Business as (Un)usual Immigrant Entrepreneurship and Native Backlash

Martin Devaux

Department of Political Science, Columbia University

IPES Annual Conference October 18th, 2025

Motivation

Millions of immigrant businesses across Western democracies.
 (Fairlie & Lofstrom, 2015; Kerr & Mandorff, 2020; Azoulay et al., 2022)

www We know nothing of their political impact.

Motivation

- Millions of immigrant businesses across Western democracies.
 (Fairlie & Lofstrom, 2015; Kerr & Mandorff, 2020; Azoulay et al., 2022)
 - www We know nothing of their political impact.
- The far right usually depicts immigrants as an economic threat. (Golder, 2016; Berman, 2021)
 - What happens when they show clear signs of economic integration.

Motivation

- Millions of immigrant businesses across Western democracies.
 (Fairlie & Lofstrom, 2015; Kerr & Mandorff, 2020; Azoulay et al., 2022)
 - We know nothing of their political impact.
- The far right usually depicts immigrants as an economic threat. (Golder, 2016; Berman, 2021)
 - what happens when they show clear signs of economic integration.
- Ambiguous Expectations:
 - ► **Economic**: produce goods, tax revenue, and employment.
 - Cultural: key symbols of cultural differences.

Question: do immigrant businesses affect support for the far right?

→ perceived immigrants: non-white + across generations

- → perceived immigrants: non-white + across generations
 - **Data**: universe of French businesses + ML-classified origin.

- → perceived immigrants: non-white + across generations
 - **Data**: universe of French businesses + ML-classified origin.
 - **Identification**: IV approach leveraging industrial specialization.

- → perceived immigrants: non-white + across generations
 - **Data**: universe of French businesses + ML-classified origin.
 - **Identification**: IV approach leveraging industrial specialization.
 - Result: exposure to immigrant businesses → increase in RN vote.

- → perceived immigrants: non-white + across generations
 - **Data**: universe of French businesses + ML-classified origin.
 - **Identification**: IV approach leveraging industrial specialization.
 - **Result**: exposure to immigrant businesses \rightarrow increase in RN vote.
 - Not explained by observable economic harm to natives.

- → perceived immigrants: non-white + across generations
 - **Data**: universe of French businesses + ML-classified origin.
 - **Identification**: IV approach leveraging industrial specialization.
 - Result: exposure to immigrant businesses → increase in RN vote.
 - Not explained by observable economic harm to natives.
 - Instead: driven by visual effect of visible Muslim businesses.

Above and beyond the presence of immigrants:

Above and beyond the presence of immigrants:

(Stokes, 2016; Faury, 2024)

Symbols: signal presence and cultural differences, and modify space.

Above and beyond the presence of immigrants:

Symbols: signal presence and cultural differences, and modify space. (Stokes, 2016; Faury, 2024)

Producers: contribute goods and compete with native producers. (Kerr & Mandorff, 2020)

Above and beyond the presence of immigrants:

- **Symbols**: signal presence and cultural differences, and modify space. (Stokes, 2016; Faury, 2024)
- Producers: contribute goods and compete with native producers. (Kerr & Mandorff, 2020)
- Employers: create jobs and pay taxes. (Scheve & Slaughter, 2001; Hanson et al., 2007)

Above and beyond the presence of immigrants:

Symbols: signal presence and cultural differences, and modify space. (Stokes, 2016; Faury, 2024)

Producers: contribute goods and compete with native producers. (Kerr & Mandorff, 2020)

Employers: create jobs and pay taxes. (Scheve & Slaughter, 2001; Hanson et al., 2007)

Spaces: foster within- or between-group contact.

(Allport, 1954; Nathan & Sands, 2023)

Businesses:

- National Registry: universe of French companies.
- Geocoded based on registered business addresses.
- With opening and closing dates.
- With industry codes. I keep only storefront businesses.

Businesses:

- National Registry: universe of French companies.
- Geocoded based on registered business addresses.
- With opening and closing dates.
- With industry codes. I keep only *storefront* businesses.

Ownership:

Businesses:

- National Registry: universe of French companies.
- Geocoded based on registered business addresses.
- With opening and closing dates.
- With industry codes. I keep only storefront businesses.

Ownership:

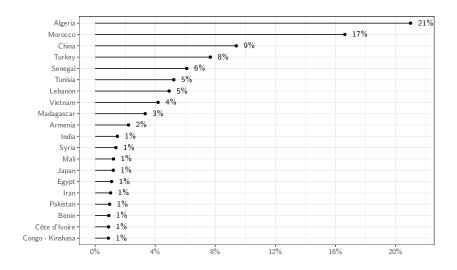
• Collection of ethnicity or origin data prohibited in France.

Businesses:

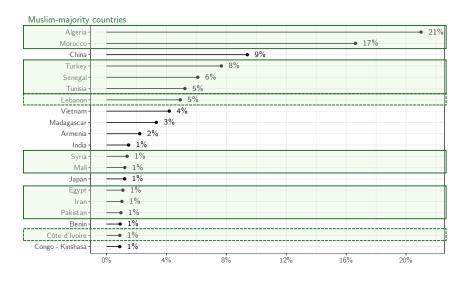
- National Registry: universe of French companies.
- Geocoded based on registered business addresses.
- With opening and closing dates.
- With industry codes. I keep only storefront businesses.

Ownership:

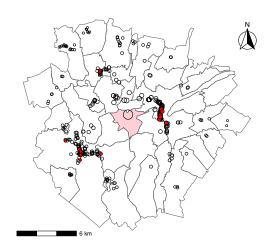
- Collection of ethnicity or origin data prohibited in France.
 - → Country of origin predicted based on first and last name.


Businesses:

- National Registry: universe of French companies.
- Geocoded based on registered business addresses.
- With opening and closing dates.
- With industry codes. I keep only storefront businesses.


Ownership:

- Collection of ethnicity or origin data prohibited in France.
 - → Country of origin predicted based on first and last name.
- "Immigrant" if $\geq 50\%$ from outside Europe and North America.


Data: Most Represented Countries

Data: Most Represented Countries

Measurement: Exposure to Immigrant Businesses

$$\mathsf{Exp}_m = \log \left[\sum_{i=1}^K w_{m,i} \mathbbm{1} \left\{ G_i = 1 \right\} \right] \quad \text{ where } \quad w_{m,i} = \frac{1}{1 + d_{m,i}}$$

Identification: Shift-Share Instrument

The instrument relies on two economic intuitions:

• Immigrants tend to enter different industries than natives.

```
(Bonacich, 1973; Fairlie & Lofstrom, 2015; Kerr & Mandorff, 2020)
```

Businesses in the same industry tend to agglomerate spatially.

```
(Hotelling, 1929; Ellison & Glaeser, 1997; Glaeser et al., 2010; Combes & Gobillon, 2014)
```

Shift-share Instrumental Variable Estimation

	Δ RN Vote Share		
	Reduced Form	OLS	2SLS
Instrument	0.041***		
	(0.010)		
∆ Exposure (log)		0.001***	0.073***
		(0.000)	(0.026)
Urban/Rural controls	Yes	Yes	Yes
Department FE	Yes	Yes	Yes
F (first stage)			45.4
Outcome Mean	0.210	0.210	0.210
Num. obs.	33720	33720	33720
*** n < 0 01 · ** n <			tandard errors (50 kr

Shift-share Instrumental Variable Estimation

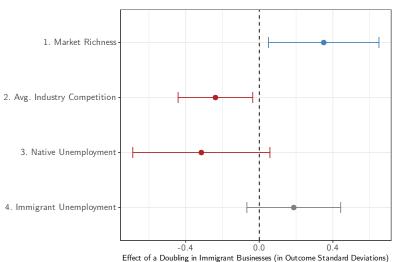
	Δ RN Vote Share			
	Reduced Form	OLS	2SLS	
Instrument	0.041***			
	(0.010)			
∆ Exposure (log)		0.001***	0.073***	
		(0.000)	(0.026)	
Urban/Rural controls	Yes	Yes	Yes	
Department FE	Yes	Yes	Yes	
F (first stage)			45.4	
Outcome Mean	0.210	0.210	0.210	
Num. obs.	33720	33720	33720	
****p < 0.01; **p <	0.05; * $p < 0.1$	I. Conlev	Standard errors (50 km	

- → Doubling the number of businesses between 2009 and 2019
 - \Rightarrow 5 percentage point increase in RN vote.

Shift-share Instrumental Variable Estimation

	Δ RN Vote Share			
	Reduced Form	OLS	2SLS	
Instrument	0.041***			
	(0.010)			
Δ Exposure (log)		0.001***	0.073***	
		(0.000)	(0.026)	
Urban/Rural controls	Yes	Yes	Yes	
Department FE	Yes	Yes	Yes	
F (first stage)			45.4	
Outcome Mean	0.210	0.210	0.210	
Num. obs.	33720	33720	33720	
	0.05 : * $\rho < 0.1$		Standard errors (50	

- → Doubling the number of businesses between 2009 and 2019
 - \Rightarrow 5 percentage point increase in RN vote.
- \rightsquigarrow Nationally: 1/4 to 1/3 of total change in RN support.

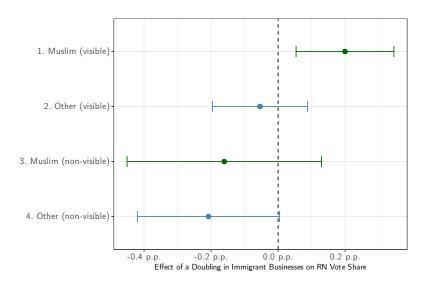

Mechanisms

Is the effect driven by a negative economic impact?

2 Is it due to a visual, symbolic impact?

Mechanisms: Economic Channels

Mechanisms: Economic Channels


Mechanisms

Is the effect driven by a negative economic impact?

Is it due to a visual, symbolic impact?

Mechanisms: Symbolic Channel

Mechanisms: Symbolic Channel

Contributions

Immigration and far-right support

(Hopkins, 2010; Pupaza & Wehner, 2023; Alrababah et al., 2024; Margalit et al., 2024)

Visibility is a key variable.

Contributions

Immigration and far-right support

(Hopkins, 2010; Pupaza & Wehner, 2023; Alrababah et al., 2024; Margalit et al., 2024)

- Visibility is a key variable.
- Economic versus cultural explanations of attitudes (Hainmueller & Hopkins, 2014; Tabellini, 2020; Alesina et al., 2023)
 - Even economic contributions can cause cultural backlash.

Contributions

Immigration and far-right support

(Hopkins, 2010; Pupaza & Wehner, 2023; Alrababah et al., 2024; Margalit et al., 2024)

- Visibility is a key variable.
- Economic versus cultural explanations of attitudes (Hainmueller & Hopkins, 2014; Tabellini, 2020; Alesina et al., 2023)
 - Even economic contributions can cause cultural backlash.
- Ontact theory and demographic change

(Allport, 1954; Enos, 2014; Hangartner et al., 2019; Nathan & Sands, 2023)

Broader conception of exposure: individuals interact with symbols.

Thanks

Martin Devaux

msd2202@columbia.edu www.martindevaux.com

Supplementary Slides

Data and Measurement

```
Business Registration Growth Rates

Immigrant Businesses, 2024 Map

Data Structure MR and AIC
```

Classification

```
Validation Industry Differences

Examples
```

Instrumental Variable

```
Presentation 1st Stage 2nd Stage
Industry Trends Industrial Composition
Other Parties Economic Outcomes Taxes
Turnout Jackknife Other weights
Shift, explained Agglomeration Evidence
```

R

```
Obs. 1st Stage Obs. 2nd Stage

Placebo Period Bootstrap

Monotonicity Leave-One-Out
```

Other Models

```
TWFE by Origin TWFE Inputed

TWFE Proportions TWFE Segregation
```

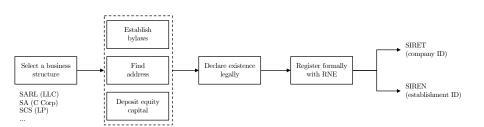
Survey Experiment

```
Control Article Treatment Article

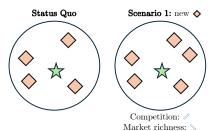
Results - Identity Results - Economy
```

Google Maps Reviews

```
Reviewers Ratings
```


Main Contents

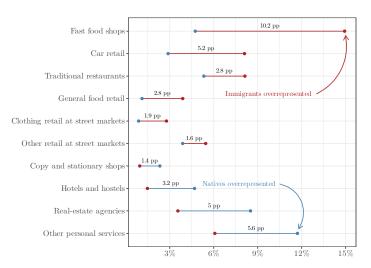
- Introduction
- 2 Theory
- 3 Data
- 4 Identification
- 6 Results
- 6 Mechanisms
- Takeaways


Examples of Namsor Classification

First names	Last name	Origin	Score	Alternative origins
Yannick	Rousse	French	0.94	Flemish, Jewish, Walloon,
Florent	Piard	French	0.95	Flemish, Swiss, Italian,
Edwige; Marie; Denise	Pelissier	French	0.96	Flemish, Jewish, German,
Georges	Jorge De Figueiredo	Portuguese	0.81	Jewish, French, German,
Niyazi	Karslioglu	Turkish	0.96	Armenian, Azerbaijani, Georgian,
Clement; Michel; Yves	Caurier	French	0.96	Flemish, Jewish, British,
Patrick	Crochet	French	0.96	Jewish, Flemish, British,
Cyril	Rabasa	Filipino	0.43	French, Hispanic, Jewish,
Olivier;Simon;Jacques	Deray	French	0.91	Flemish, Jewish, British,
Thierry	Gordillo	Hispanic	0.75	Italian, French, Jewish,

Business Creation Process

Economic Outcome Measures



$$\mathsf{AIC}_m = 1 - \left\{ \sum_{j=1}^J W_j \times \frac{1}{n_j^2} \right\}$$

$$MR_{m} = 1 - \sum_{j=1}^{J} \left(\frac{\sum_{i \in j} w_{m,i}}{\sum_{i}^{K_{m}} w_{m,i}} \right)^{2}$$

Data: Industry Differences between Natives and Immigrants

Validation of the Classification

- I test how predictive the algorithm is of the birth countries of people deceased since 1962 (Algerian Independence).
- Country correctly corrected in 44% of cases.
- Country (outside Europe and North America) correctly corrected in 55% of cases.
- Region correctly corrected in 82% of cases.
- Whether from Europe or North America: 87% of cases.
- Whether from Muslim-majority country: in 94% of cases.

Detail of First Stage Estimates

	First Stage	PI	acebo
	Δ Exposure (log)	Δ Nat. Bus. (log)	Δ Foreign Pop. (log)
Instrument	0.570***	-0.061	0.346
	(0.150)	(0.042)	(0.213)
Dist. to highway (log)	-0.016^{***}	-0.009***	0.000
	(0.006)	(0.002)	(0.005)
Native businesses (log, 2009)	-0.090***	-0.152***	0.002
	(0.018)	(0.012)	(0.034)
Foreign pop. in mun. (log, 2009)	0.011**	-0.001	-0.677^{***}
	(0.004)	(0.001)	(0.014)
Foreign pop. around (log, 2009)	-0.007	0.014^{***}	0.029
	(0.011)	(0.004)	(0.018)
Population (log, 2009)	0.034^*	0.093***	0.908***
	(0.020)	(0.012)	(0.037)
Population around (log, 2009)	0.026	0.003	0.065
, ,	(0.018)	(0.007)	(0.053)
Prop. unemployed (2009)	-1.249***	-0.202**	5.098***
,	(0.370)	(0.079)	(0.663)
Prop. college graduate (2009)	-0.159	0.427^{***}	-0.505**
,	(0.107)	(0.070)	(0.210)
Prop. HS graduate (2009)	0.228	0.808***	-0.231
	(0.281)	(0.091)	(0.539)
Urban/Rural controls	Yes	Yes	Yes
Department FE	Yes	Yes	Yes
Num. obs.	33721	33721	33721
R^2	0.059	0.468	0.325
Adj. R ²	0.056	0.466	0.323

p < 0.01; p < 0.05; p < 0.1. Conley Standard errors (50 km).

Detail of Second Stage Estimates

		Δ RN Vote Share	e
	Reduced Form	OLS	2SLS
Instrument	0.041***		
	(0.010)		
Δ Exposure (log)		0.001***	0.073***
		(0.000)	(0.026)
Foreign pop. (log, 2009)	-0.001***	-0.001***	-0.002***
	(0.000)	(0.000)	(0.001)
Foreign pop. around (log, 2009)	-0.002**	-0.002**	-0.002
	(0.001)	(0.001)	(0.001)
Population (log, 2009)	0.002*	0.003**	-0.000
, ,	(0.001)	(0.001)	(0.002)
Population around (log, 2009)	0.004***	0.004***	0.003
, , ,	(0.002)	(0.002)	(0.002)
Prop. unemployed (2009)	0.181*	0.179*	0.272***
	(0.094)	(0.095)	(0.099)
Prop. college graduate (2009)	-0.349***	-0.350***	-0.338***
	(0.049)	(0.049)	(0.054)
Prop. HS graduate (2009)	-0.166***	-0.167^{***}	-0.183***
	(0.044)	(0.044)	(0.054)
Native businesses (log, 2009)	-0.011***	-0.013***	-0.005
, ,	(0.002)	(0.002)	(0.003)
Dist. to highway (log)	-0.001**	-0.001**	-0.000
	(0.001)	(0.001)	(0.001)
Urban/Rural controls	Yes	Yes	Yes
Department FE	Yes	Yes	Yes
F (first stage)			45.4
Outcome Mean	0.210	0.210	0.210
Num. obs.	33720	33720	33720

^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)

Second Stage for Other Parties

		25	SLS	
	Far Left	Green Party	Socialists	Republican
Δ Exposure (log)	-0.02	-0.01	-0.01	0.03
	(0.02)	(0.01)	(0.02)	(0.02)
Dist. to highway (log)	0.00	-0.00***	0.00	-0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Native businesses (2009)	-0.00	0.00	0.01***	-0.02***
	(0.00)	(0.00)	(0.00)	(0.00)
Population (log, 2009)	0.01^{*}	-0.00	-0.00*	0.01***
	(0.00)	(0.00)	(0.00)	(0.00)
Population around (log, 2009)	-0.00	0.00	-0.00*	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Prop. unemployed (2009)	-0.01	-0.19***	-0.19***	0.51***
	(0.05)	(0.04)	(0.04)	(0.06)
Prop. college graduate (2009)	0.06***	-0.06***	0.16***	-0.10**
	(0.02)	(0.01)	(0.01)	(0.04)
Prop. HS graduate (2009)	0.05^{**}	-0.03***	0.13***	-0.02
	(0.02)	(0.01)	(0.02)	(0.04)
Urban/Rural controls	Yes	Yes	Yes	Yes
Department FE	Yes	Yes	Yes	Yes
F (first stage)	47.9	47.9	47.9	47.9
Num. obs.	33720	33720	33720	33720

***p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)

Bootstrap Estimates

	First Stage	Second Stage
	Δ Exposure (log)	Δ RN Vote Share
Instrument	0.53***	
	(0.15)	
Δ Exposure (log)		0.08***
		(0.02)
Dist. to highway (log)	-0.02^{***}	-0.00
	(0.00)	(0.00)
Native businesses (log, 2009)	-0.09***	-0.00
	(0.01)	(0.00)
Foreign pop. in mun. (log, 2009)	0.01***	-0.00***
	(0.00)	(0.00)
Foreign pop. around (log, 2009)	0.00	-0.00
	(0.00)	(0.00)
Population (log, 2009)	0.05***	0.00
	(0.01)	(0.00)
Prop. unemployed (2009)	-1.24***	0.29^{***}
	(0.31)	(0.07)
Prop. college graduate (2009)	-0.14**	-0.34***
	(0.07)	(0.01)
Prop. HS graduate (2009)	0.19	-0.18***
	(0.21)	(0.03)
Urban/Rural controls	Yes	Yes
Department FE	Yes	Yes
Num. obs.	33756	33756

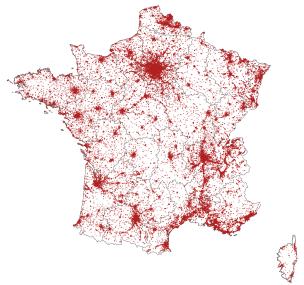
***p < 0.01; **p < 0.05; *p < 0.1. Bootstrap Standard Errors.

"Observed" First Stage

	First Stage	Pl	acebo
	Δ Exposure (log)	Δ Nat. Bus. (log)	Δ Foreign Pop. (log)
Instrument	0.49**	-0.09**	-0.19
	(0.20)	(0.04)	(0.36)
Dist. to highway (log)	-0.01**	-0.00***	0.00
	(0.00)	(0.00)	(0.00)
Native businesses (log, 2009)	-0.02**	-0.06***	-0.01
	(0.01)	(0.01)	(0.03)
Foreign pop. in mun. (log, 2009)	0.00	-0.00	-0.54***
	(0.00)	(0.00)	(0.01)
Foreign pop. around (log, 2009)	0.00	0.01**	0.02
	(0.01)	(0.00)	(0.01)
Population (log, 2009)	0.01	0.04***	0.74***
	(0.01)	(0.01)	(0.03)
Prop. unemployed (2009)	-0.48**	-0.06	4.23***
	(0.23)	(0.07)	(0.53)
Prop. college graduate (2009)	-0.07	0.24***	-0.29^*
	(0.07)	(0.03)	(0.17)
Prop. HS graduate (2009)	-0.01	0.31***	-0.77
	(0.20)	(0.05)	(0.47)
Urban/Rural controls	Yes	Yes	Yes
Department FE	Yes	Yes	Yes
Num. obs.	33727	33727	33727
R^2	0.04	0.25	0.27
Adj. R ²	0.03	0.25	0.27

p < 0.01; p < 0.05; p < 0.1. Conley Standard errors (50 km).

"Observed" Second Stage

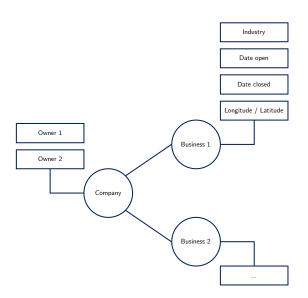

		Δ RN Vote		
	Reduced Form	OLS	2SLS	2SLS
Instrument	0.01***			
	(0.00)			
Δ Exposure (log)		0.00***	0.06***	0.06***
		(0.00)	(0.02)	(0.02)
Foreign pop. (log, 2009)	-0.00***	-0.00***	-0.00***	-0.00***
	(0.00)	(0.00)	(0.00)	(0.00)
Foreign pop. around (log, 2009)	-0.00**	-0.00**	-0.00	-0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Population (log, 2009)	0.00**	0.00**	-0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Population around (log, 2009)	0.00**	0.00***	0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Prop. unemployed (2009)	0.19**	0.18^{*}	0.26***	0.26***
	(0.09)	(0.09)	(0.09)	(0.09)
Prop. college graduate (2009)	-0.35***	-0.35***	-0.34***	-0.34***
	(0.05)	(0.05)	(0.05)	(0.06)
Prop. HS graduate (2009)	-0.16***	-0.17^{***}	-0.18****	-0.18***
	(0.04)	(0.04)	(0.05)	(0.05)
Native businesses (log, 2009)	-0.01***	-0.01***	-0.01*	-0.01*
	(0.00)	(0.00)	(0.00)	(0.00)
Δ Native bus. (log)				-0.00
				(0.00)
Dist. to highway (log)	-0.00**	-0.00**	-0.00	-0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Urban/Rural controls	Yes	Yes	Yes	Yes
Department FE	Yes	Yes	Yes	Yes
Outcome Mean	0.21	0.21	0.21	0.21
Num. obs.	33720	33720	33720	33720

^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)

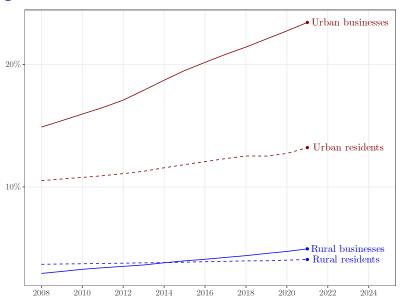
Placebo Period

	Placebo First Stage
	Δ Exposure (log, 2001 - 2009)
Instrument	-0.03
	(0.18)
Dist. to highway (log)	0.01
	(0.01)
Native businesses (log, 2009)	-0.02
	(0.02)
Foreign pop. in mun. (log, 2009)	-0.00
	(0.00)
Foreign pop. around (log, 2009)	-0.04***
	(0.01)
Population (log, 2009)	0.00
	(0.02)
Population around (log, 2009)	0.06***
, , , , , , , , , , , , , , , , , , , ,	(0.02)
Prop. unemployed (2009)	0.06
	(0.47)
Prop. college graduate (2009)	-0.28**
	(0.11)
Prop. HS graduate (2009)	0.02
	(0.33)
Urban/Rural controls	Yes
Department FE	Yes
Num. obs.	33721
R^2	0.06
Adj. R ²	0.06
	.1. Conley Standard errors (50 km

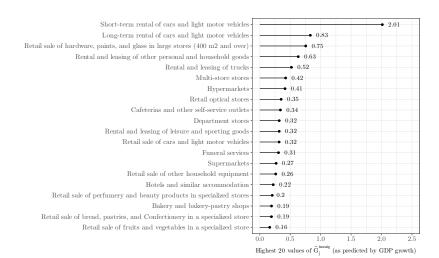
All Immigrant-Owned Businesses, January 2024

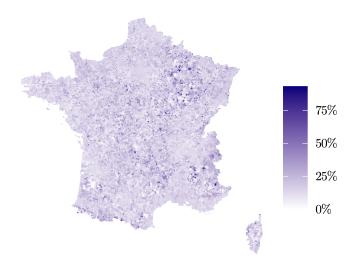


Second Stage: Economic Outcomes


			2SLS	
	Δ ΜC	Δ AIC	Δ Nat. unemp.	Δ Immig. unemp
Δ Exposure (log)	0.03**	-0.04**	-0.01*	0.03
	(0.01)	(0.02)	(0.01)	(0.02)
Foreign pop. (log, 2009)	-0.00	0.00	0.00***	-0.00***
	(0.00)	(0.00)	(0.00)	(0.00)
Foreign pop. around (log, 2009)	-0.00**	-0.01***	0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Population (log, 2009)	-0.00**	0.00	0.00***	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Population around (log, 2009)	-0.00	0.01***	-0.00	-0.00
, - ,	(0.00)	(0.00)	(0.00)	(0.00)
Prop. unemployed (2009)	0.06***	0.02	-0.36***	-0.23***
	(0.02)	(0.03)	(0.03)	(0.05)
Prop. college graduate (2009)	-0.00	-0.01	-0.04***	-0.01
	(0.00)	(0.01)	(0.00)	(0.01)
Prop. HS graduate (2009)	0.00	-0.05***	-0.05***	-0.04^{*}
	(0.01)	(0.02)	(0.01)	(0.03)
Native businesses (log, 2009)	0.00*	-0.01***	-0.00	0.00
, , ,	(0.00)	(0.00)	(0.00)	(0.00)
Dist. to highway (log)	0.00**	-0.00	-0.00	0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Urban/Rural controls	Yes	Yes	Yes	Yes
Department FE	Yes	Yes	Yes	Yes
F (first stage)	45.4	45.4	48.0	41.6
Outcome Mean	0.01	0.03	0.01	0.01
Num. obs.	33721	33721	33721	31122

^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)


Business Data Structure


Immigrant Business Creation

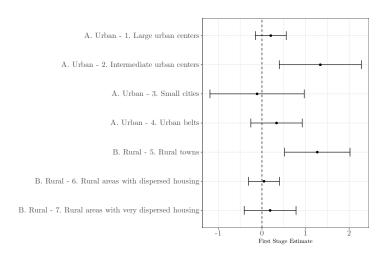
Shift-Share Instrument: Industry Trends

Shift-Share Instrument: Industrial Composition

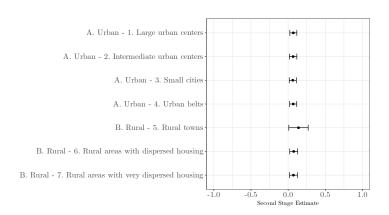
Estimation of Industry Trends with GDP Growth

• For industry j and countries $c \in C$, I calculate the Growth Mix:

$$GM_j = \sum_{c \in j} \omega_c GDP Growth_c$$


• I then estimate growth in the number of immigrant businesses in that industry:

$$G_j^{immig} = \eta + \zeta \mathsf{GM}_j + \xi_j$$


	Residual Growth in Im. Businesses (2009-2019)
Constant	1.31**
	(0.59) -2.69**
Weighted Average of GDP Growth	-2.69**
	(1.16)
R^2	0.06
Adj. R ²	0.05
Num. obs.	87
*** $p < 0.01 \cdot ** p < 0.05 \cdot * p < 0.05 \cdot $	n 1

^{***}p < 0.01; **p < 0.05; *p < 0.1

First Stage by Type of Municipality

Leave-One-Out: Robustness to Dropping Subgroups

Linear-Models: By Origin and Type of Business

·	RN Vote Share		
	A. Aggregate	B. By origin	C. By type of spac
All exposure (storefront, log)	0.002**		0.002**
	(0.001)		(0.001)
All exposure (hidden, log)	-0.005		-0.005
	(0.003)		(0.003)
Exposure - Muslim (storefront, log)		0.003***	
,		(0.001)	
Exposure - other (storefront, log)		-0.001	
, , , , , , , , , , , , , , , , , , , ,		(0.001)	
Exposure - Muslim (hidden, log)		-0.002	
		(0.002)	
Exposure - other (hidden, log)		-0.003*	
		(0.002)	
Prop. of Social Spaces			0.004
			(0.010)
Exposure × Prop. Soc. Spaces			0.001
			(0.002)
Year FE	Yes	Yes	Yes
Municipality FE	Yes	Yes	Yes
Num. obs.	434048	434048	434048
Adj. R ² (full model)	0.847	0.847	0.847
Adj. R ² (proj model)	0.059	0.059	0.059

^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km).

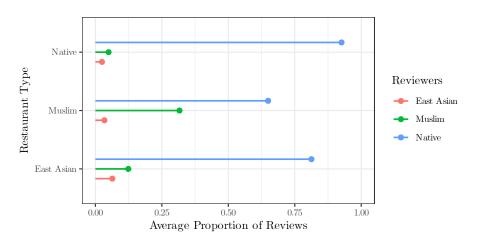
Linear Models: Controling for Imputed Immigration Presence

A. Aggregate 0.003** (0.001) -0.001 (0.003)	0.002** (0.001) -0.001	C. By type of space 0.001 (0.001) -0.004 (0.003)
(0.001) -0.001	$(0.001) \\ -0.001$	(0.001) -0.004
-0.001	$(0.001) \\ -0.001$	-0.004
	$(0.001) \\ -0.001$	
(0.003)	$(0.001) \\ -0.001$	(0.003)
	$(0.001) \\ -0.001$	
	-0.001	
	(0.001)	
	(0.001)	
	-0.002	
	(0.002)	
	-0.003**	
	(0.001)	
		0.002
		(0.003)
-0.165***	-0.229***	-0.230***
(0.050)	(0.058)	(0.059)
Yes	Yes	Yes
Yes	Yes	Yes
413200	413200	413200
0.848	0.847	0.847
0.061	0.052	0.051
	Yes Yes 413200 0.848 0.061	(0.001) -0.165*** -0.229*** (0.050) (0.058) Yes Yes Yes Yes 413200 413200 0.848 0.847

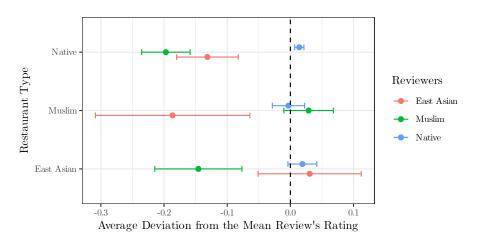
Linear Models: As Proportions of All Businesses

	RN Vote Share	
	A. Aggregate	B. By origin
Prop. immigrant businesses (storefront)	-0.241***	
	(0.066)	
Prop. immigrant businesses (hidden)	-0.134	
	(0.095)	
Prop. Muslim businesses (storefront)		1.198***
		(0.326)
Prop. other businesses (storefront)		-0.896^{***}
		(0.216)
Prop. Muslim businesses (hidden)		-0.022
		(0.124)
Prop. other businesses (hidden)		-0.534***
		(0.207)
Year FE	Yes	Yes
Municipality FE	Yes	Yes
Num. obs.	413200	413200
$Adj. R_{-}^{2}$ (full model)	0.845	0.846
$Adj.\;R^2\;(proj\;model)$	0.068	0.075
p < 0.01; p < 0.05; p < 0.05;	 Conley Stand 	ard errors (50

Local Business Tax as an Outcome


	2SLS		
	∆ Local Corporate Tax Rate		
Δ Exposure (log)	3.13*		
	(1.61)		
Urban/Rural controls	Yes		
Department FE	Yes		
F (first stage)	45.5		
Outcome Mean	12.08		
Num. obs.	33719		
*** 4 / 0 01 · ** 4 / 0 05 · * 4 / 1	0.1 Conlay Standard arrors (EO km)		

Linear Models: Interactions with Segregation


	OLS	
	RN Vote Share	RN Vote Share
Exposure (storefront, log)	-0.003*	-0.000
	(0.002)	(0.001)
Dissimilarity Index	-0.206	
	(0.149)	
Relative Diversity Index		-0.018
		(0.040)
Exposure × Diss. Index	0.048***	
	(0.016)	
Exposure × Relative Div. Index		0.036***
		(0.008)
Year FE	Yes	Yes
Municipality FE	Yes	Yes
Num. obs.	413200	413200
Adj. R 2 (full model)	0.849	0.848
Adj. R^2 (proj model)	0.062	0.056

***p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km).

Google Maps: Reviewer Groups

Google Maps: Average Ratings by Groups

Survey Experiment Article: Control

In Perpignan, the bakery-pastry shop is leaving the Halles Vauban for good: find out what concept will replace it

Published on 11/05/2024 at 5:48 PM

By Diane Sabouraud

The Halles Vauban pastry shop ceased all operations on October 31st. Within its walls, a brasserie project is being spearheaded by two young Catalan entrepreneurs.

The Halles postry shop has closed its doors for good. It's the most visible brand at the Halles Vandam, as it was the first to introduce the treasty or so corners boxeted in the former reportmose passagency. It's therefore difficult to walk past without noticing that the stalls have been empired of their delocates; the breach form their backes, and the coffees from their cups, which still sit proudly on the back counter. However, the establishment cost all operations on the evening of Thundby, Ortober 31, 2024. "They've been trying to sell for months, as basiness hasn't been going as planned," they say at the Halles Vandam.

But such a location obviously doesn't stay on the market for long. According to information from Underpendant, a loyer is already in the running. While they wish to remain discreet while the administrative process is finalized, two young enterpenages have hundred procedures to take over the Instiness. But they will completely change the nature of the place. Our with the pearty dops, in with a Inseries: The project requires major renountions to redesign the premises. Ultimately, 60 to 70 seats are expected inside and around 40 on the terrace.

A new bakery coming soon?

We'll have to wait a while before discovering this new culinary offering in town. While the transaction is finalized and the renovations are completed, the opening is not expected to take place before the end of the year.

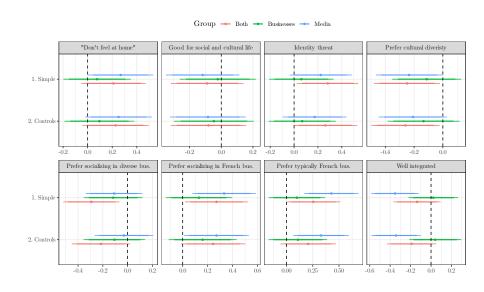
Survey Experiment Article: Treatment

Perpignan City Council: The establishment of "halal restaurants" on Rue de la Cloched'Or raises eyebrows among Louis Aliot and the opposition

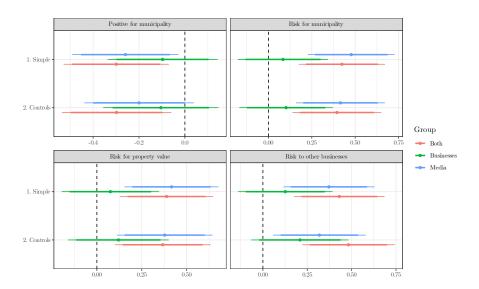
Published on 06/22/2022 at 6:52 PM, updated on 06/23/2022 at 10:34 AM

By Diane Sabouraud

During the city council meeting this Wednesday, June 22, Louis Aliot returned to the issue of the purchase of the deven empty businesses on Rue de la Cloche d'Or. He asserted, among other things, that the buyers were companies specializing in halal catering. And he protested.


In the Perrigiana assembly, the RN mayor, Losia Milor, raised the issue before beginning the agenda. For the record, lindependant ferouselot the day before that the elevent businesses purchased by entrypeasure MiloNuder Childri in October 2000 to create a goarmet street had been roudd. The buyer is believed to be a group of investors, represented by a spokesperson. This is a rather serious matter, *Losia Aliot amounted soliemily. *Our services have received a declaration of intent to sell (DM) concerning of the ordernations. We met with the selling owner this morning, who confirmed or concerns. Re plants to sell to companies that share the common goal of providing halal restaurants.*

"This also raises a question of overall identity."


The RN mayor insists that this plan for halal restaurants is in "total opposition to our plan for the city center, which is to make it a high-quality commercial hub. And this also raises a question of overall identity."

Two proposals were submitted to the city council: buying back the businesses or preempting them. On behalf of the opposition LR party, Fierre Parrat advocated for preemption, assuing that "given the state of the shops, it won't cost you a lot. And whatever the cost, you must act. We share your concerns and, in this regard, we will be fully in line with the muors's decision.

Survey Results: Socio-Cultural Questions

Survey Results: Economic Questions

$$Z_m =$$

To get a municipality-level instrument, I combine:

• **Shift**: national trends in immigrant business creation by industry (2009-2019).

$$Z_m = G_j^{immig}$$


- **Shift**: national trends in immigrant business creation by industry (2009-2019).
 - Estimated using GDP growth in immigrants' countries of origin.

$$Z_m = G_j^{immig}$$
 using $G_j^{immig} = \eta + \zeta GDP Growth_j$

- **Shift**: national trends in immigrant business creation by industry (2009-2019).
 - Estimated using GDP growth in immigrants' countries of origin.
 - Residualized to partial out similar trends among natives.

$$Z_m = \tilde{G}_j^{immig}$$
 using $G_j^{immig} = \eta + \zeta \text{GDP Growth}_j$

$$\tilde{G}_{j}^{immig} = G_{j}^{immig} - \hat{G}_{j}^{immig} \quad \text{where} \quad \hat{G}_{j}^{immig} = \alpha + \hat{\beta}G_{j}^{native}$$

- **Shift**: national trends in immigrant business creation by industry (2009-2019).
 - Estimated using GDP growth in immigrants' countries of origin.
 - Residualized to partial out similar trends among natives.
- Share: pre-period (2005) industrial composition of the municipality.

$$Z_m = S_{m,j}$$
 \tilde{G}_j^{immig} using $G_j^{immig} = \eta + \zeta \text{GDP Growth}_j$

$$\tilde{G}_{j}^{immig} = G_{j}^{immig} - \hat{G}_{j}^{immig} \quad \text{where} \quad \hat{G}_{j}^{immig} = \alpha + \hat{\beta}G_{j}^{native}$$

- **Shift**: national trends in immigrant business creation by industry (2009-2019).
 - Estimated using GDP growth in immigrants' countries of origin.
 - Residualized to partial out similar trends among natives.
- Share: pre-period (2005) industrial composition of the municipality.
- **Shift-share**: weighted sum of these trends.

$$Z_m = \sum_{j=1}^J S_{m,j} \times \tilde{G}_j^{immig}$$
 using $G_j^{immig} = \eta + \zeta \text{GDP Growth}_j$

$$\tilde{G}_{j}^{immig} = G_{j}^{immig} - \hat{G}_{j}^{immig} \quad \text{where} \quad \hat{G}_{j}^{immig} = \alpha + \hat{\beta}G_{j}^{native}$$

Second Stage: Turnout

Table: Second-Stage Stage Estimates, Other Voting Outcomes

	2SLS	
	Δ RN Prop. of Reg. Voters	Δ Turnout
Δ Exposure (log)	0.03*	0.03
	(0.01)	(0.02)
Foreign pop. (log, 2009)	-0.00***	-0.00**
	(0.00)	(0.00)
Foreign pop. around (log, 2009)	-0.00	0.00
	(0.00)	(0.00)
Population (log, 2009)	-0.00**	-0.00
,	(0.00)	(0.00)
Population around (log, 2009)	0.00	0.00
, - ,	(0.00)	(0.00)
Prop. unemployed (2009)	0.01	-0.04
	(0.07)	(0.06)
Prop. college graduate (2009)	-0.13***	0.00
	(0.03)	(0.03)
Prop. HS graduate (2009)	-0.08***	-0.01
, ,	(0.03)	(0.03)
Native businesses (log, 2009)	-0.00	0.00
, ,	(0.00)	(0.00)
Dist. to highway (log)	-0.00	0.00
2 , , 2,	(0.00)	(0.00)
Urban/Rural controls	Yes	Yes
Department FE	Yes	Yes
F (first stage)	45.5	45.5
Outcome Mean	0.12	0.11
Num. obs.	34775	34775

^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)

IV: Jackknifed Version

Table: Statistical models

	Δ RN Vote Share 2SLS (distance in km)	
Δ Exposure (log)	0.053**	
	(0.025)	
Foreign pop. (log, 2009)	-0.002***	
	(0.001)	
Foreign pop. around (log, 2009)	-0.002	
	(0.001)	
Population (log, 2009)	-0.000	
	(0.002)	
Population around (log, 2009)	0.003**	
	(0.002)	
Prop. unemployed (2009)	0.190	
, , ,	(0.123)	
Prop. college graduate (2009)	-0.329***	
,	(0.053)	
Prop. HS graduate (2009)	-0.181***	
,	(0.050)	
Native businesses (log, 2009)	-0.007**	
	(0.003)	
Dist. to highway (log)	0.000	
	(0.000)	
Urban/Rural controls	Yes	
Department FE	Yes	
F (first stage)	26.1	
Outcome Mean	0.210	
Num. obs.	34775	

^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)

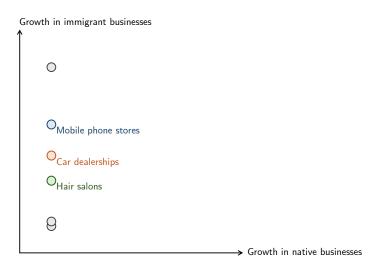
IV: Presidential Elections

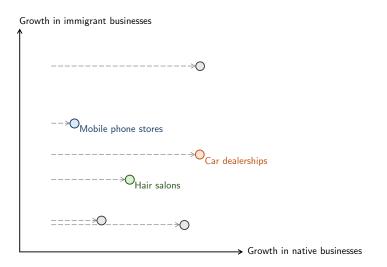
Table: 2SLS with (Presidential Elections)

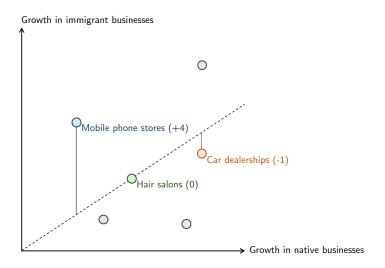
	Δ Exposure (log)	Δ RN Vote Share
	First Stage	Second Stage
Instrument	0.461***	
	(0.140)	
Δ Exposure (log)		0.075**
		(0.031)
Foreign pop. (log, 2008)	0.010**	-0.003***
3 · · · · · · · · · · · · · · · · · · ·	(0.004)	(0.001)
Foreign pop. around (log, 2008)	-0.016	-0.001
	(0.011)	(0.001)
Population (log, 2008)	0.033*	0.002
	(0.018)	(0.003)
Population around (log, 2008)	0.029*	0.001
	(0.016)	(0.002)
Prop. unemployed (2008)	-1.547^{***}	0.102
	(0.417)	(0.102)
Prop. college graduate (2008)	-0.286***	-0.210***
	(0.087)	(0.037)
Prop. HS graduate (2008)	0.355	-0.038
	(0.271)	(0.043)
Native businesses (log, 2008)	-0.084***	-0.008**
, - ,	(0.018)	(0.003)
Dist. to highway (log)	-0.006***	0.000
	(0.002)	(0.000)
Urban/Rural controls	Yes	Yes
Department FE	Yes	Yes
Num. obs.	34777	34409

^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)

IV: Other Weights (1000)


Table: Second Stage with Larger Distance for Weights


	Δ RN Vote Share	
	2SLS (distance in km)	
Δ Exposure (log)	0.184***	
	(0.070)	
Foreign pop. (log, 2009)	-0.003***	
	(0.001)	
Foreign pop. around (log, 2009)	-0.003	
	(0.002)	
Population (log, 2009)	-0.007**	
	(0.003)	
Population around (log, 2009)	0.002	
	(0.003)	
Prop. unemployed (2009)	0.332**	
	(0.146)	
Prop. college graduate (2009)	-0.369***	
	(0.070)	
Prop. HS graduate (2009)	-0.233***	
	(0.067)	
Native businesses (log, 2009)	0.014	
	(0.011)	
Dist. to highway (log)	0.002	
	(0.002)	
Urban/Rural controls	Yes	
Department FE	Yes	
F (first stage)	26.1	
Outcome Mean	0.210	
Num. obs.	33720	


^{***}p < 0.01; **p < 0.05; *p < 0.1. Conley Standard errors (50 km)

Growth in immigrant businesses

Industrial Agglomeration

