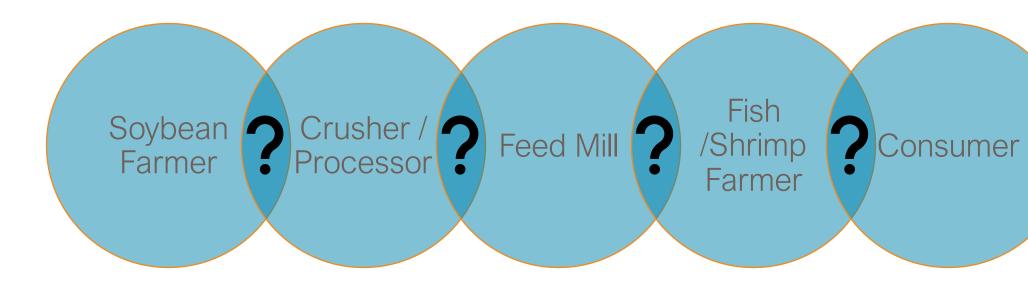
We are the Aquaculture Feed Specialists for

understanding, integration, applied, reflected upon, actionable, accumulated, principles, patterns, decision-making process

> idea, learning, notion, concept, synthesized, compared, thought-out, discussed

> > organized, structured, categorized, useful, condensed, calculated

> > > individual facts. figures, signals, measurements


PRICE IS WHAT YOU PAY. VALUE IS WHAT YOU GET

WARREN BUFFETT

The Aquaculture Feed Supply Chain

- Each stakeholder must understand what is of value to their client
- Implement processes that capture that value
- Define price based on the value proposition

What, then does each stakeholder "value"? Can we quantify it?

Valuing Ingredients

- Animals do not require ingredients they require nutrients
- Every ingredient contains a unique blend of essential and non-essential nutrients
 - Amino acids (protein), Fatty acids (lipids), Carbohydrates, Vitamins, Minerals
- The quantity of one, or more, key essential nutrients is what, typically, determines the price of an ingredient
 - Protein (fish meals, terrestrial animal meals, vegetable meals)
 - Lipid (Fish oils, animal fats, vegetable oils)
- The value of an ingredient, however, is much more complex and determined by such thing as:

Traceability and safety

Customer Satisfaction

Valuing Ingredients

- Animals do not require ingredients they require nutrients
- Every ingredient contains a unique blend of essential and non-essential nutrients
 - Amino acids (protein), Fatty acids (lipids), Carbohydrates, Vitamins, Minerals
- The quantity of one, or more, key essential nutrients is what, typically, determines the price of an ingredient
 - Protein (fish meals, terrestrial animal meals, vegetable meals)
 - Lipid (Fish oils, animal fats, vegetable oils)
- The value of an ingredient, however, is much more complex and determined by such thing as:

Quality and Nutritional Value

> Sustainability and Environmental Impact

Quality and Nutritional Value (Farmer)

RESEARCH CENTER FOR AQUAFEED NUTRITION AND FISHERY POST-HARVEST TECHNOLOGY (APOTEC)

Final Report

Aquaculture Nutrition Research – **Comparative Analysis of Soy from Different Origins**

Comparison of the Nutritive Value of Soybean Meals from Different Origins Fed to Nile Tilapia

Quality and Nutritional Value (Farmer)

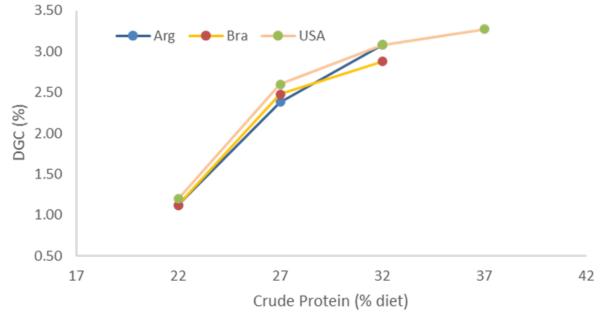
	Soybeans					
Parameters	Brazil	USA	Argentina			
Raw soybeans (kg)	28	28	28			
Size (mm)	3.6 ± 0.5	4.2 ± 0.5	3.8 ± 0.5			
Color	Dark yellow	Bright yellow	Bright yellow			
Good quality beans (%)	82.9	92.5	87.5			
Split beans (%)	11.4	5.54	8.39			
Foreign materials (%)	1.07	0.82	0.89			
Damaged beans (%)	4.6	1.14	3.18			
Heated beans (%)	0.06	0	0			
Sprouted beans (%)	0	0	0			

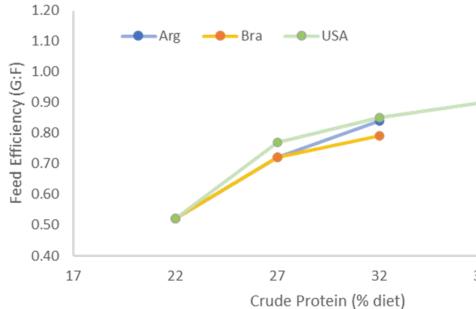
Reference: Nguyen et al., 2021 - Aquaculture Nutrition Research - Comparative Analysis of Soy from Different Origins

Burned

Sprouted

Moldy


Broken & Split



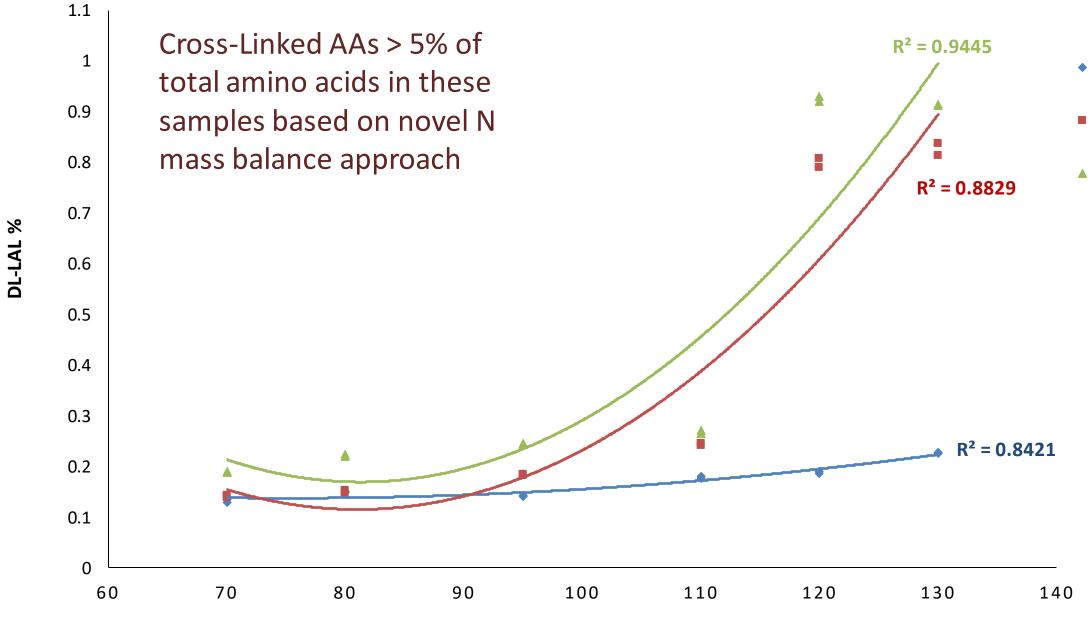
Source: Mateos, G.G. 2020. US soybean meal: a choice of digestible protein and amino acids in diets for aquaculture

Quality and Nutritional Value (Farmer)

Ingredients	Apparent	Digestibility C %	oefficients
ingreatente	Crude protein	Lipid	Gross Energy
Argentinian SBM	88	86	79
Brazilian SBM	85	83	83
US SBM	91	87	86
Rice and cassava products	75	66	64
Significance			
Argentinian SBM	P<0.0001	P<0.0001	P<0.0001
Brazilian SBM	P<0.0001	P<0.0001	P<0.0001
US SBM	P<0.0001	P<0.0001	P<0.0001
Rice and cassava products	P<0.0001	P<0.0001	P<0.0001



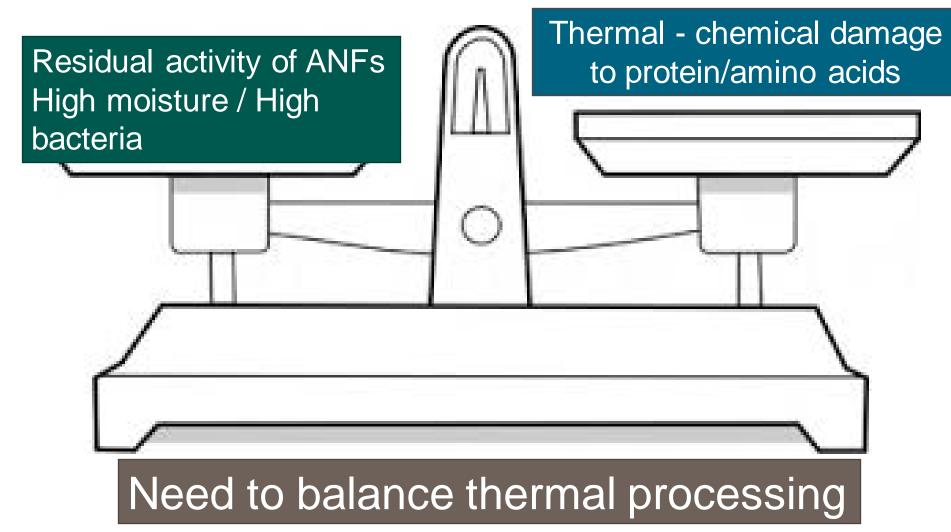
Quality and Nutritional Value (Processor)



Wittaya

Quality and Nutritional Value (Processor)

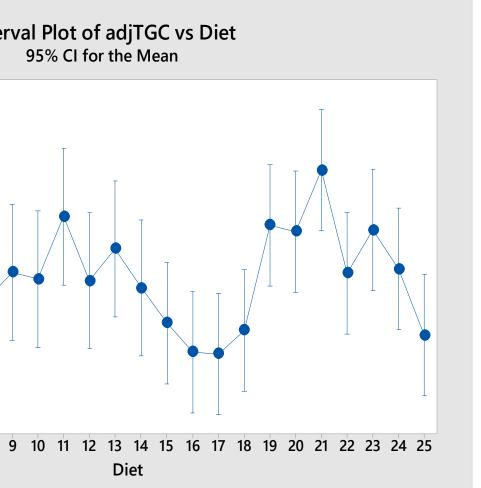
TEMPERATURE, C


- Control
- Protox
- ▲ Crosslinking

Quality and Nutritional Value (Processor)

Under Processing

Over Processing



Quality and Nutritional Value

Received: 14 September 2018 Revised: 18 DOI: 10.1111/are.13998	December 2018 Accepted: 22 January 2019						I	nte						-
ORIGINAL ARTICLE		107.5 -								95%	6 CI	for	th	e N
-	ean meal from different sources as actical diets for Pacific white shrimp	105.0 -	т	T	Ţ		т							
Litopenaeus vannan	•	102.5 -	Ţ			T							Ī	
Harsha Sameera Chathurang	ga Galkanda Arachchige ^{1,2} 💿 Xuan Qiu ³ Hans H. Stein ⁴	100.0 -				-			T	Ţ		Ţ		Т
D. Allen Davis ¹		Og 97.5-		Ţ	Ţ									
¹ School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama		·o 95.0 -				Ţ					T			Ì
² Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka	25 identical feed	92.5 -											Ţ	
³ Feed Technology Function Line, Chia Tai Group Agro-Industry and Food Business, Beijing, China	formulations each	90.0 -						T						
⁴ Department of Animal Sciences, University of Illinois, Urbana, Illinois	containing a different	50.0												
Correspondence Harsha Sameera Chathuranga Galkanda Arachchige, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University,	source of SBM	L	2 3	4	5	6	7	8	9	10	11	12	13 D	14 iet
Auburn, Alabama. Email: hsg0009@auburn.edu		The pooled	standa	rd dev	viatio	on is	s use	ed to	cale	culat	te th	e in	terv	als.

Interval Plot of adjTGC vs Diet 95% CI for the Mean

Estimating the Value of Nutrients?

	Fishmeal	US SBM
Price USD\$/tonne	1,800	700
Dry matter, %	92	90
Crude protein, %	70	48
Digestible protein, %	62	43
Crude Lipids, %	10	1.4
Digestible energy, kcal/kg	4450	3127
Dig. Lysine, %	5.2	2.7
Dig. Methionine, %	1.7	0.7
Dig. Threonine, %	2.4	1.6
Alanine, %	4.5	2.1
EPA+DHA, %	2.2	0

Ingredients are priced on their nutrient contents (protein, lipid, etc.)

Ingredient quality affects nutrient quality affects animal performance

How much each nutrient is worth?

Dig. Lysine is part of digestible protein

Dozens of different compounds with different values

Some nutrients may have no/low real value (e.g. alanine)

Estimating the Value of Nutrients?

Two main approaches

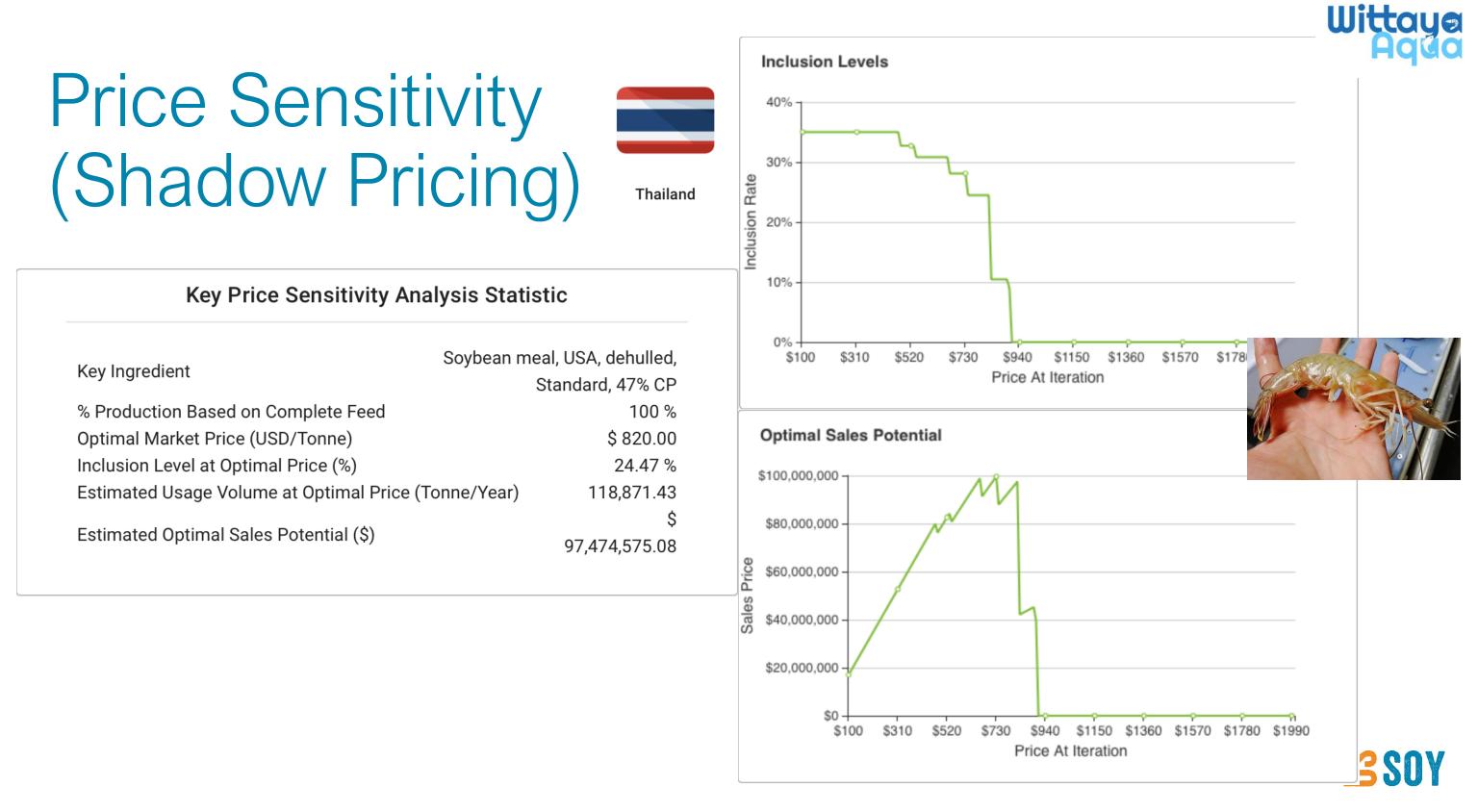
1. Price Shadowing

Scenario specific

Estimated using least-cost feed formulation software, feature available in most of these software

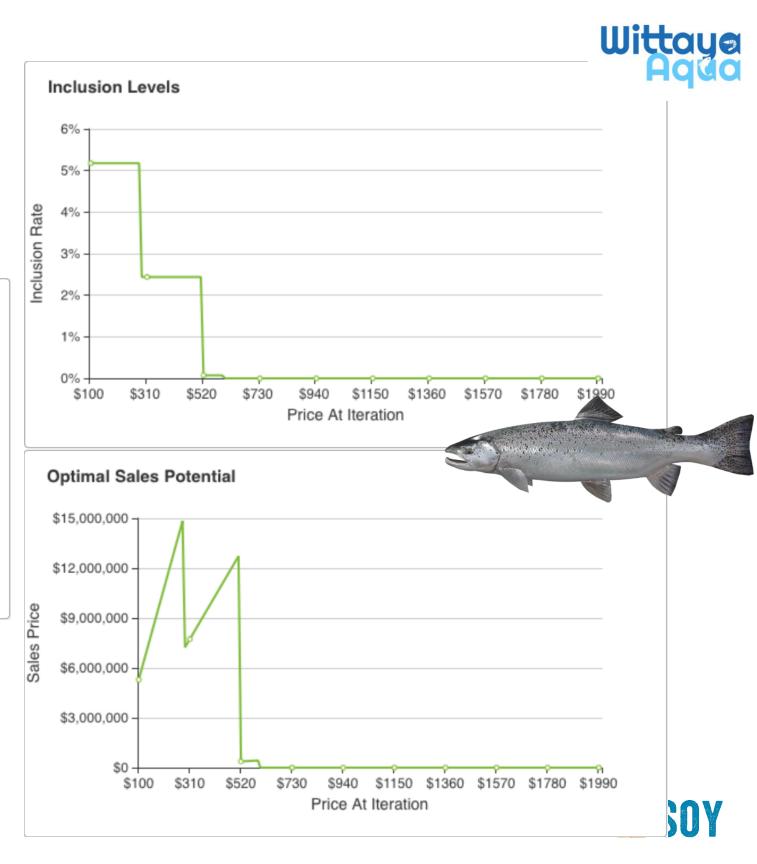
Some nutrients may have no real value depending if they are not driving the cost (some nutrient come along other more limiting and thus more "expensive" nutrients)

2. Economic Valuation


More broad and general evaluation Method of St-Pierre and Glamocic (2000)

Based on advanced statistical analysis model

Implemented in AquaOp Feed software developed by Wittaya Aqua


Price Sensitivity (Shadow Pricing)

*

Chile

Key Price Sensitivity Analysis Statistic

Key Ingredient	Soybean meal, USA, dehulled,
Key ingredient	Standard, 48% CP
% Production Based on Complete Feed	100 %
Optimal Market Price (USD/Tonne)	\$ 280.00
Inclusion Level at Optimal Price (%)	5.18 %
Estimated Usage Volume at Optimal Price	e (Tonne/Year) 52,977.89
	\$
Estimated Optimal Sales Potential (\$)	14,833,809.51
	e (Tonne/Year) 52,977.89 \$

Economic Valuation model

Adapted from St-Pierre and Glamocic (2000)

Market prices of "n" ingredients (Y)

Estimate Unit cost of each Nutrient (B)

Using relationships between market price of feed stuff (n), and level of nutrients (m) in each feed ingredient

$$Y_i = \sum_j^2 X_{ij}B_j + e_i$$

by minimizing the sum of squares of deviations of each equation/relationship using "least square maximum likelihood method"

n * m matrix of	
coefficients (X)	

Ingredient Count		31					
Select Country	Chile						
Ingredient Name		↓ Price	marine_dig_ protein	veg_dig_ protein	▼ terrestrial_dig _protein	synthetic_dig _protein	dig_lipid_ fish
Fish meal, Chile, 64% CP	\$	2,300.00	56.6	0.0	0.0	0.0	8.0
Fish meal, Peru, 67% CP	\$	2,020.00	55.8	0.0	0.0	0.0	9.0
Fish meal, processing by-products	\$	1,385.00	58.9	0.0	0.0	0.0	7.2
Blood meal, whole, spray-dried	\$	1,100.00	0.0	0.0	83.7	0.0	0.6
Feather meal B, 77% CP	\$	940.00	0.0	0.0	62.5	0.0	3.6
Porcine meal, 65% CP	\$	755.00	0.0	0.0	55.7	0.0	10.8
Poultry by-product meal, feed-grade, 60% CP	\$	1,030.00	0.0	0.0	53.4	0.0	10.5
Corn gluten meal, 60% CP	\$	1,070.00	0.0	53.9	0.0	0.0	1.4
Corn protein concentrate, Empyreal75, Cargill	\$	1,370.00	0.0	68.0	0.0	0.0	4.2
Lupin seed meal, 49% CP	\$	875.00	0.0	42.1	0.0	0.0	6.7
Lupin meal, Chile	\$	790.00	0.0	33.7	0.0	0.0	4.8
Pea, seed, shelled and extruded	\$	545.00	0.0	21.9	0.0	0.0	1.0
Rapeseed/Canola meal, high protein, 39% CP	\$	560.00	0.0	32.6	0.0	0.0	0.9
Soy protein concentrate, 60% CP	\$	1,530.00	0.0	55.7	0.0	0.0	1.5

1

	marine_dig_protei	veg_dig_protein	terrestrial_dig_pro	synthetic_dig_prot	dig_lipid_fish
marine_dig_protei	1	-0.272213689	-0.123489508	-0.101905906	-0.04051163
veg_dig_protein	-0.272213689	1	-0.313928946	-0.259060177	-0.28877537
terrestrial_dig_pro	-0.123489508	-0.313928946	1	-0.117522429	-0.08240262
synthetic_dig_pro1	-0.101905906	-0.259060177	-0.117522429	1	-0.13650842
dig_lipid_fish	-0.040511631	-0.288775371	-0.082402623	-0.136508423	
starch	-0.144714739	-0.089321528	-0.166891481	-0.137722045	-0.17427013
epa_dha	0.076177523	-0.188820061	-0.08565806	-0.070686671	0.58484626
phosphorus	0.002507478	-0.255917905	-0.04599363	-0.127322806	-0.12082094

The level of "m" nutrients in each ingredient

L

Economic Value of Nutrients

Estimated Cost of Nutrients	USD\$/tonne	USD\$
	Thailand	Ch
Marine Digestible Protein	2.56	2.9
Vegetable Digestible Protein	2.07	1.9
Terrestrial Digestible Protein	1.63	1.0
Synthetic AA Digestible Protein	1.90	3.2
Digestible Lipid	1.34	1.
Starch	0.29	0.0
EPA+DHA	3.83	7.
Phosphorus	2.64	3.3

\$/tonne

- hile
- .98
- .97
- .62
- .25
- .71
- .66
- .78
- .34

Digestible Nutrient Composition of Soybean meals

	Parameters %	US SBM	Argentinian SBM	Brazilian SBM
	Dry Matter	89.8	89.1	88.0
Proximate Composition	Crude Protein	48.0	47.0	48.0
Froximate Composition	Lipid	1.4	1.7	1.4
	Ash	6.2	6.6	6.2
	Crude Protein	90	87	85
	Arginine	90	87	85
Apparent Digestibility Coefficient	Histidine	90	87	85
	Isoleucine	90	84	68
	Lysine	90	87	85
	Threonine	84	77	74
	Dig. Protein	43.2	40.9	40.8
	Dig. Arginine	3.2	3.0	2.8
Digestible Nutrients	Dig. Histidine	1.2	1.1	1.0
	Dig. Isoleucine	2.0	1.8	1.5
	Dig. Lysine	2.7	2.5	2.4
	Dig. Threonine	1.6	1.4	1.4

This is what companies buy

This is what companies get

Economic Valuation

Thailand

Economical Valuation - Thailand 2023-08-04 9:07am

Ingredient	Current Mkt Price (USD)	Model Estimated Value (USD)	Difference (USD/Tonnes)	% Difference
Rice polishings	340.00	494.00	154.00	45%
Rice, broken	400.00	395.00	-5.00	-1%
Soy protein concentrate, 60% CP	1,090.00	1,201.00	111.00	10%
Soybean meal, Brazil, dehulled, Standar	700.00	887.00	187.00	27%
Soybean meal, USA, dehulled, Standard	695.00	919.00	224.00	32%
Fermented soybean meal, 53% CP	955.00	1,030.00	75.00	8%
Wheat aluten meal 78% CP	2 320 00	1 499 00	-821.00	-35%

Estimated Cost of Nutrient (USD/Kg)

Nutrient	Cost (USD/Kg)
Marine Digestible Protein	2.56
Vegetable Digestible Protein	2.07
Terrestrial Digestible Protein	1.63 Relatively
Synthetic AA Digestible Protein	1.90 even spread
Dig Lipid - fish	1.34 of attribute
Starch	0.29 COSt
EPA+DHA	3.83
Phosphorus	2.64

- Wide variety of farmed species \bullet
 - Whiteleg shrimp, river prawn, tilapia, \bullet catfishes, Asian seabass
 - Moderately nutrient dense feeds •
 - US soy nutrient density and quality imparts high value

Economic Valuation

Chile

Economical Valuation - Chile 2023-08-04 9:10am

Ingredient	Current Mkt Price (USD)	Model Estimated Value (USD)	Difference (USD/Tonnes)	% Difference
Soy protein concentrate, 60% CP	1,100.00	1,166.00	66.00	6%
Soybean meal, Argentina, dehulled, Sta	660.00	872.00	212.00	32%
Soybean meal, Brazil, dehulled, Standar	690.00	865.00	175.00	25%
Soybean meal, Bolivian, non-dehulled,	585.00	819.00	234.00	40%
Soybean meal, USA, dehulled, Standard	690.00	914.00	224.00	32%
Starch, wheat	830.00	651.00	-179.00	-22%

Estimated Cost of Nutrient (USD/Kg)

Nutrient	Cost (USD/Kg)
Marine Digestible Protein	2.98
Vegetable Digestible Protein	^{1.97} Premium
Terrestrial Digestible Protein	^{1.62} paid for key
Synthetic AA Digestible Protein	3.25 ← → nutrients
Dig Lipid - fish	1.71 valued for
Starch	0.66 salmonids
EPA+DHA	7.78
Phosphorus	3.34

Salmonid species

- Atlantic salmon, Coho salmon, rainbow • trout
- High nutrient dense feeds \bullet
- US soy nutrient density and quality imparts high value

Sustainability

- GFLI
 - https://globalfeedlca.org/gfli-database/
 - Publicly available database
 - Life Cycle Assessment (LCA) methodology
 - Environmental impacts are:
 - At Farm •
 - At Vessel •
 - At Plant •

- Wittaya Aqua has combined GFLI 2.0 data with literature resources and proprietary models
 - Some values estimated based on understanding of the ingredient
 - Results do not include transportation or feed manufacturing
 - Use Global Warming Potential (GWP) values excluding Land Use Change (LUC)
 - Based on Economic allocation and Recipe Method
 - Work in Progress

Feed Formulation Tool

Sustainability – Whiteleg Shrimp

US Soy – \$700 / tonne – 28% inclusion – 18% contribution to emissions

FIFO F	General ility Indicators	N/A	\$829.74 (Pe	
FIFO F	ility Indicators	Carbon Ec	is staniat Estimation (Data)	
			Footprint Estimation (Beta) ⑦	
	0.894 0.5	DRm 542	Formulation 723 kg CO ₂ eq/tonne	

Brazilian Soy – \$700 / tonne – 29.5% inclusion – 22% contribution to emissions

	Species	Life Stage		Production System	Cost Of Feed	
Pacific Whi	teleg shrimp CF TEST	General		N/A	\$832.08 (Per Tonne)	
	Sustainability Indicators			Carbon Footprint	Carbon Footprint Estimation (Beta) ⑦	
	FIFO 0.635 min: 0 max: 1	FFDRo 0.895 min: 0 max: 1	FFDRm 0.542 min: 0 max: 1		g CO ₂ eq/tonne	

Thailand

Wittaya Aqua is working to capture the value of other attributes such as sustainable, certified, functional in the EVT model

Take home messages

Ingredients are packages of nutrients

The value of an ingredient is determined by more than its nutrient contents

US soy can help lower the carbon emissions of aquaculture feeds

The quality, quantity, and sustainability of the nutrients in US soy are highly valued

Thank you

