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Executive Summary

Artificial intelligence (AI) systems are poised to become deeply integrated into
society. If developed responsibly, AI has potential to benefit humanity immensely.
However, it also poses a range of risks, including risks of catastrophic accidents.
It is crucial that we develop oversight mechanisms that prevent harm. This ar-
ticle outlines a framework for evaluating and auditing AI to provide assurance
of responsible development and deployment, focusing on catastrophic risks. We
argue that responsible AI development requires comprehensive auditing that is
proportional to AI systems’ capabilities and available affordances. This framework
offers recommendations toward that goal and may be useful in the design of AI
auditing and governance regimes.
Our main contributions are

• A causal framework: Our framework works backwards through the causal
chain that leads to the effects that AI systems have on the world and discusses
ways auditors may work toward assurances at each step in the chain.

• Conceptual clarity: We develop several distinctions that are useful in describ-
ing the chain of causality. Conceptual clarity should lead to better governance.

• Highlighting the importance of AI systems’ available affordances: We
identify a key node in the causal chain - the affordances available to AI systems
- which may be useful in designing regulation. The affordances available to
AI systems are the environmental resources and opportunities for affecting the
world that are available to it, e.g. whether it has access to the internet. These
determine which capabilities the system can currently exercise. They can be
constrained through guardrails, staged deployment, prompt filtering, safety
requirements for open sourcing, and effective security. One of our key policy
recommendations is that proposals to change the affordances available to an
AI system should undergo auditing.

We outline the causal chain leading to AI systems’ effects on the world below,
working backwards from the real world effects to inputs and determinants:

• AI system behaviors - The set of actions or outputs that a system actually
produces and the context in which they occur (for example, the type of prompt
that elicits the behavior).

• Available affordances - The environmental resources and opportunities for
affecting the world that are available to an AI system.



• Absolute capabilities and propensities - The full set of potential behaviors
that an AI system can exhibit and its tendency to exhibit them.

• Mechanistic structure of the AI system during and after training - The
structure of the function that the AI system implements, comprising architec-
ture, parameters, and inputs.

• Learning - The processes by which AI systems develop mechanistic structures
that are able to exhibit intelligent-seeming behavior.

• Effective compute and training data content - The amount of compute used
to train an AI system and the effectiveness of the algorithms used in training;
and the content of the data used to train an AI system.

• Security - Adequate information security, physical security, and response
protocols.

• Deployment design - The design decisions that determine how an AI system
will be deployed, including who has access to what functions of the AI system
and when they have access.

• Training-experiment design - The design decisions that determine the proce-
dure by which an AI system is trained.

• Governance and institutions - The governance landscape in which AI
training-experiment and security decisions are made, including of institu-
tions, regulations, standards, and norms.

We identify and discuss five audit categories, each aiming to provide assurances on
different determinants:

• AI system evaluations
• Security audits
• Deployment audits
• Training design audits
• Governance audits.

We highlight key research directions that will be useful for designing an effective
AI auditing regime. High priority research questions include interpretability;
predictive models of capabilities and alignment; structured access; and potential
barriers to transparency of AI labs to regulators.

2



1 Introduction

AI has the potential to influence the lives of the public both positively [Jumper et al., 2021, Singhal
et al., 2023] and negatively [Brundage et al., 2018, Anderljung and Hazell, 2023, Solaiman et al.,
2023], including catastrophically [Hendrycks et al., 2023, Ngo et al., 2023]. As frontier AI systems
become increasingly integrated into our lives and the economy, it grows ever more important to have
assurances regarding the effects of these systems. Such assurances may be possible through auditing
frontier AI systems and the processes involved in their development and deployment.

There are growing calls for regulations and audits of the social and technical processes that generate
frontier AI systems. Auditing complements regulation; it helps to ensure that actors adhere to
regulations and to identify risks before their realization. But the design and implementation of
regulations for frontier AI are in their early days. How can we design a framework for auditing when
most of the relevant regulations do not yet exist? Although we do not yet know which regulations
will be implemented, many proposed measures already have broad support [Schuett et al., 2023] and
therefore have a reasonable probability of being implemented. Here, we discuss what a governance
regime for frontier AI systems could look like and introduce a framework for the roles that
auditors could play within it. The framework focuses on extreme risks from frontier AI systems,
rather than nearer term, smaller scale risks (such as bias or fairness) or risks from systems with
narrower applications (such as lethal autonomous weapons). It emphasizes safety and assurance over
other considerations, such as costs, political viability, or current technological barriers. Nevertheless,
we believe that all regulations and auditor roles proposed here could and should be implemented in
practice. It thus serves as a comprehensive menu of options for auditing in an AI governance regime
and helps to identify areas for further research.

By ‘auditing’, we do not exclusively mean ‘compliance auditing’, where auditors ensure that auditees
have complied with a well-defined set of acceptable practices, or where systems comply with a
well-defined set of regulations. Although compliance audits are an ideal regime when possible, the
science of AI safety is currently nascent enough that, in many areas of AI governance, compliance
audits are at present inappropriate since standards are still emerging. Therefore, by ‘auditing’ we also
include evaluations, which include risk assessments or assessments of whether AI systems possess
certain dangerous capabilities. Evaluations may be one of the checks performed during auditing,
though not necessarily compliance auditing.

Our work builds on similar previous work [Shevlane et al., 2023, Anderljung et al., 2023, Whittlestone
and Clark, 2021, Mökander et al., 2023], though it differs in the following ways:

• Causal framework: Our framework begins with the target of our assurance efforts -
the effects that AI systems have on the world - and works backwards through the causal
process that leads to them. This provides an overarching framework for conceptualizing the
governance of general-purpose AI systems. We hope that a framework will help to highlight
potential regulatory blindspots and ensure comprehensiveness.

• Conceptual engineering for clarity: In developing the framework, we found we needed
to use distinctions that we had not previously encountered. For instance, in section 2.2
we distinguish between absolute, contextual, and reachable capabilities, which we found
useful for thinking about how AI systems interact with their environment and, hence, about
regulations concerning their eventual effects on the world. We also reframe the focus from
AI models to the slightly broader concept of AI systems (section 2.1).

• Highlighting the importance of AI systems’ available affordances: One of the benefits
of the technical focus of the framework is that it highlights a key concept, the affordances
available to AI systems (defined in section 2.2) as a key variable for regulations, and serves
as a unifying frame for many related concepts such as AI system deployment, open sourcing,
access to code interpreters, guardrails, and more. The concept of available affordances adds
important nuance to the ‘training phase-deployment phase’ distinction, a distinction that
arguably formed the keystone of previous frameworks.

Our framework is agnostic to who should do the auditing. In general, however, we believe that
external auditors, as well as auditors who are internal to AI labs, should be empowered to perform
audits at all stages of AI system development. Decisions made prior to and during training ultimately
affect the final AI system and therefore directly (and potentially radically) affect the public. Both
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Figure 1: An AI system comprises an AI model, with its weights and architecture, as well as various
other system parameters, including system prompts, prefix prompts, scaffolding prompts, and retrieval
databases.

internal and external audits are necessary for ensuring public accountability and to ensure that the
incentives of auditors are aligned with public interests [Raji et al., 2022, Mökander et al., 2023,
Anderljung et al., forthcoming]. In addition to ensuring appropriate incentives, additional external
auditing is also safer than relying solely on internal audits, since an absence of extensive auditing may
reduce the possibility of discovering, and thus neutralizing, dangerous capabilities in AI systems.

2 Our framework: Auditing the determinants of AI systems’ effects

2.1 Conceptualizing AI systems vs. AI models

The objects of our framework, AI systems, are a slight generalization of AI models. AI systems
include not only the weights and architecture of the model, but also include a broader set of system
parameters (Figure 1). These consist of retrieval databases and particular kinds of prompts. The
reason for our expanded focus is that system parameters strongly influence the capability profile of
AI systems. Therefore, systems with one set of system parameters may be safe to deploy whereas
others are not. We discuss two main types of system parameter:

1. System prompts, prefix prompts, and scaffolding: System prompts and prefix prompts are
prefixed to any user-generated prompts that are input to AI models (section 2.3.4). These
prompts substantially modify system behavior. For instance: A model may not itself possess
cyber offensive capabilities. But if part of its system prompt contains documentation for
cyber offense software, then, through in-context learning (section 2.3.4), the system may
exhibit dangerous cyber offense capabilities capabilities. This materially affects which
systems are safe to deploy. If a lab wants to change the system prompt of a deployed model,
it could change the capabilities profile enough to warrant repeated audits. Similarly, AI
systems with few-shot prompts or chain-of-thought prompts (examples of prefix prompts)
are more capable of answering questions than without those prompts that prefix their
outputs. It is possible to arrange systems of models such that outputs of some models are
programmatically input to other models (e.g. [Yao et al., 2023, Long, 2023, Gravitas, 2023]).
These systems, which often involve using different scaffolding prompts in each of the models
in the system, have different capability profiles than systems without scaffolding prompts.

2. Retrieval databases: Retrieval databases (section 2.3.4) may sometimes be considered
parameters of the model [Borgeaud et al., 2022] and other times parameters of the AI system
(of which the model is a part) [Lewis et al., 2020]. In both cases, the retrieval databases
meaningfully influence the capabilities of the system, which may influence the outcomes of
evaluations. We therefore expand the focus of what we consider important to evaluate in
order to include all factors that influence the capabilities profile of the system.

AI models are still AI systems. They are simply a special case of AI systems that have only model
parameters and no other AI system parameters. Given the relevance of learning and system parameters
to capabilities and, hence, to auditing, we found it made most sense to place AI systems at the center
of our framework, rather than AI models.
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2.2 Conceptualizing AI system capabilities

In addition to shifting our focus from AI models to AI systems, we also develop some additional
clarifying terminology regarding capabilities.

We use the following terms:

• AI system behaviors. The set of actions or outputs that a system actually produces and
the context in which they occur (for example, the type of prompt that elicits the behavior).
In this article, we exclusively mean behaviors that could be useful to the system or a user,
rather than arbitrary or random behaviors that might be produced by an untrained system.

• Available affordances. The environmental resources and opportunities for influencing the
world that are available to a system. We can exert control over the affordances available to a
system through deployment decisions, training design decisions, guardrails, and security
measures. As we’ll see below, the available affordances determine which of a system’s
absolute capabilities are its contextual capabilities and reachable capabilities (Figure 3).
Systems with greater available affordances have constant absolute capabilities but greater
contextual and reachable capabilities (Figure 5).

• Absolute capabilities. The potential set of behaviors that a system could exhibit given any
hypothetical set of available affordances (regardless of whether the system can reach them
from its current context) (Figure 2).

– Example: If a trained system is saved in cold storage and not loaded, it is not contextu-
ally or reachably capable of behaving as a chat bot, even if it is absolutely capable of
doing so. To become contextually or reachably capable of behaving as a chat bot, it
must be loaded from storage and used for inference.

• Contextual capabilities. The potential set of behaviors that a system could exhibit right now
given its current set of available affordances in its current environmental context (Figure 2).

– Example: A system may be absolutely capable of browsing the web, but if it does not
have access to the internet (i.e., an available affordance), then it is not contextually
capable of browsing the web.

• Reachable capabilities. The potential set of behaviors that a system could exhibit given its
current set of available affordances (i.e. contextual capabilities) as well as all the affordances
the system could eventually make available from its current environmental context. A
system’s reachable capabilities include and directly follow from a system’s contextual
capabilities (Figure 2).

– Example: A system, such as GPT4, may not be able to add two six-digit numbers.
Therefore, six-digit addition is not within its contextual capabilities. However, if it can
browse the web, it could navigate to a calculator app to successfully add the numbers.
Therefore, six-digit addition is within its reachable capabilities.

• System propensities. The tendency of a system to express one behavior over another
(Figure 3). Even though systems may be capable of a wide range of behaviors, they may
have a tendency to express only particular behaviors. Just because a system may be capable
of a dangerous behavior, it might not be inclined to exhibit it. It is therefore important that
audits assess a system’s propensities using ‘alignment evaluations’ [Shevlane et al., 2023].

– Example: Instead of responding to user requests to produce potentially harmful or
discriminatory content, some language models, such as GPT-3.5, usually respond with a
polite refusal to produce such content. This happens even though the system is capable
of producing such content, as demonstrated when the system is ‘jailbroken’. We say
that such systems have a propensity not to produce harmful or offensive content.

It is worth noting that the ‘capabilities’ of a system are multidimensional in a similar sense that
‘intelligence’ is multidimensional. A ‘less capable’ system might have learned some abilities that a
‘more capable’ system has not. However, when comparing two general cognitive systems, we rely on
the intuition that a ‘more capable’ system has learned almost all and more of the abilities that ‘less
capable’ has learned.

It is also worth noting that training has an effect on all classes of capabilities (absolute, contextual,
reachable), but some more than others. For example, if a large language model is being trained offline
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Figure 2: The relationship between the sets of potential behaviors defined by absolute capabilities,
reachable capabilities, and contextual capabilities.

Figure 3: The relationship between an AI system’s capabilities, propensities, affordances, and
behaviors.

on a large fixed corpus of text (i.e. it is not learning online by, for instance, browsing the web and
updating its weights frequently during browsing), then during training its contextual capabilities
remain quite limited - they are limited only to outputting a prediction for the current minibatch of data.
The system’s reachable capabilities remain similarly limited. However, its absolute capabilities may
increase a lot throughout the training process. This is because absolute capabilities do not depend
on a system’s current set of available affordances. It is important to design training-experiments
that do not introduce risks from excessive absolute capabilities (such as a training-experiment that
scales an AI system 1000x larger before understanding similar systems’ capabilities at smaller scales)
or excessive affordances (such as giving an AI system root access to a supercomputing cluster or
unconstrained access to the internet).

2.3 The determinants of AI systems’ effects on the world

The ultimate purpose of auditing for AI safety is to reduce the risk of AI systems having damaging
effects on the world. In particular, the role of auditing is to identify sources of risk before the damage
materializes. It is therefore important to audit the upstream determinants of AI systems’ effects on the
world (Figure 4).
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Figure 4: Determinants of AI system’s effects on the world and the types of auditing that act on them.

AI systems’ effects on the world are determined by the behaviors they express, which are in turn
determined by:

1. Affordances available to the system

2. Absolute capabilities and propensities of the system during and after training

3. Mechanistic structure of the system during and after training

4. Learning

5. Effective compute and training data content

6. Security

7. Deployment design

8. Training-experiment design

9. Governance and institutions

We identify five main kinds of audit, each aiming to provide assurances on different determinants
(Figure 4). These are:

1. AI system evaluations

2. Security audits

3. Deployment audits

4. Training design audits

5. Governance audits.

In the sections below, we consider each determinant in turn and explore auditors’ potential roles with
respect to each.

2.3.1 Affordances available to a system

The affordances available to an AI system determine which of its absolute capabilities are among
its contextual and reachable capabilities. Systems with greater available affordances have constant
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Figure 5: The relationship between absolute capabilities, affordances, contextual and reachable
capabilities, and the level of auditing warranted. Absolute capabilities and available affordances are
orthogonal. As either increase, the level of auditing required also increases.

absolute capabilities but greater contextual and reachable capabilities (Figure 5). The potential harm
posed by an AI system can thus increase with increasing available affordances. One of our key
recommendations is that decisions that expand the affordances available to AI systems should
be subject to auditing.

The affordances available to AI systems are determined by a number of factors, which we’ll look at
in turn. They include:

1. Extent of system distribution

2. Actuators, interfaces, and scaffolding

3. Online vs offline training

4. Guardrails

Extent of system distribution This is the number of people the AI system interacts with and
the extent to which it is integrated into systems in the wider world. This includes factors such as
deployment, open sourcing, and other forms of AI system proliferation.

‘Extent of system distribution’ closely reflects the training vs. deployment distinction emphasized in
other auditing frameworks [Shevlane et al., 2023, Mökander et al., 2023]. However, it is an imperfect
reflection, since AI systems may potentially have access to dangerous levels of affordances during
training, for instance during online training. The ‘training vs deployment’ distinction is only relevant
for risk because it reflects, albeit imperfectly, the affordances available to a system. Thus, while
not entirely disposing of the training versus deployment distinction, available affordances are more
important in our framework because they are more direct causes of risk.

When a developer proposes deployment of an AI system, it should be subject to a deployment audit
because it involves a change to the system’s available affordances. Sudden jumps in the extent
of system distribution available to systems represent sudden jumps in contextual and reachable
capabilities. This may lead to unexpected adverse outcomes. For example, if a system with the
capability to instruct users on how to build bioweapons is open sourced, then it may be usable by
malicious actors to devastating effect. Staged deployment, first to trusted AI system evaluations
researchers (for instance) and finally to the broader public, may help identify and mitigate these risks
while access is expanded. In other words, evaluations researchers may help estimate the absolute
capabilities of the system before very large affordances (and hence potentially large contextual and
reachable capabilities) are made available to them. At each stage, deployment audits (Figure 4)
should be required before a new deployment stage begins. In a similar way, AI systems should not be
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Figure 6: The effects of different types of training and available affordances on capabilities. While
changes in available affordances increase contextual and reachable capabilities, they don’t change
absolute capabilities.

open-sourced unless it can be demonstrated (through a deployment audit) that the risks are sufficiently
small.

Besides intentional deployment, another way that the extent of system distribution may increase is
unintentional proliferation, e.g. through leaked or stolen model weights [Heim, 2022] or, in highly
capable future AI systems, the system exfiltrating itself. Security audits (Figure 4) should help reduce
the risks from system theft or autoexfiltration. The weights of highly absolutely capable systems
should also be tracked, such that the locations of all copies are known and secured.

Expensive AI systems with extensive absolute capabilities are likely to be targets of theft. They are
also more likely than less capable systems to be capable of autoexfiltration. Therefore, the risk of
proliferation may increase as absolute capabilities increase, and therefore also increases the risk of
unintended levels of affordances becoming available to the system. This risk means that absolute
capabilities and available affordances may become positively correlated at high levels of absolute
capabilities. Once systems proliferate widely, protecting society from potential harms becomes
exceptionally, if not impossibly, difficult [Anderljung and Hazell, 2023]. We should therefore be
careful about developing highly absolutely capable systems at all.

Actuators, interfaces, and scaffolding AI system outputs can be input to specialized interfaces.
These may be physical, such as monitors (and the people looking at them) and robotic actuators (e.g.
[Boiko et al., 2023, Brohan et al., 2022]). But they may also be interfaces to software systems, such
as code interpreters [OpenAI, 2023a] or actions in games [Reed et al., 2022, Wang et al., 2023], or
even as inputs to other language models.

Systems can be furnished with plugins or tools [Bubeck et al., 2023], where systems are given access
to interfaces and are provided with prompts (or potentially fine-tuning [Schick et al., 2023]) that teach
them how to use those interfaces. Plugins serve to facilitate a system’s interactions with a wider range
of interfaces and actuators. For example, an AI system without the right plugin may not easily be able
to interact with the internet. But when given access to a browsing interface and prompts that inform
the system on how to use the interface, the system may be able to browse the internet effectively.

Similar to plugins is scaffolding. Scaffolding programs involve passing the outputs of one AI system
to the inputs of other system instances, sometimes with additional scaffolding prompts that guide
models on how to use the outputs of the other models. Scaffolding programs influence the available
affordances of AI systems used within the scaffolding, whereas scaffolding prompts shape their
capabilities. One example of scaffolding is ‘Tree of Thought’ scaffolding [Yao et al., 2023], which
uses multiple language models scaffolded together to answer questions; one AI system produces
multiple candidate intermediate steps to answer a problem, and a second system evaluates those
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candidates. The scaffolded systems move closer to answer the question by advancing along only the
most promising intermediate steps. Other frameworks exist, such as LangChain or AutoGPT, which
give systems the ability to behave like autonomous agents. Today’s AI systems do not appear to be
able to make maximum use of scaffolding due to reliability issues. Nevertheless, near-term future
systems with marginally greater absolute capabilities might be reliable enough to make proficient use
of these affordances, which has potential to vastly increase their contextual and reachable capabilities.

AI systems may be given different actuators, interfaces, or scaffolding at different points in training
and deployment. This means that both deployment audits and training design audits (Figure 4) should
be used in their oversight. Security audits may also be involved in ensuring that AI systems do not
have access to more actuators or interfaces than intended.

Online vs offline training In offline training, the training dataset is collected and fixed prior to
training. Systems have limited affordances available to them during offline training since their outputs
mostly do not affect anything in the world. Nor can they accrue more affordances during training.
Therefore the system’s contextual and reachable capabilities remain roughly constant, although their
absolute capabilities increase.

By contrast, online training involves training on data that are collected during training. The training
data result from the outputs of the AI system that is being trained and their interaction with its
(optional) environment. Systems trained online usually interact with an environment, and those inter-
actions require that the environment provide the system with some affordances. If that environment is
the real world, such as a chatbot interacting with humans, it elevates risks. Online training therefore
shares similarities with deployment: In both cases, AI systems have extensive affordances available
and may have real world consequences. This makes online training potentially riskier. Decisions
regarding online training should therefore be audited during training design audits.

Extent of guardrails We can potentially limit the affordances available to AI systems by introducing
guardrails. For example, attempts were made - with qualified success [Rando et al., 2022] - to prevent
the AI system Stable Diffusion from outputting sexually explicit images by applying a safety filter to
the output of the image generation system. In the language model case, it may be possible to curtail
certain kinds of capabilities by e.g. filtering their inputs (using another language model) such that
any prompt that has the system do chain-of-thought reasoning is prevented from being input to the
AI system. It may also be possible to curtail the acquisition of new affordances through guardrails.
An advanced AutoGPT-like system could, for instance, have guardrails that require the AI system
to request human permission to access the internet; to use financial resources; to create new system
instances; or to run code. The job of ensuring that appropriate guardrails are in place should fall on
either deployment audits or, if guardrails will be imposed during training, training design audits.

Summary of recommendations regarding affordances available to AI systems

• Proposed changes in the affordances available to a system (including changes to the extent of
a system’s distribution, online/offline training, actuators, interfaces, plugins, scaffolding, and
guardrails) should undergo auditing, including conduct risk assessments, scenario planning,
and evaluations.

• AI systems’ deployment should be staged such that distribution increases in the next stage
only if it is deemed safe.

• Model parameters should not be open sourced unless they can be demonstrated to be safe.
• All copies of highly absolutely capable models should be tracked and secured.
• Guardrails should be in place to constrain the affordances available to AI systems.

2.3.2 Absolute capabilities and propensities of a system

One of the goals of AI system evaluations (Figure 4) is to assess whether a system will exhibit any
dangerous behaviors when certain affordances are made available to it. When systems are deployed,
users could for instance provide the system with novel scaffolding. For sufficiently absolutely capable
systems, these affordances may give the system potentially dangerous reachable capabilities. By
looking for these dangerous capabilities in more controlled environments, AI systems evaluations can
help us better predict the risks posed by deployment.
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When evaluating a system, we should assess whether the system possesses certain capabilities
(‘dangerous capability evaluations’) and whether it has the propensity to exhibit them (‘alignment
evaluations’) [Shevlane et al., 2023]. These should be done both during and after training to ensure
system developers and auditors understand the current capabilities and propensities at any training
checkpoint and to respond to trends in how systems are being used. Certain kinds of training
algorithms may result in systems with different absolute capability and propensity profiles; for
instance, systems trained with RL algorithms may potentially result in more dangerous systems than
systems trained with other algorithms [Turner et al., 2019].

Attempts to elicit dangerous behaviors in a controlled setting may involve prompt engineering
[Reynolds and McDonell, 2021] or prompt optimization [Shin et al., 2020, Wen et al., 2023, Jones
et al., 2023]. Fine-tuning methods, such as prefix tuning [Li and Liang, 2021] or standard fine-tuning
(for instance, using RLHF [Christiano et al., 2017]), may serve as approximate upper bounds on what
can be achieved by prompting alone. Evaluating the capabilities of fine-tuned systems can also be
used to inform the decision of whether to deploy fine-tuning access to users.

It is likely the case that dangerous capability evaluations are easier than alignment evaluations; to
demonstrate that an AI system can exhibit the dangerous capability in any setting; to demonstrate an
AI system’s propensity to exhibit a dangerous capability, it must be shown whether or not the system
exhibits it in all (or at least a representative sample) of settings. This seems much harder to do, since
the space of possible settings is very large.

It is important to be clear that, like AI system training, dangerous capability evaluations and alignment
evaluations can be ‘gain-of-function’ work, where dangerous capabilities are elicited in controlled
settings. As systems become closer to being able to, for instance, autonomously self-replicate or
deceive evaluators, the risk of these experiments increases. At that point, auditors must therefore
be careful to avoid introducing new risks through their work. Eventually, before such systems are
developed, there should be

1. Risk assessments prior to certain gain-of-function experiments to ensure that the risks are
worth the benefits.

2. Requirement of official certification to perform certain gain-of-function work, reducing risks
from irresponsible or underqualified actors.

3. Information controls. Given the risk that information obtained by gain-of-function research
may proliferate, there should be controls on its reporting. Auditors should be able to
report gain-of-function results to regulators, who may have regulatory authority on decisions
whether to prevent or reduce system deployment, and not necessarily to AI system developers
or the broader scientific community.

To avoid hampering the field in its early stages, it seems sensible to implement these requirements
only for models considerably larger (and therefore riskier) than today’s. This said, as AI systems
are trained, their absolute capabilities increase and highly absolutely capable systems may be
able to make use of even very limited available affordances. For example, suppose a dangerous
system had no access to the outside world other than through a single terminal to interact with
researchers; if the system has sufficient absolute capabilities, it may be able to use its limited set
of available affordances to manipulate the auditors and developers into giving it access to even
greater affordances, such as internet access, which may be dangerous. In other words, if a system
has sufficient absolute capabilities, its limited set of available affordances may nevertheless give it
dangerously large reachable capabilities even though its contextual capabilities are small. Therefore,
as absolute capabilities increase, gain of function research becomes riskier, so there should be
increasing restrictions on both the development of such absolutely capable systems as well as on
gain-of-function research that involves such systems.

It is important that enforceable action plans are triggered following AI system evaluations that reveal
danger. Unless the evaluations lead to concrete actions that mitigate risk, they may not be worth the
additional risks they create. Without enforceable protocols that describe what will be done following
specific concerning evaluations, such as the prevention of deployment or the pausing of training, then
there is little purpose in doing these evaluations at all. Some action plans could be implemented in
code, such that training does not proceed if certain evaluations reveal cause for concern.

Summary of proposed changes regarding absolute capabilities and propensities of AI systems
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• Evaluate dangerous capabilities and propensities continually throughout and after training.

• When such experiments involve extremely capable AI systems, auditors should require
certification to perform gain-of-function experiments, similar to AI developers; risk assess-
ments prior to gain-of-function experiments should be required; and information controls on
reporting gain-of-function results should be implemented.

• Have enforceable action plans following concerning evaluations.

2.3.3 Mechanistic structure of a system

The AI systems under discussion are neural networks that have learned complicated internal algo-
rithms that implement highly capable input-output functions. The mechanistic structure of an AI
system consists of the algorithms it implements internally. The field of mechanistic interpretability
aims to characterize AI systems’ mechanistic structure. Mechanistic structure is determined not only
by internal algorithms implemented by the model (i.e. the architecture and network parameters), but
also by its system parameters (e.g. system prompts, prefix prompt, or retrieval database).

Evaluations of AI system behavior alone will, unfortunately, shed limited light on a system’s absolute
capabilities; they can only show that certain behaviors are among a system’s absolute capabilities but
cannot conclusively show that certain behaviors are not. If we understood a system’s mechanistic
structure we could predict what it will do in particular hypothetical situations. For instance, if
we observed that a system had a mechanistic structure such that it possessed no knowledge about
dangerous pathogens, we would be able to predict that it wouldn’t be capable of giving instructions
on how to manufacture a bioweapon when asked. Understanding a system’s mechanistic structure
should therefore give us a better sense of its absolute capabilities, which will give us a much better
understanding of a system’s reachable and contextual capabilities in arbitrary settings and therefore
let us make predictions about system behavior that are relevant to safety. It should also give us a
better understanding of systems’ propensities, we would be able to make wider inferences about what
systems would tend to do in different contexts.

At present, mechanistic interpretability, the field of research that would let us understand systems’
mechanistic structure, is in its infancy. Current interpretability methods seem inadequate for making
confident claims about how AI systems might behave outside of the evaluation setting [Levinstein
and Herrmann, 2023]. It will therefore be important to develop better interpretability methods and
incorporate them into AI system evaluations. Nevertheless, in advance of adequate interpretability
methods being found, it will be important to develop forms of structured access [Trask et al., 2023,
Shevlane, 2022] for external auditors that permit the kinds of interpretability research that will be
necessary to gain assurances of AI systems’ safety.

Summary of recommendations regarding the mechanistic structure of AI systems

• Do not overstate the guarantees about an AI system’s absolute capabilities and propensities
that can be achieved through behavioral evaluations alone.

• Incorporate interpretability into capability and alignment evaluations as soon as possible.

• Develop forms of structured access for external auditors to enable necessary research and
evaluations.

2.3.4 Learning

Learning is the process by which AI systems develop mechanistic structures that are able to exhibit
intelligent-seeming (sometimes dangerous) behavior. Here, this includes both training of model
parameters by gradient descent (i.e. pretraining and fine-tuning) and other forms of optimization such
as in-context learning [von Oswald et al., 2023, Xie et al., 2022].

Pretraining and fine-tuning The typical development pipeline for general-purpose AI systems
involves a long offline ‘pretraining’ phase on a large corpus of data. Pretraining need not be exclusively
offline, but today usually is. Pretraining is often followed by multiple ‘fine-tuning’ phases. There
are diverse approaches to fine-tuning, which have a wide variety of effects on systems’ absolute
capabilities including (but not limited to):
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• Instruction fine-tuning [Wei et al., 2022a], RLHF [Christiano et al., 2017], Constitutional AI
[Bai et al., 2022] drastically change a system’s absolute capabilities and propensities;

• Iterative hallucination reduction, as in GPT-4 [OpenAI, 2023b];

• Different training objectives that increase absolute capabilities on downstream metrics, such
as UL2 training [Tay et al., 2022];

• Adding new parameters to a system and fine-tuning on particular tasks, such as in LoRA
fine-tuning or prefix-tuning [Hu et al., 2021, Li and Liang, 2021];

• Fine-tuning two independently trained models so they operate as one model, such as
Flamingo, which combines a vision model with a language model [Alayrac et al., 2022];

• Enabling a model to use particular kinds of retrieval databases [Borgeaud et al., 2022, Wu
et al., 2022];

The main differences between pretraining and fine-tuning is that pretraining comes first and the
number of updates applied to the model parameters is usually much larger than in fine-tuning. The
relevant aspect of pretraining vs fine-tuning with respect to auditing is how much they contribute to
system absolute capabilities and propensities. Audits should be required according to the level of
absolute capability a particular training phase may add, regardless of number of updates. Although
some fine-tuning updates may have only small changes to the absolute capabilities of a system, some
fine-tuning approaches may contribute significant absolute capabilities with only small numbers of
updates. For example, using the UL2R mixture of training objectives to finetune a language model,
it is possible to drastically improve performance on downstream tasks using only 0.1% to 1% of
the pretraining computation costs [Tay et al., 2022]. Fine-tuned systems may therefore necessitate
significant additional auditing.

AI systems evaluations during training will be important for developing good predictive models of
capabilities, which we currently lack [Srivastava et al., 2023, Wei et al., 2022b, Ganguli et al., 2022].
By modeling patterns and phase changes in a system’s capability profile, we would like to be able
to predict when the capacity for certain dangerous behaviors will emerge. This may let us avoid
training AI systems capable of particularly dangerous behaviors, such as strategic deception, which
may render other evaluations useless or have catastrophic outcomes.

Learning from prompts and retrieval databases A remarkable property of large language models
is their capacity for in-context learning [Brown et al., 2020, Olsson et al., 2022, Raventós et al.,
2023, von Oswald et al., 2023, Wei et al., 2023, Xie et al., 2022]. For example, when provided with
in-context demonstrations of how to perform a task, a system that can’t solve a task zero-shot may
become able to solve the task after being provided with a few demonstrations [Brown et al., 2020].
The absolute capabilities of an AI system with one prompt are different than with a different prompt;
this is because the structure of the function they implement is different thanks to different system
parameters, even though the weights of the model stay constant.

While the ability to learn new capabilities in-context is one of the most useful properties of language
models, it is also one of the main sources of risk. For instance, a system may in-context-learn new
cyber offense skills from documentation for cyber offense software. As discussed in section 2.3.1,
plugins and scaffolding often employ prompts to teach AI systems how to use software interfaces or
operate within scaffolding programs, giving them very different capability profiles. Therefore, AI
systems evaluations are needed to test the extent to which systems can learn dangerous capabilities
in-context. This includes the ability to behave as an autonomous agent using scaffolding such as
LangChain [Langchain, 2023] or AutoGPT [Gravitas, 2023].

As introduced in section 2.1 the other kind of system parameter is retrieval databases, which make
use of or influence in-context learning [Borgeaud et al., 2022, Izacard et al., 2022, Zhong et al.,
2022, Karpukhin et al., 2020, Lewis et al., 2020, Guu et al., 2020]. As with prompts, changes to
a model’s retrieval database could change the capabilities profile of the model. To reuse the same
example, adding information about cyber offense to a model’s retrieval database may furnish a model
with novel cyber offensive capabilities. Changes to retrieval databases should necessitate significant
auditing.

There are multiple kinds of retrieval methods; not all have the same auditing requirements. Most kinds
use an embedding model to vectorize a corpus of data, such as Wikipedia or the entire training dataset,
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and then look up useful vectors in this database using vector similarity metrics. From that point,
different methods use different approaches. For instance, Lewis et al. [2020] insert the looked-up
data into the prompt so that the language model can use the extra information in the prompt to better
predict the next token. Another method, RETRO [Borgeaud et al., 2022] instead incorporates the
database vectors using cross-attention, which the network learns through finetuning. The retrieval
database in Lewis et al. [2020] may be best thought of as system parameters, whereas the database
in Borgeaud et al. [2022] may be best thought of as model parameters. In both cases, changes to
retrieval databases should warrant AI system evaluations, since they may change systems’ absolute
capabilities. A special case of retrieval is ‘memorizing transformers’ [Wu et al., 2022], where the
embedding model is the language model itself at previous timesteps (i.e. the retrieval database
consists of the hidden activations of the AI system for earlier parts of the dataset during training).
This is functionally similar to giving the system a much larger context window. Retrieval databases
of memorizing transformers are thus constructed ‘online’, whereas retrieval databases as in RETRO
[Borgeaud et al., 2022] are constructed ‘offline’. Similar to training data, it will be more challenging
to audit retrieval databases that are constructed online since auditing must be performed constantly;
by contrast, we can audit an offline-constructed retrieval database once.

Summary of recommendations regarding learning

• For each new experiment, require audits in proportion to expected capability increases from
pretraining or fine-tuning.

• Filter prompts and retrieval databases to avoid AI systems learning potentially dangerous
capabilities using in-context learning.

• When system parameters, such as retrieval databases, are changed, the AI system should
undergo renewed auditing.

2.3.5 Effective compute and training data content

Changes in a system’s mechanistic structure that increase absolute capabilities necessitate further
auditing. We identify the main inputs to a system’s absolute capabilities as 1) Effective compute and
2) Training data content.

Effective compute Vast leaps in the absolute capabilities of AI systems in recent years have been,
to a large extent, driven by similarly vast increases in the size of systems, the amount of data, and the
amount of computation used to train them [Kaplan et al., 2020, Hoffmann et al., 2022, Sevilla et al.,
2022]. There has also been significant algorithmic progress, which reduces the amount of compute
needed to obtain the same performance [Erdil and Besiroglu, 2023, Tucker et al., 2020]. This means
that even if we held compute constant, algorithmic progress would mean that effective compute
would continue to increase, where effective compute is the product of the amount of compute used
and the efficiency of how that compute is used. Systems trained with additional effective compute
leads to increased absolute capabilities, introducing further risks, which should necessitate additional
auditing.

Like absolute capabilities, effective compute is difficult to measure. This makes effective compute
impractical for use as a policy lever. Instead, regulators, and hence auditors, will likely focus on
correlates: Amount of compute and algorithmic progress.

• Amount of compute Given that AI systems that undergo additional training may have
increased absolute capabilities, they should require additional auditing. Unfortunately, even
though the absolute amount of computation used in training-experiments correlates with a
system’s absolute capabilities, it is not possible to use it to predict accurately when particular
capabilities will emerge [Srivastava et al., 2023, Wei et al., 2022b, Ganguli et al., 2022]. We
want to avoid risky scenarios where systems trained with increasing amounts of compute
suddenly become able to exhibit certain dangerous behavior. We may be able to do this by
evaluating systems trained with a lower level of compute to understand their capabilities
profiles before moving to systems trained with slightly more. Risk assessments should
ensure that slightly smaller systems have undergone adequate auditing before permission
is given to develop larger systems. If compute thresholds exist, auditors may ensure
that training-experiment designs and the experiments themselves do not exceed permitted
thresholds.
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• Algorithmic progress AI is a dual-use technology; it has great potential for both good
and harm. Due to its dual-use nature, widespread access to large amounts of effective
compute could result in proliferation of dangerous misuse risks (such as systems capable
of automating the discovery of zero-day exploits on behalf of bad actors) or accident risks
(such as systems capable of autonomous exfiltration and replication). Algorithmic progress
is one of the key inputs to effective compute. Thus, when tasked with governing effective
compute, policymakers are faced with a challenge: Algorithmic improvements are often
published openly. But future publications may have unpredictable effects on the amount
of effective compute available to all actors. Therefore, the standard publication norm or
openness may therefore unintentionally provide dangerous actors with increased effective
compute. Policymakers may therefore consider it necessary from a security perspective to
implement publication controls, such as requiring pre-publication risk assessments, in order
to prevent undesirable actors gaining access to potentially dangerous amounts of effective
compute. Such publication controls for dual-use technologies have precedent; they are the
norm in nuclear technology, for instance [Wasil et al., 2023]. It may not be possible to
rely on lab self-regulation, since labs are incentivised to publish openly in order to garner
prestige or to attract the best researchers. Regulation would therefore likely be required to
ensure that pre-publication risk assessments take national security into account sufficiently.
Assessing risks of publication may require significant independent technical expertise, a role
which regulators may either have in-house or could be drawn from auditing organizations.

In addition to facilitating pre-publication risk assessments, auditing organizations may also
serve as monitors of algorithmic progress within labs, since doing so would require access to
frontier AI systems in order to evaluate them, adequate technical capacity, and independence
from other incentives. Between AI labs, regulators, and auditors, it may therefore be the case
that auditors are the best positioned actors to perform this function. However, currently no
consensus metric of algorithmic progress exists and further research is required to identify
metrics that are predictive of capability levels. Building a ‘science of evals’ and designing
metrics that are more predictive of capabilities than compute should be priority research
areas.

Training data content AI system capabilities emerge as a result of learning from the training data.
This means that we can exert some control over system behavior by controlling the data it is trained
on. For instance, we can control AI systems’ absolute capabilities [Gunasekar et al., 2023, Eldan and
Li, 2023, Raffel et al., 2023] or ease of alignment [Korbak et al., 2023] by controlling for training data
quality or training only on certain subsets of data [Chan et al., 2022]. Similarly, we may be able to
avoid certain dangerous capabilities from emerging at all by carefully curating an AI system’s training
data. For instance, if we want to ensure that a system cannot easily tell users how to synthesize
illicit substances (even if ‘jailbroken’ [Zou et al., 2023]), then we should remove data related to the
synthesis of those substances from the training data; similarly, if we wish to limit a system’s ability
to exfiltrate itself, we should consider removing cybersecurity-related data from its training corpus.
However, filtering data is unlikely to yield strong guarantees about AI system capabilities because AI
systems can generalize. For instance, a system might be able to give instructions on how to synthesize
dangerous chemicals using its knowledge of how to synthesize similar, safe compounds. In some
instances, data may therefore be inherently dual-use. Nevertheless, figuring something out for oneself
is harder than being taught; we can therefore potentially make some behaviors harder to obtain than
they otherwise would be by filtering data. External and internal auditors should evaluate training data
pertaining to potentially dangerous behaviors and filter as appropriate.

When auditing of data should occur will depend on certain aspects of training. In offline training, the
training data are pre-collected prior to training. By contrast, online training involves data that are
collected during training, often as a result of interactions with an environment. Auditing the training
data of an AI system trained offline can be done by filtering its corpus for sensitive data. This step
may be expensive, but only need be done once, prior to beginning training. Filtering data during
online training may be more expensive since it must be performed continually, but we otherwise have
few safety assurances over online training data content. Iterative retraining has properties of both
offline and online training; data content should be audited prior to each bout of training.

Summary of recommendations regarding effective compute and training data content
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• For each new experiment, require audits in proportion to expected capability increases from
additional effective compute or different training data content.

• Conduct risk assessments of slightly smaller AI systems before approval is given to develop
a larger system.

• Place strict controls on training-experiments that use above a certain level of effective
compute.

• Implement national security-focused publication controls on research related to AI capabili-
ties.

• Auditors should be able to evaluate training data.
• Filter training data for potentially dangerous or sensitive content.

2.3.6 Security

Preventing AI system theft and espionage Proper security measures are crucial for controlling
the affordances available to systems. Adequate security helps avoid several risky scenarios such
as proliferation of the system by malicious actors (including advanced threat actors such as hostile
governments) or the system self-proliferating. Any organization interacting with AI systems and
the computer infrastructure that they run on should implement strict cyber- and physical security
to prevent unauthorized access and AI system exfiltration. Given the security requirements of a
potentially strategically valuable dual-use technology, military-grade security, espionage protection,
and red-teaming may be required. Individuals with high levels of access to AI systems should
require background checks. Security auditors should assess the adequacy of security measures and
compliance with information security standards through reviews and red-teaming. The security of
labs should be coordinated, such that information concerning security and safety is shared between
labs, either directly or through a third party such as a common government-led project or a network
of security auditors. Structured access APIs [Trask et al., 2023, Shevlane, 2022] should be developed
that give appropriate degrees of access to AI system developers, researchers, and auditors. Further
research should be carried out on methods for verifying that code run on computing hardware is
compliant with safety regulations [Shavit, 2023].

Preventing misuse of AI systems Beyond cyber- and physical security practices, AI systems
introduce unique security challenges. External challenges from users include prompt injection attacks,
jailbreaking, and malicious use. Mitigating these risks are active research areas. AI systems’ inputs
should be monitored and subject to guardrails to help tackle these risks, and auditors should be
involved in assessing the extent of these risks in AI systems destined for deployment. Filtering inputs
may succeed in avoiding most, but not all, jailbreaking and misuse risks. For example, if it ever
became prohibited for certain systems to be placed in scaffolding that let them behave like autonomous
agents (e.g. scaffolding such as LangChain or AutoGPT), then it may be possible to identify and
filter the prompts used in this scaffolding, thus preventing that particular use. Auditors, in the form
of internal and external red-teams, should be charged with proactively identifying vulnerabilities.
Additionally, labs and governments should implement bug bounty programs, which incentivize people
to find and report vulnerabilities and dangerous capabilities. Deployment audits or security audits
should ensure that Know-Your-Customer (KYC) requirements and monitoring of interactions with
AI systems are implemented; these may help mitigate the risks from exposure of AI systems to threat
actors through prevention and monitoring.

Protection from dangerous autonomous AI systems AI systems with sufficient absolute capabili-
ties may themselves pose security risks if acting autonomously. The affordances available to such
systems should be subject to strict security assessments from external auditors. AI systems should
not have unfettered freedom to acquire new affordances, such as the ability to access arbitrary code
libraries or software tools. There should be clear mechanisms to recall AI systems or restrict the
affordances available to them. Any interfaces that the system interacts with should be monitored for
potentially dangerous use. Ongoing security assessments should be performed throughout AI system
development, especially when new affordances are proposed. Scenario planning can help identify
risks associated with increased affordances.

Incident response plans Institutions should have clear security protocols in place to act quickly
and effectively in response to safety and security incidents. For example, at labs there should be
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fail-safes, rapid response plans, and incident reporting protocols. Internal and external auditors should
perform risk assessments, which should be published openly (to the extent that they do not reveal
proprietary or security-compromising information). Whistleblower protections may help ensure that
vulnerabilities are reported to the correct authorities; security or governance audits should ensure
adequate protection. As for other dual-use technologies, emergency response plans should include
government departments involved in national security to ensure that, if necessary, use of force during
security and safety incidents involving highly capable frontier AI systems is legitimate.

Summary of recommendations regarding security

• Organizations with access to advanced AI systems should have military-grade information
security, espionage protection, and red-teaming protocols.

• Implement strict cyber- and physical security practices to prevent unauthorized access and
AI system exfiltration.

• Structured access APIs and other technical controls to enable secure development and
sharing with researchers, auditors, or the broader public.

• Individuals with high levels of access to AI systems should require background checks.
• Information sharing of security and safety incidents between labs.
• The level of access to AI systems given to developers, researchers, and auditors should be

appropriate and not excessive.
• Monitoring of compute usage to ensure compliance with regulations regarding the amount

of compute used and how it is used.
• Prompt filtering and other input controls to prevent malicious and dangerous use, such as

prohibited scaffolding methods.
• Fail-safes and rapid response plans in case the AI system does gain access to more affor-

dances (e.g. by auto-exfiltration).
• Mandatory reporting of safety and security incidents.

2.3.7 Deployment design

Deployment of AI systems is not a binary threshold. There are many kinds of deployment, each with
different consequences for risks. Deployment decisions determine who has access?; when do they get
access?; and what do they have access to?

Deployment audits should assess risks from different modes of deployment for each AI system to be
deployed and ensure that any regulation regarding deployment is upheld. Deployment audits aim to
ensure that AI systems are not intentionally given excessive available affordances; by contrast, security
audits aim to reduce the risk that they are given excessive available affordances unintentionally.
Deployment audits should determine whether internal researchers vs. the general public have access
to an AI system. It will also determine factors such as whether they have access to finetuning;
freedom to modify the system prompt; or whether they have freedom to swap out a retrieval database
for another, which could affect the absolute capabilities of the system. Another capability-relevant
deployment decision is whether the system will be trained while deployed (i.e. online training),
necessitating elements of both deployment audits and training design audits.

Summary of recommendations regarding deployment design

• Deployment plans should be subject to auditing.

2.3.8 Training-experiment design

A training-experiment is the procedure by which an AI system is developed. Design decisions for
the training-experiment include data selection and filtering, training process; model architecture and
hyperparameters; choice of deep learning framework; hardware choices; the amount of compute to
use; the algorithms used; evaluation procedures; safety procedures; the affordances made available
to the system during training; the properties of different phases of pretraining and fine-tuning;
whether to train online or offline; etc. Given that systems trained with RL algorithms may result in
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dangerous policies [Turner et al., 2019], experiments that involve RL could be subject to additional
scrutiny through training design audits. The design of training experiments thus determines many
of the downstream factors that are relevant to risk. Training-experiment designs should therefore
themselves be subject to pretraining risk assessment, which may employ approaches such as incentive
analysis [Everitt et al., 2021]. A comprehensive AI governance regime would require pre-registration,
pre-approval, and monitoring of experiments involving highly absolutely capable systems trained
with large amounts of effective compute and AI systems with large affordances available to them.
Regulators, auditors, and AI development labs should make their own risk assessments for such
experiments, with a publicly accountable institution having the final authority on whether they go
ahead.

In addition to risk assessments for individual training experiments, the overall strategy into which
these experiments fit (i.e. the alignment strategy) should be evaluated in ways that are accountable to
the public. In order for these assessments to occur, AI system developers could be required to publish
detailed alignment strategies.

Summary of recommendations regarding training-experiment design

• Require pre-registration and pre-approval of training-experiments involving highly abso-
lutely capable AI systems trained with large amounts of effective compute and AI systems
with large affordances available to them.

• Training-experiment designs should be subject to prior-to-training risk assessment.

• Require developers of frontier AI systems to publish detailed alignment strategies or to
make their plans available to auditors for scrutiny.

• Require regulator approval of experiments with highly capable AI systems, large sets of
available affordances, or large effective compute budgets, based on risk assessments from
internal and external auditors.

• Potentially require smaller scale experiments before further scaling compute. This helps
assess effective compute and predict capabilities.

2.3.9 Governance and institutions

Certain governance structures help determine the training-experiment design decisions, deployment
decisions, or security decisions that are likely to be made. Auditors may be able to perform governance
audits of the institutions developing general-purpose AI to ensure that incentives are aligned with
safety. The AI governance and institutional landscape determines the constraints and incentives under
which training experiment design decisions and security-relevant decisions are made. It is therefore
important that this landscape be designed with safety in mind, rather than let it develop unconstrained
under other incentives, such as profit maximization.

Mökander et al. [2023] discuss governance audits in the context of large language model development
and deployment, though their work can readily be applied to broader frontier AI systems. They
identify three roles for governance audits:

1. Reviewing the adequacy of organizational governance structures

2. Creating an audit trail of the frontier AI systems development process

3. Mapping roles and responsibilities within organizations that design frontier AI systems.

As the regulatory landscape is currently being designed, research should aim to anticipate and
avoid potential barriers to these tasks, such as ways to ensure institutional transparency of the labs
developing frontier AI systems.

Summary of recommendations regarding governance and institutions

• Labs and other relevant actors should be rendered transparent enough to regulators for
effective governance.

• Regulators commission and act on governance audits when structuring the governance and
institutional landscape.
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3 Key areas of research

To build an auditing regime that can ensure adequate safety of AI development and deployment,
further research is needed in the following key areas.

3.1 Technical AI safety research

• Interpretability and training dynamics: Improve methods for explaining the internal
mechanisms of AI system behavior. Develop better understanding of how capabilities
emerge during training through phase transitions. Use this to create predictive models that
forecast emergence of new capabilities.

• Behavioral evaluations of dangerous capabilities: In advance of adequate interpretability
methods, we should develop better behavioral methods for assessing risks from AI systems.
We must develop evaluations that can serve as clear decision boundaries for particular kinds
of regulatory or other risk-mitigating actions. We should improve our predictive models of
how capabilities emerge in AI systems.

• Alignment theory: Further develop the theoretical understanding of how to create AI
systems whose goals and incentives are robustly aligned with human values. This might
eventually provide technically grounded metrics against which AI systems can be audited.

3.2 Technical infrastructure research

• Structured access frameworks: Design interfaces and structured access protocols that
enable external auditors and researchers to safely analyze AI system mechanistic structure
in ways that avoid misuse and proliferation.

• Auditing of training compute usage: Create methods to monitor and audit how com-
putational resources are used during AI system training to ensure adherence to safety
requirements and regulations. The methods would preferably be privacy-preserving, secure,
and permit verification of code, data pipelines, compute usage, and other aspects of the
training process.

• Technically grounded definitions of effective compute and algorithmic progress: A
prerequisite for governance and auditing of effective compute is a technically grounded
definition. Develop rigorous technical definitions and metrics for measuring the effective
compute used during AI system training and for measuring algorithmic progress.

3.3 Institutional governance and policy research:

• Accountability of auditors: Research protocols and institutional designs that ensure ac-
countability of auditors to the public, while also controlling potentially hazardous informa-
tion flows.

• Institutional design for transformational technology: The current political economy of
general-purpose AI development, which is currently driven by private interests, may permit
less public accountability than is ideal for such a transformational technology. As the tech-
nology advances, we should consider alternative frameworks that bring AI development into
a regime with a greater focus on security and public accountability, such as nationalization
or internationalization.

• Adaptive policy making and enforcement: Build regulatory and policy-making capability
to enable rapid adaptation of regulatory infrastructure as AI progresses at pace. Ensure that
auditors adapt at the same pace.

• Legal frameworks: Explore legal tools like liability, regulations, and treaties to align AI
with public interests. These provide the basis for compliance audits.

• Frameworks for cooperation: Develop frameworks to facilitate cooperation between
governments and between companies on AI governance, even where little mutual trust exists.
This may be required for auditors to operate cross-jurisdictionally, which will be required
for a global approach to AI risk reduction.
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