Exporters and Trade Policy with Heterogeneous Districts

Kishore Gawande University of Texas at Austin Pablo M. Pinto University of Houston Santiago M. Pinto* Federal Reserve Bank of Richmond

IPES 2023

* The views expressed herein are those of the author and are not necessarily those of the Federal Reserve Bank of Richmond, or the Federal Reserve System.

OUR CONTRIBUTION

- Theory: Political model of trade with districts
 - Trade policy enacted by representatives of districts
 - Heterogenous districts: Manufacturing unevenly distributed
 - Some sectors spatially concentrated others not
 - Specific factors in import-competing and exporting industries
 - Large country case: terms-of-trade effects
- Method: Quantify the relative influence of districts and sectors in trade policy-making
 - Estimate structural parameters, welfare weights using 2002 tariffs and NTMs
 - 2000 siginificant: China's accession to WTO and MFN status
 - Weights identify winners and losers from trade policy
 - Exporters explain low U.S. trade protection despite backslash against "globalization"

Model

- *R* districts (indexed by r = 1, ..., R)
- *J* import-competing industries (indexed by j = 1, ..., J)
- 1 **exporting** industry (indexed by g)
- $m = \{L, K\}$: factors

 n_{ir}^m = population of type-*m* factors in sector *j* in district *r*

STAGE2: NATIONAL TARIFFS *t_j*

-2 Large countries, U.S. and ROW: Terms of trade (TOT) effects -Only tariffs allowed. No export subsidies.

Sectoral tariffs t_1, \ldots, t_J maximize aggregate (national) welfare:

$$\max \, \Omega^{\mathcal{A}}(\mathbf{t}) = \sum_{r} \left(\sum_{j} \sum_{m} \Delta^{m}_{jr} W^{m}_{jr} \right)$$

- Welfare weights Δ_{ir}^{m} target of estimation
- ► National tariffs $t_j = 1, ..., J$ result of Nash bargaining
- Our view: Basis for agenda setting by the President in Kennedy Round domestic legislative bargain (he has the votes since this brings exporters into his coalition)

NATIONAL TARIFFS (IMPORTS ONLY) - I

Without export sector, ad-valorem tariff $\tau_j (= t_j/p_j)$ generalizes Grossman-Helpman (1994):

$$\frac{\tau_j}{1+\tau_j} = \sum_r \left[\frac{\Delta_{jr}^K n_{jr}^K}{\Delta} \cdot \frac{n}{n_{jr}^K} \cdot \left(\frac{q_{jr}/M_j}{-\epsilon_j^M} \right) \right] - \frac{q_j/M_j}{-\epsilon_j^M}$$
(1)

There are two components:

- ► Demand-for-protection component: Since $-\epsilon_j^M > 0$, τ_j increases with the (regional) output-to-(national) import ratio q_{jr}/M_j This is reminiscent of Grossman-Helpman model
- Consumption-distortion component: τ_j decreases with the national consumption-to-import ratios D_j^L/M_j and D_j^K/M_j . With homogeneous tastes (for L and K) and $D_j = q_j + M_j$, this simplifies to sector *j*'s national output-to-import ratio.

NATIONAL TARIFFS: US vs. ROW NASH BARGAIN - I

With export sectors g, import sector j tariff has additional parameters:

- $\theta_{jg} = \frac{d\bar{p}_g/dt_g}{dp_j/dt_j} < 0$ is the TOT effect on US exports of *g* from ROW's retaliation against US tariff on import *j* (numerator), relative to change in the domestic price of *j* (denominator).
- $\mu_j > 0$ is relative bargaining strength of the U.S. in sector *j*.

• $\delta_j = \epsilon_j^M \left(\frac{1}{\epsilon_j^{X^*}} + 1\right) < 0$ is the "effective" import demand elasticity in the presence of (the TOT impact of) retaliation on sector g.

NATIONAL TARIFFS: US vs. ROW NASH BARGAIN-II

With export sectors g import industry tariffs are:

$$\frac{\tau_{j}}{1+\tau_{j}} = \sum_{r} \left[\frac{\Delta_{r}^{K^{M}} n_{r}^{K^{M}}}{\Delta} \left(\frac{n}{n_{r}^{K^{M}}} \right) \left(\frac{q_{jr}/M_{j}}{-\delta_{j}} \right) \right] \\ + \sum_{r} \left[\frac{\Delta_{r}^{K^{X}} n_{r}^{K^{X}}}{\Delta} \left(\frac{n}{n_{r}^{K^{X}}} \right) \left(\mu_{j} \sum_{g} \theta_{jg} \frac{q_{gr}/M_{j}}{-\delta_{j}} \right) \right] \\ - \left(\frac{q_{j}/M_{j}}{-\delta_{j}} + \frac{\mu_{j} \sum_{g} \theta_{jg} D_{g}/M_{j}}{-\delta_{j}} - \frac{1}{1+\epsilon_{j}^{X^{*}}} \right).$$
(2)

Comment:

1) GH (1995, eq (16)) have inverse export supply elasticity in the optimal tariff equation. Here its effect is moderated by the amount by which retaliation affects the world price and therefore it is $1/(1 + \epsilon_j^{X^*})$.

REGRESSION MODEL WITH **E**XPORT SECTORS *g*

-Without export sector, regression model was:

$$\frac{\tau_j}{1+\tau_j} = \sum_{r=1}^R \left[\frac{\Delta_r^K n_r^K}{\Delta} \cdot \left(\frac{n}{n_r^K} \right) \frac{q_{jr}/M_j}{-\epsilon_j} \right] - \frac{q_j/M_j}{-\epsilon_j} + e_j, \quad (3)$$

where (i) $\Delta = \sum_r \left(\Delta_r^K n_r^K + \Delta_r^L n_r^L \right)$, and (ii) $\frac{q_j/M_j}{-\epsilon_j} = \sum_{r=1}^R \frac{q_{jr}/M_j}{-\epsilon_j}$.

-With export sector, regression model is :

$$\frac{\tau_{j}}{1+\tau_{j}} = \sum_{r} \left[\frac{\Delta_{r}^{K^{M}} n_{r}^{K^{M}}}{\Delta} \left(\frac{n}{n_{r}^{K^{M}}} \right) \left(\frac{q_{jr}/M_{j}}{-\delta_{j}} \right) \right] \\ + \sum_{r} \left[\frac{\Delta_{r}^{K^{X}} n_{r}^{K^{X}}}{\Delta} \left(\frac{n}{n_{r}^{K^{X}}} \right) \left(\mu \sum_{g} \theta_{jg} \frac{q_{gr}/M_{j}}{-\delta_{j}} \right) \right] \\ - \left(\frac{q_{j}/M_{j}}{-\delta_{j}} + \frac{\mu \sum_{g} \theta_{jg} D_{g}/M_{j}}{-\delta_{j}} - \frac{1}{1+\epsilon_{j}^{X^{*}}} \right) + e_{j}. \quad (4)$$

Comment: Bargaining strength defined here at national, not sector, level $\mu_j = \mu$ (Santi, we'll write the μ_j version in the appendix, so please don't erase it)

DIFFERENT SPECIFIC FACTOR WEIGHTS IN M AND X SECTORS

- lmport sector *j* has weight $\Delta_r^{K^M}$ (regional variation, not within-region)
- Export sector *j* has weight $\Delta_r^{K^X} = \Delta^{K^X}$ (regional variation, not within-region)
 - In any case we can only the aggregate weight of specific factors in region r relative to total welfare weight of specific factors and labor
 - That is, cannot separate Δ_r^K from N_r^K , we identify their product as a share of the aggregate.

Grossman-Helpman type specification with variables $Z_{jr} = q_{jr}/M_{jr}$ [with M_{jr} approx. by $M_j \times (n_r/n)$].

• Without export sectors (only $\Delta_r^{K^M}$ weights) the GH model is

$$\frac{\tau_j}{1+\tau_j} = \sum_{r=1}^R \frac{\Delta_r^{K^M} n_r^{K^M}}{\sum_r \left(\Delta_r^{K^M} n_r^{K^M} + \Delta_r^L n_r^L\right)} \cdot \left(\frac{n_r}{n_r^{K^M}}\right) \left[\frac{q_{jr}/M_{jr}}{-\epsilon_j}\right] - \frac{q_j/M_j}{-\epsilon_j} + e_j$$

GH-TYPE SPEC- I

With many export sectors g subject to retaliation GH is

$$\frac{\tau_{j}}{1+\tau_{j}} = \sum_{r} \left[\frac{\Delta_{r}^{K^{M}} n_{r}^{K^{M}}}{\Delta} \left(\frac{n_{r}}{n_{r}^{K^{M}}} \right) \left(\frac{q_{jr}/M_{jr}}{-\delta_{j}} \right) \right] \\ + \sum_{r} \left[\frac{\Delta_{r}^{K^{X}} n_{r}^{K^{X}}}{\Delta} \left(\frac{n}{n_{r}^{K^{X}}} \right) \left(\mu \sum_{g} \theta_{jg} \frac{q_{gr}/M_{j}}{-\delta_{j}} \right) \right] \\ - \left(\frac{q_{j}/M_{j}}{-\delta_{j}} + \frac{\mu \sum_{g} \theta_{jg} D_{g}/M_{j}}{-\delta_{j}} - \frac{1}{1+\epsilon_{j}^{X^{*}}} \right) + e_{j}. \quad (5)$$

(i) Negative sign in the second expression on rhs is clear - specific factors g in all regions producing g demand lower tariffs.

(ii) τ_j increases as $\frac{\mu \theta_{jg} D_g / M_j}{-\delta_i}$ becomes more negative, and only

 $\theta_{jg} = (d\bar{p}_g/dt_g^*)/(dp_j/dt_j)$ is negative in the expression. Why? Consider denominator $(dp_j/dt_j) > 0$. The lower the TOT externality of t_j , the closer this is to 1 (small country). Then the tariff is determined by the numerator, and the TOT effect of retaliation by ROW actually benefits US consumers of g. So while consumers of j dislike tariffs on j (via q_j/M_j), consumers of g like τ_j ! -Now consider numerator $(d\bar{p}_g/dt_g^*) < 0$. The smaller the TOT externality ROW can impose, the closer it is to zero - ROW is small country and retaliation not such a threat. If it is large, then it can dominate as above.

GH-TYPE SPEC. - II: SINGLE EXPORT SECTOR g

• With g = 1, one variable in the second term: $(\theta_{jg}.q_{gr}/M_j)/(-\delta_j)$.

• Can we estimate the *r* export weight shares $\Delta_r^{K^X} n_r^{K^X} / \Delta$ in (14)?

• Yes, assume sector g's specific factor gets weight $\Delta_r^{K^X} = \Delta^{K^X}$.

$$\frac{\tau_{j}}{1+\tau_{j}} = \sum_{r} \left[\frac{\Delta_{r}^{K^{M}} n_{r}^{K^{M}}}{\Delta} \left(\frac{n_{r}}{n_{r}^{K^{M}}} \right) \left(\frac{q_{jr}/M_{jr}}{-\delta_{j}} \right) \right] \\ + \frac{\Delta^{K^{X}} n}{\Delta} \left[\frac{\mu \cdot \theta_{jg} \cdot Q_{g}/M_{j}}{-\delta_{j}} \right] \\ - \left(\frac{q_{j}/M_{j}}{-\delta_{j}} + \frac{\mu \cdot \theta_{jg} \cdot D_{g}/M_{j}}{-\delta_{j}} - \frac{1}{1+\epsilon_{j}^{X^{*}}} \right) + e_{j}.$$
(6)

(i) $Q_g = \sum_r q_{gr}$ is aggregate output of export sector g. (ii) Note that now $n = n^{K^M} + n^{K^X} + n^L$. So be careful how to recover weights from coefficients. The small country had only n^{K^m} so $n^{K^m}/n = 0.30$ or so.Now it will be 0.25 or so (rest in X). (iii) From (15) $\frac{\Delta^{K^X}}{\Delta}$ can be estimated. . (iv) Note: M_j in second term (not M_{jr} since no r only aggregate). (v) Other than $\frac{\bar{p}_j}{\bar{p}_i}$ in θ_{jg} in (13) we measure all variables. Show robustness to

DATA

- We collected:
 - **1.** Tariffs and imports (M_j) (USITC Dataweb; Feenstra's site)
 - 2. Output (q_{jr}) , and consumption $(D_j^L \text{ and } D_j^K)$ (County Business Patterns: 2002)
 - 3. Employment by type of economic agent, sector and region $(n_{jr}^{K} \text{ and } n_{jr}^{L})$ (County Business Patterns: 2002; NBER manufacturing database)
 - 4. Import demand elasticities $(\epsilon_j^M, \epsilon_g^{M^*})$ (Kee, Nicita and Olarreaga (2008)
 - 5. Export supply elasticities $(\epsilon_g^X, \epsilon_j^{X^*})$ (Nicita, Olarreaga and Silva (2018))
- Data were available from different sources and at different levels of geographical and industry aggregation
- Convert the data from to NAICS 3-digit level, and map from Metropolitan Statistical Areas and Counties onto the 435 Congressional Districts for the 107th Congress (2002)
- We account for over 10 mn. manufacturing workers in 2002.

DESCRIPTIVE STATS

Descriptive statistics for the individual terms in the constraint are in Appendix Table Axx.

- ► $\frac{q_j/M_j}{-\delta_j}$ has mean 0.81 and ranges between 0.02 (Leather goods) and 2.22 (Food products).
- $\frac{\mu \cdot \theta_{jg} \cdot D_g / M_j}{-\delta_j}$ has mean -.10 and ranges between -0.64 (Petroleum Refining) and -0.01 (Transport goods).
- ▶ $\frac{1}{1 + \epsilon_j^{X^*}}$ has mean 0.38 and ranges between 0.16 (Textiles) and 0.71 (Furniture).
- Overall, $\frac{q_j/M_j}{-\delta_j} + \frac{\mu.\theta_{jg}.D_g/M_j}{-\delta_j} \frac{1}{1 + \epsilon_j^{X^*}}$ has mean 0.33 and range -1.08 (Petroleum Refining), 1.84 (Food products)

RESULTS: TABLE 1

Highlights - I: Labor weights

 We can estimate the weight given to labor-as-consumers relative to total weight. This differs across models, since each model defines different *regions*. In the "4region-2000 Dem/Rep" nodel we aggregate districts into 8 regions (4 × 2), we find that capital gets 36% weights and labor 64%. It is the major reason why US tariffs are low on average.

Highlights - II: Capital weights:

- 1. We obtain precise estimates of regions that win and the implied welfare weights for specific capital in those regions.
- 2. Some regions have specific capital weights $\Delta_r^K = 0$.
 - Is it because those regions belong to losing coalitions? Or they vote with the winning coalition to pass a bill that may even go against their trade interest, but buys them a winning coalition on votes that matter more to them?
 - We will attempt to see which is true in the voting data. [Note to us: not sure if that belongs to this paper or anotehr one – we might suggest coalitions]

LEGISLATIVE COALITIONS: REGIONAL AGGREGATIONS

Estimate weights for two different regional groupings

Case 1: Geography-based coalitions

9 geographic subdivisions from U.S. Census

Case 2: Competitiveness of State and CDs

Coalitions based on electoral dynamics: 9 regions based on battleground state in 2000 Presidential election and competitiveness of Congressional seat

CASE 1: GEOGRAPHY I

	Small Country	Large Country
β_1 : New England	0.067 (0.027)	0
β_2 : Mid-Atlantic	0.163 (0.012)	0
β_3^- : East North Central	0.216 (0.025)	0
β_4 : West North Central	0.063 (0.009)	0.292 (0.017)
β_5 : South Atlantic	0.140 (0.008)	0.264 (0.020)
β_6 : East South Central	0.089 (0.020)	0
β_7 : West South Central	0.073 (0.010)	0.060 (0.017)
β_8 : Mountain	0	0
β_9 : Pacific	0.214 (0.019)	0
β^X : $\mu_j \theta_{jg} \frac{Q_g / M_j}{-\delta_i}$		3.243 (0.359)
$\alpha: \frac{Q_j/M_j}{-\epsilon_i}$	-1	
$\alpha: \frac{Q_j/M_j}{-\delta_j} - \frac{1}{1+\epsilon_j^{X^*}} + \mu_j \theta_{jg} \frac{D_g/M_j}{-\delta_j}$		-1
N	9454	8735
First Stage Statistics		
Anderson-Rubin χ^2 (10 df)	2949.0	2010.0
Anderson-Rubin p-value	0.00	0.00
Kleibergen-Paap weak IV	102.5	937.5

Weights on Specific Factors

CASE 1: GEOGRAPHY II

	Small Co	ountry	Large Country			
Region	<i>K_r-share</i>	$\frac{\Gamma_r^K}{\Gamma^L}$	K_r^M -share	$\frac{\Gamma_r^{KM}}{\Gamma^L}$	K ^X -share	$\frac{\Gamma^{K}}{\Gamma^{L}}$
1. New England	0.023	1.136	0	0		
2. Mid-Atlantic	0.051	1.314	0	0		
East North Central	0.063	0.899	0	0		
4. West North Central	0.019	0.941	0.075	4.646		
5. South Atlantic	0.040	1.019	0.063	2.036		
6. East South Central	0.024	1.493	0	0		
7. West South Central	0.023	0.766	0.016	0.675		
8. Mountain	0	0	0	0		
9. Pacific	0.073	1.300	0	0		
Agg./Rel. Weights	0.316		0.154		0.204	3.485

CASE 1: GEOGRAPHY III

Small country case

- Legislative bargain favors mobile factor owners (68.4% of aggregate welfare); owners of sector-specific capital get remainder (31.6%)
- Winners: Pacific (7.3), E N Central: (6.3%), Mid-Atlantic (5.1)

Large country case

- Legislative bargain favors mobile (64.2%) and X-specific factors (20.4%); M-specific factors M get 15.4%
- Winners: W N Central (7.5%), S Atlantic (6.3), W S Central (1.6); regions with a higher share of specific factors in X-sector (New England, Mountain, Pacific)

CONCLUDING REMARKS

- Develop a general version of a political economy of trade model which includes fixed factors from importing and exporting sectors
- 2. Advance empirical contributions of the PE of trade
 - Assess how far actual tariffs are from tariff preferences of districts
 - Help understand the political fallout from the China shock
- 3. Estimate the implied weights on districts and industries retrieved from the observed pattern of protection
- 4. Interests of fixed factors still play an important role in determining US trade policy
 - The structure of trade tariffs reveals an aggregate weight on special interests that is approximately 35% of the aggregate welfare weight
 - Interests of specific factors in exporting sectors obtain about 60% of the total weight on fixed factors (20% of the aggregate welfare weight)
- 5. Results show U.S. exporters to be highly effective in countervailing the demand for protection by domestic

DΑΤΑ

- Data available from different sources, and levels of aggregation (geography, industry) for 2002 (107th Congress)
- Tariffs and imports, M_j : USITC Dataweb; R. Feenstra's site
- NTMs: ad-valorem equivalents of core NTMs at the 6-digit HS level; Kee, Nicita & Olarreaga (2009)
- Import demand elasticities, \(\elsissimple j\): Kee, Nicita and Olarreaga (2008)
- Output, q_{jr}, and consumption, D^m_j: County Business Patterns (2002)
 - Data from CBP converted to NAICS 3-digit level and mapped from MSAs and Counties onto the Congressional districts (CDs) for the 107th Congress (2002) for which data is available (433 CDs)
- Employment by type of economic agent, sector, region, n^m_{jr}: County Business Patterns (2002); NBER manufacturing database
- For n^{K}/n_{r} : compensation of white collar (non-production)

CASE 2: WEIGHTS BY ELECTORAL OUTCOMES

Distribution of CD seats, employment, and export output

State-wide vote in	House election in CD			Total
Presidential election	Competitive	Safe Dem	Safe Rep	TOLAT
Competitive	17	72	83	172
	[0.03]	[0.16]	[0.22]	
	(0.09)	(0.09)	(0.09)	
Safe Dem	8	75	42	125
	[0.02]	[0.16]	[0.09]	
	(0.12)	(0.27)	(0.15)	
Safe Rep	5	51	80	136
	[0.02]	[0.11]	[0.20]	
	(0.05)	(0.12)	(0.06)	
	30	198	205	433
				[1.00]
				(0.11)

Notes: (1) Each cell in the 3 × 3 represents "coalition" *r*. Each cell shows (i) the number of districts in the coalition; (ii) the proportion of manufacturing workforce in brackets; (iii) the proportion of export industry (NAICS-334 Computers) output in parentheses.

CASE 2: WEIGHTS BY ELECTORAL OUTCOMES – SMALL COUNTRY K_r^M Weight Shares (from 2SLS estimates): Small Country model. DV: Applied Tariffs + NTMs, 2002

State-wide Vote in	Distr			
Presid. Election	Competitive	Safe Dem	Safe Rep	Total
Competitive	0 [0]	0 [0]	0.104 [1.560]	0.104
Safe Dem	0 [0]	0.093 [2.100]	0 [0]	0.093
Safe Rep	0 [0]	0.047 [1.576]	0.073 [1.212]	0.120
Total <i>K_r</i> share	0	0.140	0.177	0.317

Notes: (1) N = 8210. (2) Each cell (coalition *r*) reports: (i) K_r -share of total welfare weights; (ii) individual Γ_r^K / Γ_r^L ratio in square brackets.

Geographical distribution of Γ_r^K / Γ_r^L weights

CASE 2: WEIGHTS BY ELECTORAL OUTCOMES – LARGE COUNTRY K_r^M and K^X weight shares (from 2SLS estimates). DV: Applied Tariffs + NTMs, 2002

State-wide Vote in **Districts in House elections Presid. Election** Competitive Safe Rep Safe Dem Total Competitive 0.081 0 [0] 0.081 [1.537] 0 [0] Safe Dem 0 [0] 0 [0] 0 [0] 0 Safe Rep 0.113 [2.252] 0.113 0 [0] 0 [0] Total K_r^M share 0.194 0 0 0.194 Total K^X share 0.166 [2.906]

Notes: (1) N = 7675. (2) Cells in **black**: (i) share of welfare weights on import-competing interests K_r^M ; (ii) individual $\Gamma_r^{K^M} / \Gamma_r^L$ ratio in brackets. (3) Total K^X share: (i) aggregate share of welfare weights on export sector interests; (ii) individual Γ^{K^X} / Γ^L ratio in brackets.

Geographical distribution of Γ_r^K / Γ_r^L weights

CASE 2: WEIGHTS BY ELECTORAL OUTCOMES – TAKEAWAYS Small country case

- Suppose Representative Cliff Stearns is the agenda setter (Chairman of the Commerce, Trade, and Consumer Protection Subcommittee of the powerful Ways and Means Committee, 107th Congress); Stearns represents 6th CD in Florida, a Safe Rep District in the most competitive State for the Presidency in the 2000 election
- Agenda setter proposes an overall level of protection (tariffs + NTMs) that would be approved by: Safe Rep States + Safe Rep District (80); Safe Dem State + Safe Dem District (75); Safe Rep State + Safe Dem District (51); Competitive State + Safe Rep District (83) (Stearns' own group)
- For these groupings of CDs, (Γ^{K^M}/Γ^L_r) > 1: enough support of a super-majority in Congress (289 districts), making it Presidential veto-proof

Large country case

Same agenda setter: Competitive State + Safe Rep District (83) (Stearns' own group); and Safe Rep State + Safe Rep

CASE 2: COMPUTERS (NAICS 334) OUTPUT SHARE BY POLITICAL COALITIONS

CONCLUDING REMARKS

- Develop a general version of a political economy of trade model which includes fixed factors from importing and exporting sectors
- 2. Advance empirical contributions of the PE of trade
 - Assess how far actual tariffs are from tariff preferences of districts
 - Help understand the political fallout from the China shock
- 3. Estimate the implied weights on districts and industries retrieved from the observed pattern of protection
- 4. Interests of fixed factors still play an important role in determining US trade policy
 - The structure of trade tariffs reveals an aggregate weight on special interests that is approximately 35% of the aggregate welfare weight
 - Interests of specific factors in exporting sectors obtain about 60% of the total weight on fixed factors (20% of the aggregate welfare weight)
- 5. Results show U.S. exporters to be highly effective in countervailing the demand for protection by domestic