Coalition Formation in Coercive Trade

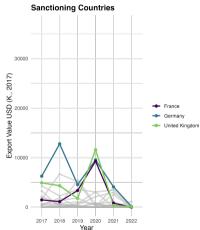
Cindy Wang

The University of Chicago

October 17, 2025

Coercive Trade Policy

- Export controls and sanctions are examples of coercive trade policies.
- Coercion is implemented by restricting trade with the target.

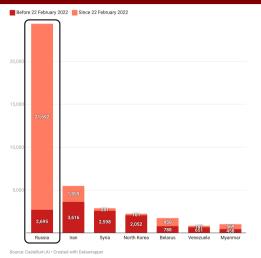

Trade Restrictions

• Trade restrictions cause less trade.

Trade restrictions $\uparrow \longrightarrow \text{Trade} \downarrow$

Export Controls $\uparrow \longrightarrow \text{Trade} \downarrow$

Common High Priority List



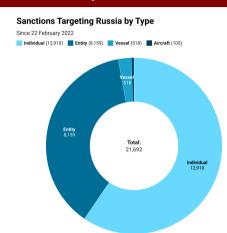
TIER 4.A: Semiconductor Manufacturing Equipment

 Strategic Problem
 Theory
 Model
 Summary
 References

 0000000
 00
 000000000
 00

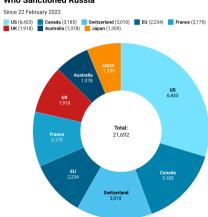
More than 24,000 Sanctions on Russia

Total Sanctions Against Russia



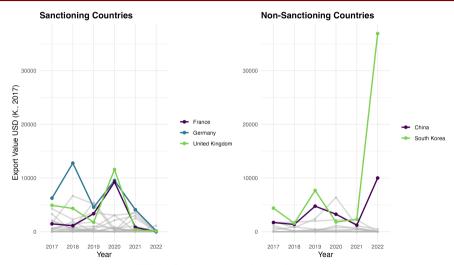
Includes available Australia, Canada, EU, France, Switzerland, UK, and US sanctions.

Source: Castellum.AI - Created with Datawrapper

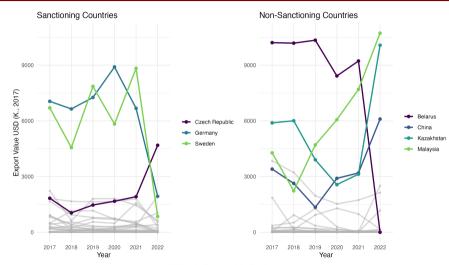

Source: Castellum.AI (2025)

"Love of Variety"

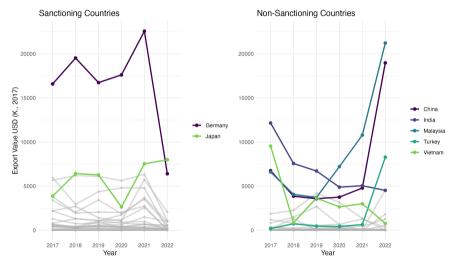
Includes designations from: Australia, Canada, EU, France, Japan, Switzerland, UK, and US. Source: Castellum AI • Created with Datawrapper


Who Sanctioned Russia

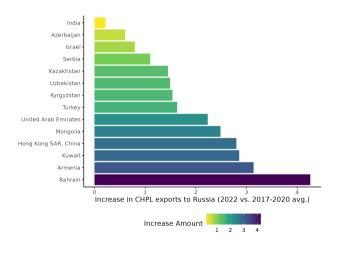
Source: Castellum.Al . Created with Datawrapper


Source: Castellum.AI (2025)

Third-Party Trade ↑


TIER 4.A: Semiconductor Manufacturing Equipment

Third-Party Trade ↑



TIER 3.B: Spherical Roller Bearings

Third-Party Trade ↑

TIER 3.B: Tapered Roller Bearings

Bahrain: 70 times

• Armenia: 23 times

• Kuwait: 17 times

• United Arab Emirates: 9 times

Hong Kong SAR, China: 16 times

Outline

- Strategic Problem
- 2 Theory
- Model
- Summary

• Trade restrictions may shift and increase target-state trade via intermediaries.

Trade restrictions $\uparrow \longrightarrow$ Trade with **substitute countries** \uparrow

Research Questions

- Why do some neutral states comply with trade controls while others evade them?
- When and why do trade controls succeed or fail as instruments of coercion?

Theory

• Trade controls create **price disparities** that incentivize intermediaries to arbitrage through circumvention.

Theory

- Intermediaries evade trade controls when arbitrage profits outweigh detection costs.
- Arbitrage rents arise from price disparities generated by trade controls.
- As trade controls tighten, price differentials widen, amplifying incentives to arbitrage.
- Yet when enforcement raises circumvention costs to prohibitive levels, intermediaries are effectively deterred and revert to compliance.

Model

- Cournot quantity competition
- Arbitrage model adapted from the smuggling model in Martin and Panagariya (1984)

Cournot Model

- Players: Two coalitions of states
 - A: Coercive trade coalition enforcing export controls
 - B: Circumvention coalition evading controls
- Strategy / Actions: Each coalition simultaneously chooses export quantities of a homogeneous good

$$X_A, X_B \in \mathbb{R}^+$$

• Payoffs / Profit Functions: Total revenue minus costs, with asymmetric marginal costs:

$$\pi_A = p(X_A, X_B)X_A - c_A(t)X_A,$$

$$\pi_B = p(X_A, X_B)X_B - c_B X_B,$$

where

$$c_A(t) = c_A(0) + f(t), \quad f(t) > 0, f'(t) > 0.$$

Export control level *t* is exogenous.

Cournot Model

• Market / Price Function: Linear inverse demand in the target state:

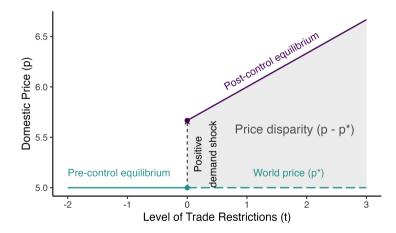
$$p(t) = \begin{cases} a - b(X_A + X_B), & t = 0 \\ a' - b'(X_A + X_B), & t > 0 \end{cases}, \ a' \ge a, \ b' \le b$$

WLOG, set b = b' = 1.

- Solution Concept: Cournot/Nash equilibrium
- Equilibrium quantities:

$$(X_A^*(t), X_B^*(t)) = \frac{1}{3} \begin{cases} (a - 2c_A(0) + c_B, \ a + c_A(0) - 2c_B), & t = 0 \\ (a' - 2c_A(t) + c_B, \ a' + c_A(t) - 2c_B), & t > 0 \end{cases}$$

Cournot Model


• Equilibrium prices:

$$p^* = \frac{1}{3}(a + c_A(0) + c_B), \quad t = 0$$
$$p = \frac{1}{3}(a' + c_A(0) + f(t) + c_B), \quad t > 0$$

• Comparative Statics:

$$p'(t) > 0, \quad p > p^*, \quad p'(p^*) = 1$$

Price Disparity

Arbitrage Model

Players

- A representative circumvention state $i \in B$
- Small economy importing restricted good from coalition *A* and potentially re-exporting to the target state

• Strategy / Actions:

- Re-export quantity M_{1S}
- Circumvention effort β (0 < β < 1)
- Domestic consumption M_{1L} is fixed and exogenous

Arbitrage Model

• Payoffs / Expected Profit:

$$\mathbb{E}(\pi_i) = (1-q)\left(p - \frac{p^*}{\beta}\right)M_{1S},$$

where

$$m = \frac{M_{1S}}{M_{1I}}, \quad q = q(m, \beta), \quad q_m > 0, \ q_\beta > 0, \ q_{\beta m} = 0$$

- p, p^* are domestic and world prices set by quantity competition of coalitions A and B (from previous model)
- \bullet q is the probability of detection by coalition A
- Marginal profit per unit of successful re-export: $p \frac{p^*}{\beta}$

Arbitrage Model

- Solution Concept: Expected profit maximization
- First-Order Conditions:

$$1-q=q_m m,$$
 $q_{\beta}\left(p-rac{p^*}{eta}
ight)=(1-q)rac{p^*}{eta^2}$

• Second-Order Conditions: Ensure strict concavity and unique interior optimum

$$\begin{split} R &\equiv 2q_{m} + mq_{mm} > 0, \\ V &\equiv q_{\beta\beta} \left(\frac{p}{p^{*}}\beta^{2} - \beta\right) + 2q_{\beta} + \frac{2(1-q)}{\beta} > 0 \end{split}$$

Secondary Sanctions

- Shock / Policy Change: Stronger enforcement targeted at state i (secondary sanctions), represented as $q \to q + \alpha$, where α denotes increased probability of detection.
- Comparative Statics α :

$$egin{aligned} rac{\hat{eta}}{\mathrm{d}lpha} &= -rac{R+q_m}{eta(q_mq_eta+VR)} < 0, \ rac{\widehat{M_{\mathrm{LS}}}}{\mathrm{d}lpha} &= -rac{V-q_eta}{m(q_mq_eta+VR)} < 0, \end{aligned}$$

with R, V > 0 as defined in the second-order conditions.

- Intuition:
 - Increased enforcement raises detection probability, effectively increasing re-routing costs
 - Optimal re-export volume M_{1S} and circumvention effort β decline
 - Circumvention becomes prohibitively costly; circumvention costs outweighs gains from exploiting price gaps

Primary Sanctions

- Shock / Policy Change: Tighter primary export controls by coalition A, represented as a trade restriction parameter t > 0.
 - Prices p and p^* are taken as given by the small-economy assumption ($\hat{p^*} = 0$).
- Comparative Statics t:

$$\frac{\hat{\beta}}{\mathrm{d}t} = \frac{R\beta p'(t)}{p^* \left(q_m - \frac{\nu_R}{q_\beta}\right)},\tag{1}$$

$$\frac{\widehat{M_{1S}}}{\mathrm{d}t} = -\frac{\beta^2 p'(t)}{mp^* \left(q_m - \frac{\nu_R}{q_\beta}\right)},\tag{2}$$

where the signs depend on the sensitivity of detection probability q to m and β .

Primary Sanctions

High q_m or q_β (responsive q):

- $\hat{\beta}/\mathrm{d}t > 0$, $\widehat{M}_{1S}/\mathrm{d}t < 0$
- Tighter primary sanctions reduce re-export volume; risk of detection dominates arbitrage gains

Low q_m or q_β (unresponsive q):

- $\hat{\beta}/\mathrm{d}t < 0$, $\widehat{M_{1S}}/\mathrm{d}t > 0$
- Tighter primary sanctions may perversely increase re-export; low detection risk encourages circumvention
 - Effectiveness of primary sanctions hinges on detection sensitivity

Summary

- Intermediaries evade trade controls when arbitrage profits outweigh detection costs.
- Arbitrage rents arise from price disparities generated by trade controls.
- As trade controls tighten, price differentials widen, amplifying incentives to arbitrage.
- Yet when enforcement raises circumvention costs to prohibitive levels, intermediaries are effectively deterred and revert to compliance.

Thank You

Thank you!

References I

Martin, L. and Panagariya, A. (1984). Smuggling, trade, and price disparity: A crime-theoretic approach. *Journal of International Economics*, 17(3-4):201–217.