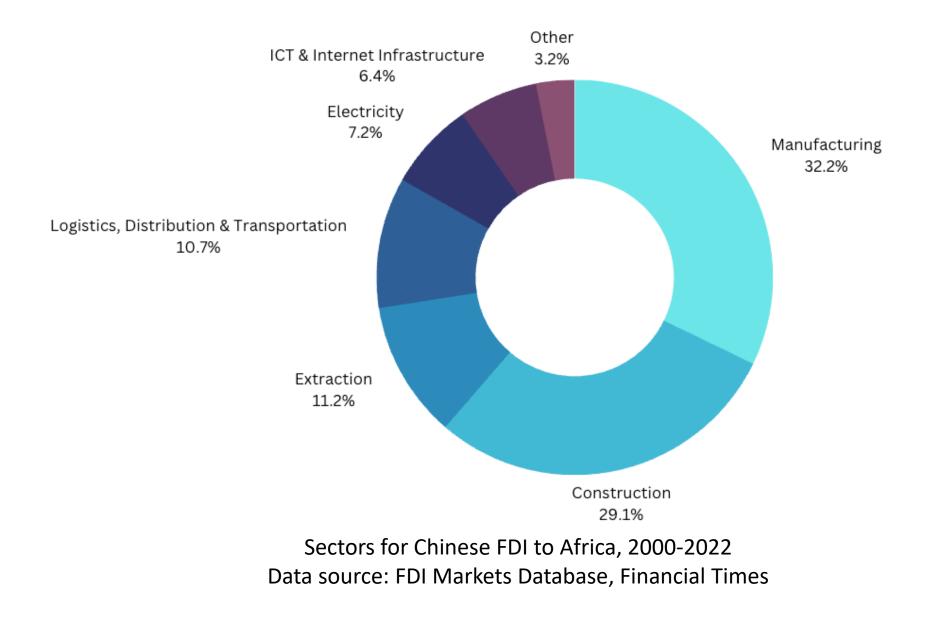

Chinese Ties and Low Carbon Industrialization in Africa


Solomon Owusu (Boston University) Keyi Tang (ESADE Business School) Gideon Ndubuisi (Delft University of Technology)

November 2024

Chinese FDI flows to Africa has exceeded those from the U.S. since 2013

Most Chinese FDI in Africa is concentrated in manufacturing sector

Research Question Overarching Research Question

 What is the effect of Chinese FDI on Carbon Emissions in Africa's manufacturing industry?

Specific-Research Question

- Is the effect conditioned on the sectors (labor, resource, technologyintensive)?
- How is this effect compared to other sources of FDI?
- Is the effect conditioned on institutional quality?

Argument in brief

- Chinese manufacturing FDI significantly increases industrial CO2 emission, particularly in resource- and labor-intensive sectors.
 - No similar effect observed for OECD manufacturing FDI in Africa.

Methodology

Sector-country-year panel (34 African countries, 2003–2014) using two instrumental variables (IVs).

Theory: FDI and Low-Carbon Industrialization

Technology transfer, learning and local economic development argument

• FDI driving force behind expansion of recipient countries' productive capacity, GVC participation, and transfer of technology, (Alfaro-Urena et al., 2022) and labor market outcomes (Setzler & Tintelnot, 2021)

• Appropriate technology literature (Acemoglu, 2015; Caselli & Coleman, 2006)

• Relational proximity matters for technology diffusion and catch-up (Basile, Capello, & Caragliu, 2011)

Theory: FDI and Low-Carbon Industrialization

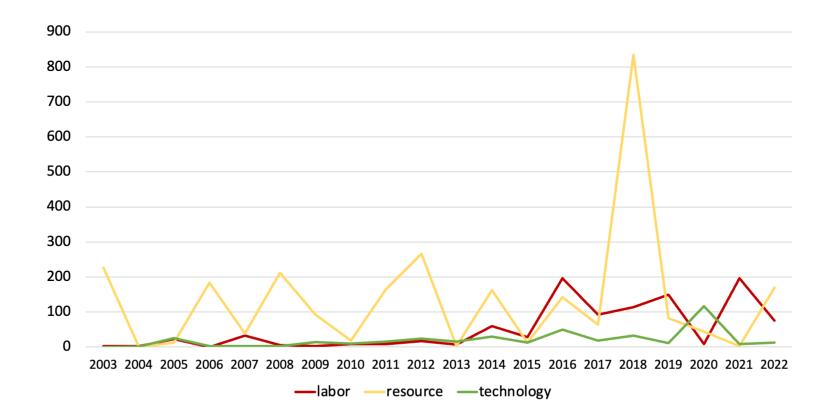
Pollution Haven Hypothesis

- FDI hampers environment by increasing pollution in countries with weak regulations
- Fierce competition for foreign investors may lead to lowered environmental standards
- This often results in the relocation of pollution-intensive industries from advanced to developing countries (Zugravu-Soilita, 2017; Golub et al., 2011)

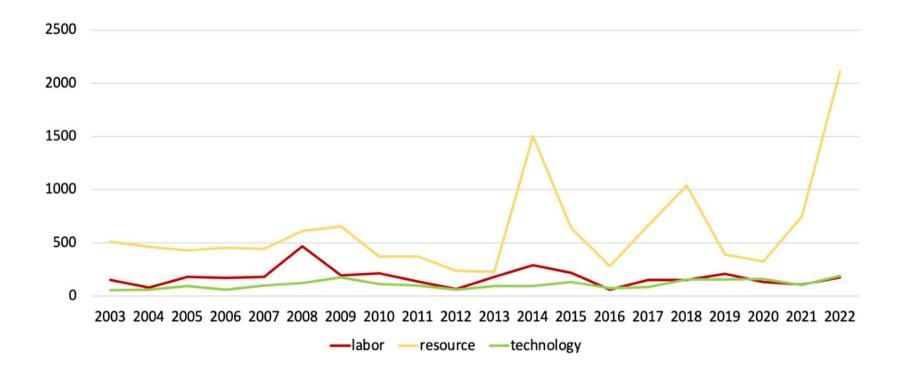
- \rightarrow The impact of FDI on low-carbon growth is an open empirical question.
- → Effects may vary based on FDI type and the regulatory and institutional quality of the recipient country.

China's role in Africa's industrialization

- Increased investments into productive sectors could **facilitate structural transformation**, making Africa "the next factory of the world." (Sun, 2017; Calabrese and Tang, 2022)
- Chinese FDI leverages and fosters local comparative advantages. (Chen et al., 2018)


Elevated environmental and social risks with Chinese FDI

- Environmental: Greater overlap with crucial biodiversity areas than Western-led projects (Losos et al., 2019; Yang et al., 2021; Parks et al., 2023; Springer et al., 2023)
- Social: Poor labor conditions, indigenous displacement, union suppression, corruption exacerbation. (Hensengerth, 2013; Isaksson & Kotsadam 2018; Yang et al., 2021)
- Historically, Chinese **E&S standards** have aligned only with the host country's E&S standards, rather than adhering to higher international standards, until recent years. (Voituriez et al., 2019; Nedopil, 2020)
- The host countries where Chinese FDI operates generally have weak regulations themselves. (Larsen et al., 2023)


Gaps in previous literature

- Does not control for other sources of FDI
- Only focuses on the aggregate FDI level without attention to heterogenous effects of industry activities
- Only looks at country-level total carbon emission
- Moderating role of environmental regulation ignored

Chinese Manufacturing FDI in Africa : From Resource-Intensive to Labor-Intensive and Technology-Intensive since 2015

Annual Chinese FDI Inflow to Africa's Manufacturing by Sector Characteristics, Million USD Source: Authors' elaboration using data from FDI Intelligence OECD Manufacturing FDI in Africa: Historic Dominance of Resource-Intensive Sector, Peaking at \$2.11 Billion in 2022, accounting for 85% of total FDI that Year

Share of manufacturing FDI from OECD countries by sector characteristics to 34 African countries, 2003-2022 Source: Author's elaboration using data from FDI Intelligence

China vs. OECD: Manufacturing FDI Concentration

- OECD and Chinese FDI both focus on resource-intensive and laborintensive sectors, with OECD having a higher resource-intensive share.
- Chinese firms may implement lower ESG standards than OECD investors in manufacturing process: (Voituriez et al., 2019; Springer et al., 2023; Morris, 2023)
 - Adhere only to minimum host country standards, not international best practices.
 - Operate in lower-income countries with weaker environmental/social standards.
- China's new green BRI standards raise enforcement challenges across all overseas FDI. (Coenen et al., 2021).

Baseline Model

 $\mathcal{M}_{it} = \beta_0 + \beta_1 Chineses FDI_{it} + X_{it} \Phi + \delta_i + \delta_t + \varepsilon_{it}$

- \mathcal{M}_{it} : country i's industrial carbon emission level in year t
- *Chineses FDI_{it}*: level of Chinese FDI to a country's manufacturing sector
 - Total FDI
 - By sector: technology, labor, and resource intensive
- δ_i : country fixed effects
- δ_t : year fixed effects
- X_{it} : FDI share from the rest of the world, total population, Per capita GDP, Per capita GDP Square, Environmental regulation, Regulatory quality, industry value added

Identification: IV-2SLS

$$FDI_{it} = avgFDI_{it} + X_{it} + \gamma_i + \delta_t + \xi_{it}$$

$$\rightarrow first \ stage$$

$$FDI_{it} = prebilateralFDI_{it} + X_{it} + \gamma_i + \delta_t + \xi_{it}$$

 $\rightarrow first stage$

$$\mathcal{M}_{it} = (FDI_{it} = 2 \text{ instruments}) + X_{it} + \gamma_i + \delta_t + \xi_{it}$$

Instruments:

- 1. Average Chinese FDI to other African countries
- 2. Predicted determinants of bilateral FDI (from a gravity structural model)

Results and Discussion: Chinese FDI and Low carbon manufacturing in Africa Lewbel-IV (1) (2) (3) (4) Chinese FDI (log) 0.023*** 0.023***

On average, a 1% increase in FDI from China increases industrial carbon emission by 0.02%.

No such effect for OECD-sourced FDI.

	OLS		Lewbel-IV	
	(1)	(2)	(3)	(4)
Chinese FDI (log)	0.022***	0.023***	0.022***	0.023***
	(0.008)	(0.008)	(0.007)	(0.007)
Other FDI (log)	0.087		0.086	× ,
	(0.092)		(0.085)	
Non-OECD FDI (log)		0.086		0.086
		(0.086)		(0.080)
OECD FDI (log)		0.164		0.164
		(0.114)		(0.105)
Environmental regulation	-0.067	-0.078	-0.087	-0.078
	(0.294)	(0.292)	(0.285)	(0.270)
GDP pc (log)	1.244	1.271	1.246	1.271
	(0.967)	(0.968)	(0.893)	(0.894)
GDP pc squared	-0.072	-0.074	-0.072	-0.074
1 1	(0.068)	(0.068)	(0.063)	(0.063)
Population (log)	0.771	0.750	0.780	0.750
	(0.534)	(0.530)	(0.498)	(0.490)
Industry (% GDP)	0.009**	0.009**	0.009**	0.009**
	(0.004)	(0.004)	(0.004)	(0.004)
Regulatory quality	-0.159*	-0.154*	-0.161*	-0.154*
	(0.092)	(0.093)	(0.086)	(0.086)
Constant	-16.815**	-16.582*	-16.059**	-15.684*>
	(8.528)	(8.455)	(7.592)	(7.473)
Observations	335	335	335	335
R-squared	0.889	0.890	0.889	0.890
Country FE	YES	YES	YES	YES
Year FE	YES	YES	YES	YES

Results and Discussion: Sector Composition

- Chinese manufacturing FDI in resource-seeking and labor-intensive sectors significantly raises industrial carbon emissions.
- Knowledge-intensive
 Chinese manufacturing FDI has no significant impact on carbon intensity.

	OLS		Lewbel-IV		
	(1)	(2)	(3)	(4)	
	Panel A				
Labor intensive Chinese FDI (log)	0.022**	0.018*	0.020**	0.018**	
	(0.009)	(0.009)	(0.009)	(0.009)	
Constant	2.404***	-18.120**	-17.211**	-17.182*	
	(0.061)	(8.527)	(7.545)	(7.554)	
Observations	338	335	335	335	
R-squared	0.884	0.888	0.888	0.888	
Controls	NO	YES	YES	YES	
Country Dummies	YES	YES	YES	YES	
Year Dummies	YES	YES	YES	YES	
Hansen J stat			44	45	
Hansen J stat p-val			0.12	0.12	
	Panel B				
Resource intensive Chinese FDI (log)	0.015*	0.012	0.016**	0.014*	
	(0.008)	(0.008)	(0.008)	(0.008)	
Constant	2.412***	-17.985**	-17.089**	-17.065*	
	(0.065)	(8.573)	(7.585)	(7.591)	
Observations	338	335	335	335	
R-squared	0.883	0.887	0.887	0.887	
Controls	NO	YES	YES	YES	
Country Dummies	YES	YES	YES	YES	
Year Dummies	YES	YES	YES	YES	
Hansen J stat			44	45	
Hansen J stat p-val			0.69	0.63	
	Panel C				
Knowledge intensive Chinese FDI (log)	0.007	0.008	0.008	0.008	
	(0.009)	(0.009)	(0.008)	(0.008)	
Constant	2.418***	-17.927**	-17.000**	-16.993*	

Conclusion

- Chinese FDI in manufacturing increases CO2 emissions in Africa's manufacturing sector, likely due to the more carbon-intensive manufacturing process with lower ESG standards.
- Impact is more pronounced in labor and resource-intensive sectors, but diminishes in knowledge-intensive sectors.
- Stronger regulatory quality in recipient countries can moderate and reverse the effect of Chinese FDI on manufacturing emissions.