The Uneven Decline of Students from China in U.S. Higher Education

Keng-Chi Chang Ruixue Jia Steven Liao Margaret E. Roberts

Dartmouth UCSD UCR UCSD

IPES 2025

Oct. 18, 2025

U.S.-China tensions reshaping globalization

- Decoupling (First Trump)
- "Small yard, high fence" (Jake Sullivan, NSA)
- ► COVID-19
- Trade wars (Second Trump)
- → One of the most critical recent developments in the global economy

- U.S.-China tensions reshaping globalization
 - Decoupling (First Trump)
 - "Small yard, high fence" (Jake Sullivan, NSA)
 - ► COVID-19
 - Trade wars (Second Trump)
- → One of the most critical recent developments in the global economy
- A fast-growing literature has examined impact in key areas

U.S.-China tensions reshaping globalization

- Decoupling (First Trump)
- "Small yard, high fence" (Jake Sullivan, NSA)
- ► COVID-19
- Trade wars (Second Trump)
- → One of the most critical recent developments in the global economy

A fast-growing literature has examined impact in key areas

Flows of goods/services (e.g., trade war)

U.S.-China tensions reshaping globalization

- Decoupling (First Trump)
- "Small yard, high fence" (Jake Sullivan, NSA)
- ► COVID-19
- Trade wars (Second Trump)
- → One of the most critical recent developments in the global economy

A fast-growing literature has examined impact in key areas

- Flows of goods/services (e.g., trade war)
- Flows of capital (e.g., FDI) & money (e.g., dollar vs. RMB usage)

U.S.-China tensions reshaping globalization

- Decoupling (First Trump)
- "Small yard, high fence" (Jake Sullivan, NSA)
- ► COVID-19
- Trade wars (Second Trump)
- → One of the most critical recent developments in the global economy

A fast-growing literature has examined impact in key areas

- Flows of goods/services (e.g., trade war)
- ► Flows of capital (e.g., FDI) & money (e.g., dollar vs. RMB usage)
- Global value chains (e.g., near/re-shoring, semiconductors/EVs)

U.S.-China tensions reshaping globalization

- Decoupling (First Trump)
- "Small yard, high fence" (Jake Sullivan, NSA)
- ► COVID-19
- Trade wars (Second Trump)
- → One of the most critical recent developments in the global economy

A fast-growing literature has examined impact in key areas

- ► Flows of goods/services (e.g., trade war)
- ► Flows of capital (e.g., FDI) & money (e.g., dollar vs. RMB usage)
- ► Global value chains (e.g., near/re-shoring, semiconductors/EVs)

Cf. to trade & finance, migration impact less well known

Despite migration being one of three main pillars of globalization

U.S.-China tensions reshaping globalization

- Decoupling (First Trump)
- "Small yard, high fence" (Jake Sullivan, NSA)
- ► COVID-19
- Trade wars (Second Trump)
- \sim One of the most critical recent developments in the global economy

A fast-growing literature has examined impact in key areas

- Flows of goods/services (e.g., trade war)
- Flows of capital (e.g., FDI) & money (e.g., dollar vs. RMB usage)
- Global value chains (e.g., near/re-shoring, semiconductors/EVs)

Cf. to trade & finance, migration impact less well known

- Despite migration being one of three main pillars of globalization
- \sim To what extent & how have tensions \rightarrow cross-border people flows?

- Int'l student inflow △ critical to the U.S.
 - Tuition & higher education
 - Scientific knowledge production & collaboration
 - Local labor markets & the broader economy

- Int'l student inflow △ critical to the U.S.
 - Tuition & higher education
 - Scientific knowledge production & collaboration
 - Local labor markets & the broader economy

ullet Geopolitics o int'l student inflows

- Host security concerns about sensitive technology & fields
- Entry barriers, negative political climates, lower job prospects
- Implications at different levels: national, state, institution, field

- Int'l student inflow △ critical to the U.S.
 - Tuition & higher education
 - Scientific knowledge production & collaboration
 - Local labor markets & the broader economy

ullet Geopolitics o int'l student inflows

- Host security concerns about sensitive technology & fields
- Entry barriers, negative political climates, lower job prospects
- Implications at different levels: national, state, institution, field

Construct original dataset that combines info on:

- ► All F-1/M-1 student visa records, 03'-21': ≈ 6 mil. unique students
- Field sensitivity: new text-based measure by 6-digit CIP
- Institution characteristics

- Int'l student inflow △ critical to the U.S.
 - Tuition & higher education
 - Scientific knowledge production & collaboration
 - Local labor markets & the broader economy

ullet Geopolitics o int'l student inflows

- Host security concerns about sensitive technology & fields
- Entry barriers, negative political climates, lower job prospects
- Implications at different levels: national, state, institution, field

Construct original dataset that combines info on:

- ► All F-1/M-1 student visa records, 03'-21': ≈ 6 mil. unique students
- Field sensitivity: new text-based measure by 6-digit CIP
- Institution characteristics

Explore the Impact of Tensions using DID/DDD

→ ↓ CHN students cf. ROW, esp. for BA and after 2020

- Int'l student inflow △ critical to the U.S.
 - Tuition & higher education
 - Scientific knowledge production & collaboration
 - Local labor markets & the broader economy

$\bullet \ \ \textbf{Geopolitics} \rightarrow \textbf{int'l student inflows}$

- Host security concerns about sensitive technology & fields
- Entry barriers, negative political climates, lower job prospects
- Implications at different levels: national, state, institution, field

Construct original dataset that combines info on:

- ► All F-1/M-1 student visa records, 03'-21': ≈ 6 mil. unique students
- Field sensitivity: new text-based measure by 6-digit CIP
- Institution characteristics

Explore the Impact of Tensions using DID/DDD

- ▶ ↓ CHN students cf. ROW, esp. for BA and after 2020
- ► ↓ CHN students cf. ROW, esp. red state public schools (BA & MA)

Int'l student inflow △ critical to the U.S.

- Tuition & higher education
- Scientific knowledge production & collaboration
- ► Local labor markets & the broader economy

ullet Geopolitics o int'l student inflows

- Host security concerns about sensitive technology & fields
- Entry barriers, negative political climates, lower job prospects
- Implications at different levels: national, state, institution, field

Construct original dataset that combines info on:

- ► All F-1/M-1 student visa records, 03'-21': ≈ 6 mil. unique students
- Field sensitivity: new text-based measure by 6-digit CIP
- Institution characteristics

Explore the Impact of Tensions using DID/DDD

- ▶ ↓ CHN students cf. ROW, esp. for BA and after 2020
- ► ↓ CHN students cf. ROW, esp. red state public schools (BA & MA)
- ▶ \downarrow CHN sensitive-field Ph.D. students by \approx 40%

- Policy Context
- 2 The Effects of Geopolitics
- Oata & Measures
- Students from China vs. The Rest of the World
- 5 The Effect of Tensions on Sub-national Allocations
- 6 The Effect of Tensions on Inflows in Sensitive Fields

- **U.S.-China trade war** (March 2018–)
 - Trump tariffs (March 2018, July 2018)
 - China's retaliatory tariffs (July 2018)

- **U.S.-China trade war** (March 2018–)
 - Trump tariffs (March 2018, July 2018)
 - China's retaliatory tariffs (July 2018)
- ② Justice Department's China Initiative (Nov. 2018–Feb. 2022)
 - To counter national security threats from China
 - Concerns about technology & intellectual property theft
 - Investigations & prosecutions

- U.S.-China trade war (March 2018–)
 - Trump tariffs (March 2018, July 2018)
 - China's retaliatory tariffs (July 2018)
- ② Justice Department's China Initiative (Nov. 2018–Feb. 2022)
 - To counter national security threats from China
 - Concerns about technology & intellectual property theft
 - Investigations & prosecutions
- National Institutes of Health (NIH) investigations (Aug. 2018–)
 - Investigation of scientists about foreign funding
 - As of Jul 2021, involved 93 institutions and 214 scientists
 - Funding suspension, job termination, criminal investigations

- U.S.-China trade war (March 2018–)
 - ► Trump tariffs (March 2018, July 2018)
 - China's retaliatory tariffs (July 2018)
- 2 Justice Department's China Initiative (Nov. 2018–Feb. 2022)
 - To counter national security threats from China
 - Concerns about technology & intellectual property theft
 - Investigations & prosecutions
- National Institutes of Health (NIH) investigations (Aug. 2018–)
 - Investigation of scientists about foreign funding
 - As of Jul 2021, involved 93 institutions and 214 scientists
 - Funding suspension, job termination, criminal investigations
- Pressure on student visas from China (Oct. 2018–)
 - Oct. 2018: Financial Times story: Trump considers bans
 - 2020: Trump limits visas for PLA institution-affiliated CHN students
 - 2023: Florida restricts public institutions from hiring CHN students

- Policy Context
- The Effects of Geopolitics
- Data & Measures
- Students from China vs. The Rest of the World
- 5 The Effect of Tensions on Sub-national Allocations
- 6 The Effect of Tensions on Inflows in Sensitive Fields

- U.S. demand side: increased entry barriers
 - Restrictions on students' past institutions
 - ► Additional screening for sensitive fields ↑ visa delays or denials
 - More restrictions on access to export-controlled tech in labs

- U.S. demand side: increased entry barriers
 - Restrictions on students' past institutions
 - ► Additional screening for sensitive fields ↑ visa delays or denials
 - ▶ More restrictions on access to export-controlled tech in labs
- Student supply side: political climate, job prospects
 - Restrictions on funding/research fellowships in sensitive fields
 - More hostile campus environments, state-level restrictions
 - Increased post-graduation job uncertainty

- U.S. demand side: increased entry barriers
 - Restrictions on students' past institutions
 - ► Additional screening for sensitive fields ↑ visa delays or denials
 - ▶ More restrictions on access to export-controlled tech in labs
- Student supply side: political climate, job prospects
 - Restrictions on funding/research fellowships in sensitive fields
 - More hostile campus environments, state-level restrictions
 - Increased post-graduation job uncertainty
- Policy uncertainty: both supply and demand

- U.S. demand side: increased entry barriers
 - Restrictions on students' past institutions
 - ► Additional screening for sensitive fields ↑ visa delays or denials
 - ▶ More restrictions on access to export-controlled tech in labs
- Student supply side: political climate, job prospects
 - Restrictions on funding/research fellowships in sensitive fields
 - More hostile campus environments, state-level restrictions
 - Increased post-graduation job uncertainty
- Policy uncertainty: both supply and demand

Expectations:

- U.S. demand side: increased entry barriers
 - Restrictions on students' past institutions
 - ► Additional screening for sensitive fields ↑ visa delays or denials
 - ▶ More restrictions on access to export-controlled tech in labs
- Student supply side: political climate, job prospects
 - Restrictions on funding/research fellowships in sensitive fields
 - More hostile campus environments, state-level restrictions
 - Increased post-graduation job uncertainty
- Policy uncertainty: both supply and demand

Expectations:

ightharpoonup Higher entry costs, lower potential returns, int'l student inflows \downarrow

- U.S. demand side: increased entry barriers
 - Restrictions on students' past institutions
 - ▶ Additional screening for sensitive fields ↑ visa delays or denials
 - ▶ More restrictions on access to export-controlled tech in labs
- Student supply side: political climate, job prospects
 - ► Restrictions on funding/research fellowships in sensitive fields
 - More hostile campus environments, state-level restrictions
 - Increased post-graduation job uncertainty
- Policy uncertainty: both supply and demand

Expectations:

- → Higher entry costs, lower potential returns, int'l student inflows ↓
- → Effects should be strongest in sensitive fields & advanced degrees

- U.S. demand side: increased entry barriers
 - Restrictions on students' past institutions
 - ► Additional screening for sensitive fields ↑ visa delays or denials
 - ▶ More restrictions on access to export-controlled tech in labs
- Student supply side: political climate, job prospects
 - Restrictions on funding/research fellowships in sensitive fields
 - More hostile campus environments, state-level restrictions
 - Increased post-graduation job uncertainty
- Policy uncertainty: both supply and demand

Expectations:

- → Higher entry costs, lower potential returns, int'l student inflows ↓
- \leadsto Effects should be strongest in sensitive fields & advanced degrees
- → Students/departments may hedge where tensions are particularly salient (public institutions, red states)

- Policy Context
- The Effects of Geopolitics
- Oata & Measures
- Students from China vs. The Rest of the World
- 5 The Effect of Tensions on Sub-national Allocations
- 6 The Effect of Tensions on Inflows in Sensitive Fields

International Students

- ➤ FOIA of all F-1/M-1 student records in SEVIS, 2003-2021 ≈ 6 mil. unique students, 9.2 mil. student-school-program records
- ► Info on students' country, school, program major, start/end, etc.
- ► Earlier versions used in Liao et. al (2020) and Liao (2023)

International Students

- ► FOIA of all F-1/M-1 student records in SEVIS, 2003-2021 ≈ 6 mil. unique students, 9.2 mil. student-school-program records
- ▶ Info on students' country, school, program major, start/end, etc.
- ► Earlier versions used in Liao et. al (2020) and Liao (2023)

Sensitive Fields

- 16 Critical Fields in State Department's Technology Alert List
- Provides guidance for consular officers adjudicating visas
- ► Classify CIP 6-digit fields (n = 2325) using description similarity

International Students

- ► FOIA of all F-1/M-1 student records in SEVIS, 2003-2021 ≈ 6 mil. unique students, 9.2 mil. student-school-program records
- ▶ Info on students' country, school, program major, start/end, etc.
- ► Earlier versions used in Liao et. al (2020) and Liao (2023)

Sensitive Fields

- 16 Critical Fields in State Department's Technology Alert List
- Provides guidance for consular officers adjudicating visas
- ► Classify CIP 6-digit fields (n = 2325) using description similarity

Institutions

- Integrated Postsecondary Education Data System (IPEDS), 2004–
- Fuzzy match institution names to FOIA schools, manual check all
- ▶ Institution-level characteristics: Public vs. Private
- → Fine-grained data: all students by origin, level, field, institution, year

International Students

- ► FOIA of all F-1/M-1 student records in SEVIS, 2003-2021 ≈ 6 mil. unique students, 9.2 mil. student-school-program records
- ▶ Info on students' country, school, program major, start/end, etc.
- ► Earlier versions used in Liao et. al (2020) and Liao (2023)

Sensitive Fields

- ▶ 16 Critical Fields in State Department's Technology Alert List
- Provides guidance for consular officers adjudicating visas
- ► Classify CIP 6-digit fields (n = 2325) using description similarity

Institutions

- Integrated Postsecondary Education Data System (IPEDS), 2004–
- Fuzzy match institution names to FOIA schools, manual check all
- ► Institution-level characteristics: Public vs. Private
- \leadsto Fine-grained data: all students by origin, level, field, institution, year
- \rightsquigarrow Aggregate up depending on unit of analysis, focus on 2013–2021

International Students

- ► FOIA of all F-1/M-1 student records in SEVIS, 2003-2021 ≈ 6 mil. unique students, 9.2 mil. student-school-program records
- ► Info on students' country, school, program major, start/end, etc.
- ► Earlier versions used in Liao et. al (2020) and Liao (2023)

Sensitive Fields

- 16 Critical Fields in State Department's Technology Alert List
- Provides guidance for consular officers adjudicating visas
- ► Classify CIP 6-digit fields (n = 2325) using description similarity

Institutions

- Integrated Postsecondary Education Data System (IPEDS), 2004–
- Fuzzy match institution names to FOIA schools, manual check all
- ▶ Institution-level characteristics: Public vs. Private
- → Fine-grained data: all students by origin, level, field, institution, year
- → Aggregate up depending on unit of analysis, focus on 2013–2021
- → Enables a wide variety of design-based tests

I-20 Form

Department of Homeland Security U.S. Immigration and Customs Enforcement I-20, Certificate of Eligibility for Nonimmigrant Student Status OMB NO. 1653-0038

SEVIS ID: N0004720633

SURNAME/PRIMARY NAME Sample PREFERRED NAME Student Sample, II

COUNTRY OF BIRTH T.AOS DATE OF BIRTH 04 MAY 1995 FORM ISSUE REASON CIVEN NAME Student PASSPORT NAME

COUNTRY OF CITIZENSHIP T.AOS ADMISSION NUMBER

LEGACY NAME

Class of Admission

ACADEMIC AND LANGUAGE

CONTINUED ATTENDANCE SCHOOL INFORMATION

SCHOOL NAME SEVP School for Advanced SEVIS Studies SEVP School for Advanced SEVIS Studies

SCHOOL OFFICIAL TO CONTACT UPON ARRIVAL Helene Robertson

SCHOOL ADDRESS

03 APRIL 2015

9002 Nancy Lane, Ft. Washington, MD 20744

MAJOR 2

None 00 0000

SCHOOL CODE AND APPROVAL DATE BAL214F44444000

PROGRAM OF STUDY EDUCATION LEVEL

BACHELOR'S PROGRAM ENGLISH PROFICIENCY MAJOR 1 History and Philosophy of Science and Technology 54,0104 ENGLISH PROFICIENCY NOTES

EARLIEST ADMISSION DATE 04 APRIL 2016 Student is proficient

START OF CLASSES PROGRAM START/END DATE 01 JUNE 2016 04 MAY 2016 - 30 MAY 2020

FINANCIALS

PDSO

ESTIMATED AVERAGE COSTS FOR: 9 MONTHS STUDENT'S FUNDING FOR: 9 MONTHS Tuition and Fees \$ 15,000 Personal Funds 19,000 Living Expenses 4,000 Funds From This School Expenses of Dependents (0) n Funds From Another Source Other On-Campus Employment TOTAL \$ 19,000 TOTAL \$ 19,000

FOIA Data Example

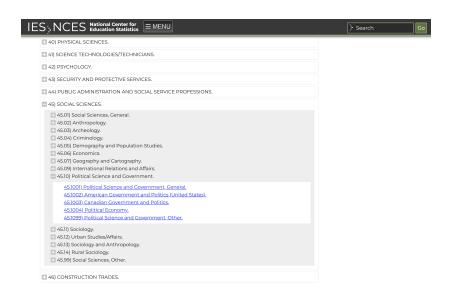
FOIA Data Example

- More comprehensive than existing int'l student datasets
 - e.g., Institute of International Education (IIE) Open Doors data

FOIA Data Example

- More comprehensive than existing int'l student datasets
 - e.g., Institute of International Education (IIE) Open Doors data
- Can construct datasets at various levels
 - student-year, institutions-year, country-field-year, etc.

FOIA Data Example


- More comprehensive than existing int'l student datasets
 - e.g., Institute of International Education (IIE) Open Doors data
- Can construct datasets at various levels
 - student-year, institutions-year, country-field-year, etc.
- Can construct student inflows vs. stock data
 - New enrollment vs. current enrollment

FOIA Data Example

- More comprehensive than existing int'l student datasets
 - e.g., Institute of International Education (IIE) Open Doors data
- Can construct datasets at various levels
 - student-year, institutions-year, country-field-year, etc.
- Can construct student inflows vs. stock data
 - New enrollment vs. current enrollment
- Can merge with other data at Zip Code level
 - U.S. Census

6-digit CIP Fields

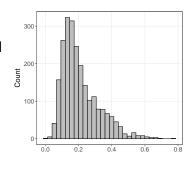
Critical Fields in DOS' Technology Alert List (TAL)

Technology Alert List (TAL)

- Advanced ceramics: Technologies related to the production of tanks, military vehicles, and weapons systems.
- Advanced computer/microelectronic technology: Technologies associated with superconductivity supercomputing, microcomputer compensated crystal oscillators.
- Aircraft and missile propulsion and vehicular systems: Technologies associated with liquid and solid-rocket propulsion systems, missile propulsion, rocket
 - staging/separation mechanisms, aerospace thermal and high-performance structures.
- Chemical and biotechnology engineering: Technologies associated with the development or production of biological and toxin agents, pathogenics, biological weapons research.
- Conventional munitions: Technologies associated with warhead and large caliber projectiles, fusing and arming systems.
- 6. High-performance metals and alloys: Technologies associated with military
- applications.

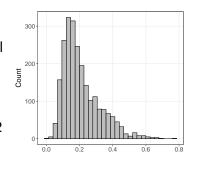
 7. Information security: Technologies associated with cryptographic systems to ensure secrecy of communications.
- Lasers and directed energy systems: Technologies associated with laser-guided bombs, ranging devices, countering missiles.
- Marine technology: Technology associated with submarines and deep submersible vessels, marine propulsion systems designed for undersea use and navigation, radar, acoustic/nonacoustic detection.
- 10. Materials technology: Technologies related to the production of composite materials for structural functions in aircraft, spacecraft, undersea webicles and missiles.
- 11. Missile/missile technology: Technologies associated with air vehicles and unmanned missile systems.
- 12. Navigation and guidance control: Technologies associated with the delivery and accuracy of unguided and guided weapons, such as tracking and homing devices, internal navisation systems, webicle and flight control systems.
- 13. Nuclear technology. Technologies associated with the production and use of nuclear material for military applications.
- 14. Remote imaging and reconnaissance: Technologies associated with military reconnaissance efforts, such as drones, remotely piloted or unmanned vehicles, imagery systems, high resolution cameras.
- 15. Robotics: Technologies associated with artificial intelligence, computer-controlled machine tools.
- 16. Sensors: Technology associated with marine acoustics, missile launch calibration, night vision devices, high-speed photographic equipment.

Source: International Students and Scholar Services, Temple University



• 6-digit CIP field (title) vs. TAL

- 6-digit CIP field (title) vs. TAL
- Use pretrained DistilRoBERTa model (a version of BERT) to get sentence embeddings


- 6-digit CIP field (title) vs. TAL
- Use pretrained DistilRoBERTa model (a version of BERT) to get sentence embeddings
- Measure pairwise cosine similarity

- 6-digit CIP field (title) vs. TAL
- Use pretrained DistilRoBERTa model (a version of BERT) to get sentence embeddings
- Measure pairwise cosine similarity

Cosine Similarity Score

- 6-digit CIP field (title) vs. TAL
- Use pretrained DistilRoBERTa model (a version of BERT) to get sentence embeddings
- Measure pairwise cosine similarity
- Manually check every CIP with ≥ 0.2 cosine similarity and code fields with military-related text as sensitive

Cosine Similarity Score

Sensitive Fields: Examples

*	cip_6d_2020 [‡]	cip_6d_2020_title ÷	cip_6d_2020_def	† sim_max_title †	sim_max_title_def *	sensitive_manual ‡
		Missile and Space Systems Technology.	A program that focuses on the principles, technology		0.6136492	1
		Nuclear/Nuclear Power Technology/Technician.	A program that prepares individuals to apply scientifi		0.7428619	1
	15.0806	Marine Engineering Technology/Technician.	A program that prepares individuals to apply basic en	0.6342970		1
	29.0403	Aircraft Armament Systems Technology.	A program that focuses on the principles, technology			1
		Nuclear Engineering Technology/Technician.	A program that prepares individuals to apply basic en			1
		${\bf Marine\ Maintenance/Fitter\ and\ Ship\ Repair\ Technolog}$	A program that prepares individuals to apply technica			1
		Nuclear and Industrial Radiologic Technologies/Tech	Any instructional program in nuclear and industrial ra	. 0.5970840		1
	15.0405	Robotics Technology/Technician.	A program that prepares individuals to apply basic en	0.5942150	0.5960751	1
		Air and Space Operations Technology.	A program that focuses on the principles, technology			1
	29.9999	Military Technologies and Applied Sciences, Other.	Any instructional program in military technologies an		0.4872288	1
		Nuclear Engineering.	A program that prepares individuals to apply mathem		0.5803382	1
		Aeronautics/Aviation/Aerospace Science and Technol	A program that focuses on the general study of aviati		0.4635155	1
	40.0806	Nuclear Physics.	A program that focuses on the scientific study of the \ldots	0.5684505		1
	47.0608	Aircraft Powerplant Technology/Technician.	A program that prepares individuals to apply technica		0.4899784	1
		Aeronautical/Aerospace Engineering Technology/Tec	A program that prepares individuals to apply basic en			1
		Aerospace, Aeronautical, and Astronautical/Space En	Any program in aerospace, aeronautical, astronautical.		0.4685789	1
		Military Systems and Maintenance Technology, Other.				1
	15.0899	Mechanical Engineering Related Technologies/Techni	Any instructional program in mechanical engineering	0.5450487	0.4341844	1
		Naval Architecture and Marine Engineering.	A program that prepares individuals to apply mathem	0.5447689		1
	51.0905	Nuclear Medical Technology/Technologist.	A program that prepares individuals, under the super	0.5433998	0.6574612	1
		Aerospace Ground Equipment Technology.	A program that focuses on the principles, technology,			1
	14.2001	Metallurgical Engineering.	A program that prepares individuals to apply mathem	0.5358078	0.4753950	1
		Materials Engineering.	A program that prepares individuals to apply mathem	0.5346251	0.6586419	1
		Materials Chemistry.	A program that focuses on the synthesis and study of			1
		Airframe Mechanics and Aircraft Maintenance Technol	A program that prepares individuals to apply technica	. 0.5328065		1
		Aerospace, Aeronautical, and Astronautical/Space En	A program that prepares individuals to apply mathem		0.5214686	1
		Cytotechnology/Cytotechnologist.	A program that prepares individuals to work with pat			1
		Materials Science.	A program that focuses on the general application of \ldots	0.5297986		1
		Military Technology and Applied Sciences Management.	A program that focuses on applied military science, \dots			1
	14.4201	Mechatronics, Robotics, and Automation Engineering.	A program that prepares individuals to apply mathem	0.5238811	0.4950992	1

- Policy Context
- 2 The Effects of Geopolitics
- Data & Measures
- Students from China vs. The Rest of the World
- 5 The Effect of Tensions on Sub-national Allocations
- 6 The Effect of Tensions on Inflows in Sensitive Fields

DID Model: Aggregate

- Unit of analysis: country-education level-year
- Split Sample: level (BA, MA, PhD)
- Model:

$$Y_{c,t} = \beta(China_c \times Post_t) + \alpha_c + \gamma_t + X_{c,t-1} + \epsilon_{c,t},$$

- Outcome of interest: $Y_{c,t}$, total new int'l students
- Key Covariates: China_c × Post_t
 - ► *China_c*: China dummy (vs. ROW)
 - Post_t: 2018 and after
- Fixed Effects: country, year
- Other: $X_{c,t-1}$, country-year covariates, including GDP (log), GDP growth (annual %), GDP per capita (PPP, log), total population (log), export (import) volume to (from) the U.S. (log)
- Clustered Standard Errors: country
- Estimator: NegBin, Quasi-Poisson

DID Results: Aggregate

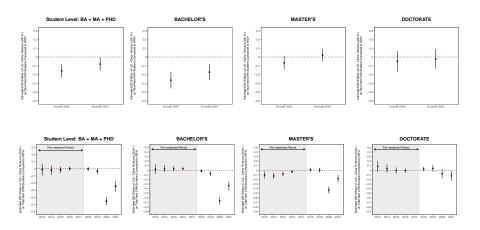


Figure: Relative Change of Total New International Students from China Compared to the ROW, 2013–2021.

- Policy Context
- The Effects of Geopolitics
- Data & Measures
- Students from China vs. The Rest of the World
- 5 The Effect of Tensions on Sub-national Allocations
- 6 The Effect of Tensions on Inflows in Sensitive Fields

DID Model: Institution

- Unit of analysis: country-institution-education level-year
- Split Sample: School type (Red public, red private, blue public, blue private) & level (BA, MA, PhD)
- Model:

$$Y_{c,i,t} = \beta(China_{c,i} \times Post_t) + \alpha_c + \gamma_t + \theta_i + \theta_i \gamma_t + \alpha_c \theta_i + X_{c,t-1} + \epsilon_{c,i,t},$$

- Outcome of interest: $Y_{c,i,t}$, total new int'l students
- Key Covariates: China_{c,i}Post_t
 - ► China_{c.i}: China dummy (vs. ROW)
 - ► *Post_t*: 2018 and after
- Fixed Effects: country, year, institution, institution-year, country-institution
- Other: $X_{c,t-1}$, same country-year covariates as earlier
- Clustered Standard Errors: country
- Estimator: NegBin, Quasi-Poisson

DID Results: Institution

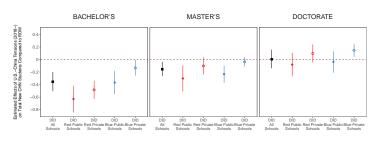
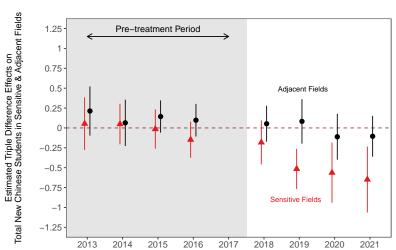


Figure: Relative Change of Total New Chinese International Students Compared to the ROW by State Partisanship and Institution Type

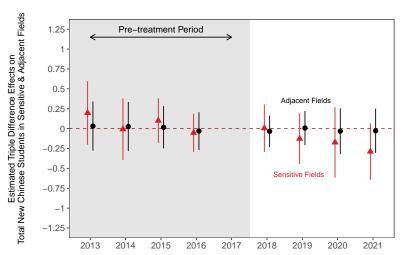
- Policy Context
- 2 The Effects of Geopolitics
- 3 Data & Measures
- Students from China vs. The Rest of the World
- 5 The Effect of Tensions on Sub-national Allocations
- 6 The Effect of Tensions on Inflows in Sensitive Fields

DDD Model

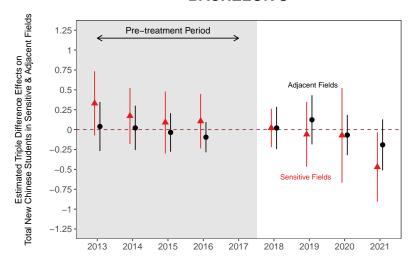
- Unit of analysis: country-education level-CIP field-year
- Split Sample: level (BA, MA, PhD)
- Model:


$$\begin{split} Y_{c,f,t} &= \sum_{t=2013,-2017}^{2021} \beta_t^{S*} (\textit{China}_{c,f} \times \textit{Sensitive}_f \times \gamma_t) + \sum_{t=2013,-2017}^{2021} \beta_t^{S} (\textit{Sensitive}_f \times \gamma_t) + \\ &\sum_{t=2013,-2017}^{2021} \beta_t^{A*} (\textit{China}_{c,f} \times \textit{Adjacent}_f \times \gamma_t) + \sum_{t=2013,-2017}^{2021} \beta_t^{A} (\textit{Adjacent}_f \times \gamma_t) + \\ &\alpha_c + \gamma_t + \theta_f + \alpha_c \gamma_t + \alpha_c \theta_f + \epsilon_{c,f,t}, \end{split}$$

- Outcome of interest: $Y_{c,f,t}$, total new int'l students
- Key Covariates: China_{c,f} \times Sensitive_f $\times \gamma_t$
 - Sensitive_f, sensitive 6-digit CIP field dummy
 - γ_t , year dummy (2013–2021)
 - Year-by-year triple difference estimate, 2017 as baseline
- Fixed Effects: country, year, field, country-year, country-field
- Clustered Standard Errors: 6-digit CIP field
- Estimator: Negative binomial


Tensions Reduced New CHN Sensitive-Field Ph.D.s.

DOCTORATE



CHN MA Students: Null Effects

MASTER'S

CHN BA Students: Null Effects, esp. before COVID BACHELOR'S

Theoretical contribution

- Geopolitics is known to reshape cross-border economic integration
- ► Limited understanding of how U.S.-China tensions have impacted migration compared to trade & investment

Theoretical contribution

- Geopolitics is known to reshape cross-border economic integration
- Limited understanding of how U.S.-China tensions have impacted migration compared to trade & investment
- → Focus on int'l students fills a critical gap in the literature
- \sim Improves understanding of geopolitics \rightarrow global talent flows

Theoretical contribution

- Geopolitics is known to reshape cross-border economic integration
- Limited understanding of how U.S.-China tensions have impacted migration compared to trade & investment
- → Focus on int'l students fills a critical gap in the literature
- \sim Improves understanding of geopolitics \rightarrow global talent flows

Empirical contribution

- Link sensitive technologies and students at the origin-field level
- ▶ Tensions \rightarrow larger \downarrow CHN sensitive-field PhD students
- Sub-national impacts shift CHN students toward private schools in blue states

Theoretical contribution

- Geopolitics is known to reshape cross-border economic integration
- Limited understanding of how U.S.-China tensions have impacted migration compared to trade & investment
- → Focus on int'l students fills a critical gap in the literature
- \leadsto Improves understanding of geopolitics \to global talent flows

Empirical contribution

- Link sensitive technologies and students at the origin-field level
- $\blacktriangleright \ \, \text{Tensions} \rightarrow \text{larger} \downarrow \text{CHN sensitive-field PhD students}$
- Sub-national impacts shift CHN students toward private schools in blue states
- → Reveals new patterns of uneven ↓ among int'l students in the U.S.

Theoretical contribution

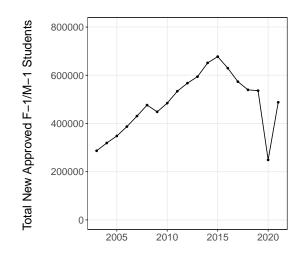
- Geopolitics is known to reshape cross-border economic integration
- Limited understanding of how U.S.-China tensions have impacted migration compared to trade & investment
- → Focus on int'l students fills a critical gap in the literature
- \sim Improves understanding of geopolitics \rightarrow global talent flows

Empirical contribution

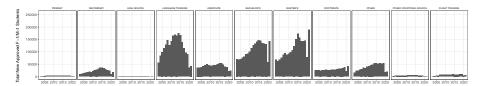
- Link sensitive technologies and students at the origin-field level
- lacktriangle Tensions ightarrow larger \downarrow CHN sensitive-field PhD students
- Sub-national impacts shift CHN students toward private schools in blue states
- → Reveals new patterns of uneven ↓ among int'l students in the U.S.
- → New sub-national policy implications of U.S.-China competition

Send comments and suggestions to:

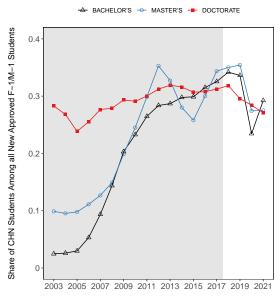
steven.liao@ucr.edu

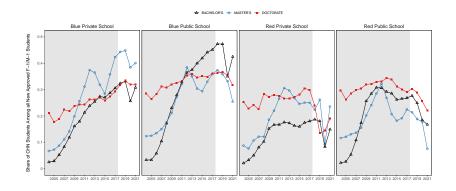

More information about this and other research:

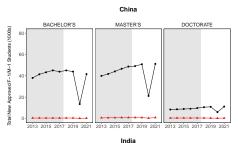
https://www.stevenliao.org/

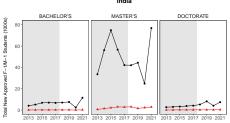

Extra Slides

- Aggregate Trends
- Education-level Trends
- Proportion of Students from China
- Proportion of Students from China by School Type
- Field-level Trends, Top 2 Origins
- Descriptive Stats: Int'l Ph.D. Students in Sensitive Fields
- Descriptive Stats: Int'l Master's Students in Sensitive Fields
- Validation: Similarity Scores & Field-Specific DID Estimates
- DID Analysis: Aggregate, Quasi-Poisson
- DID Analysis: States
- DID Analysis: Institutions, exclude 2020
- DID Analysis: Sensitive Fields, Dynamic


Aggregate Trends

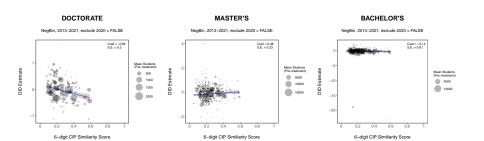

Educational-level Trends


Proportion of Int'l Students from China

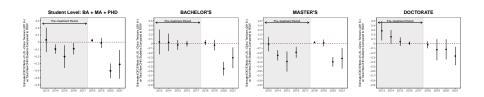


Prop. of Int'l Students from China, by School Type

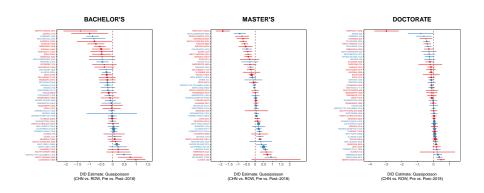
Sensitive vs. Non-Sensitive Fields, Top 2 Origins

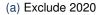

Descriptive Statistics: Int'l PhDs in Sensitive Fields

CIP Code	CIP Title	CN Students (13'-17')	ROW Students (13'-17')	CN Students (18'-21')	ROW Students (18'-21')	CN Change (%)	ROW Change (%)
40.0806	Nuclear Physics.	5	3	0	1	-100	-66.67
40.0808	Condensed Matter and Materials Physics.	9	11	0	2	-100	-81.82
15.0801	Aeronautical/Aerospace Engineering Technology/Technician.	1	1	0	0	-100	-100.00
15.0803	Automotive Engineering Technology/Technician.	19	13	0	0	-100	-100.00
11.1003	Computer and Information Systems Security/Auditing/Information Assurance.	9	32	1	217	-88.89	578.12
14.2001	Metallurgical Engineering.	18	30	5	26	-72.22	-13.33
14.2301	Nuclear Engineering.	154	226	43	193	-72.08	-14.60
14.1101	Engineering Mechanics.	50	97	18	48	-64	-50.52
14.0999	Computer Engineering, Other.	5	6	2	1	-60	-83.33
14.1003	Laser and Optical Engineering.	41	48	19	35	-53.66	-27.08
49.0101	Aeronautics/Aviation/Aerospace Science and Technology, General.	8	15	4	10	-50	-33.33
14.0201	Aerospace, Aeronautical, and Astronautical/Space Engineering, General.	240	885	126	805	-47.5	-9.04
14.1801	Materials Engineering.	1135	1119	757	1013	-33.3	-9.47
14.2201	Naval Architecture and Marine Engineering.	17	6	12	2	-29.41	-66.67
40.1001	Materials Science.	295	248	223	250	-24.41	0.81
14.1099	Electrical, Electronics, and Communications Engineering, Other.	46	109	42	62	-8.7	-43.12
40.0802	Atomic/Molecular Physics.	1	7	1	3	0	-57.14
40.1002	Materials Chemistry.	7	22	9	20	28.57	-9.09
14.4201	Mechatronics, Robotics, and Automation Engineering.	32	74	59	109	84.38	47.30
29.0203	Signal/Geospatial Intelligence.	2	3	6	6	200	100.00
15.0805	Mechanical/Mechanical Engineering Technology/Technician.	0	0	0	1	NaN	Inf
43.0403	Cyber/Computer Forensics and Counterterrorism.	0	0	0	12	NaN	Inf
15.0303	Electrical, Electronic, and Communications Engineering Technology/Technician.	0	1	0	0	NaN	-100.00
49.0104	Aviation/Airway Management and Operations.	0	2	0	0	NaN	-100.00


Descriptive Stats: Int'l MAs in Sensitive Fields

CIP Code	CIP Title	CN Students (13'-17')	ROW Students (13'-17')	CN Students (18'-21')	ROW Students (18'-21')	CN Change (%)	ROW Change (%)
15.0403	Electromechanical/Electromechanical Engineering Technology/Technician.	1	2	0	5	-100	150
40.1002	Materials Chemistry.	1	14	0	10	-100	-28.57
43.0301	Homeland Security.	3	30	0	29	-100	-3.33
49.0199	Air Transportation, Other.	1	14	0	4	-100	-71.43
15.0801	Aeronautical/Aerospace Engineering Technology/Technician.	2	4	0	0	-100	-100
40.0808	Condensed Matter and Materials Physics.	2	0	0	0	-100	NaN
49.0399	Marine Transportation, Other.	7	9	0	0	-100	-100
14.2001	Metallurgical Engineering.	14	45	1	31	-92.86	-31.11
49.0104	Aviation/Airway Management and Operations.	13	110	1	26	-92.31	-76.36
14.2201	Naval Architecture and Marine Engineering.	40	15	5	12	-87.5	-20
43.0403		19	159	3	389	-84.21	144.65
	Automotive Engineering Technology/Technician.	33	397	11	128	-66.67	-67.76
14.0201	Aerospace, Aeronautical, and Astronautical/Space Engineering, General.	326	1720	142	1097	-56.44	-36.22
14.1003	Laser and Optical Engineering.	42	40	19	11	-54.76	-72.5
14.2301	Nuclear Engineering.	50	162	29	86	-42	-46.91
14.1801	Materials Engineering.	1522	1009	945	722	-37.91	-28.44
14.1101	Engineering Mechanics.	16	57	12	20	-25	-64.91
40.1001	Materials Science.	491	238	372	159	-24.24	-33.19
15.0303	Electrical, Electronic, and Communications Engineering Technology/Technician.	8	146	7	29	-12.5	-80.14
29.0203	Signal/Geospatial Intelligence.	2	1	2	9	0	800
	Nuclear Medical Technology/Technologist.	1	5	1	12	0	140
11.1003		393	8186	409	8479	4.07	3.58
49.0101	Aeronautics/Aviation/Aerospace Science and Technology, General.	52	185	63	278	21.15	50.27
29.0207		4	55	5	89	25	61.82
14.1099	Electrical, Electronics, and Communications Engineering, Other.	261	461	329	203	26.05	-55.97
14.4201	Mechatronics, Robotics, and Automation Engineering.	192	436	292	1041	52.08	138.76
29.0299	Intelligence, Command Control and Information Operations, Other.	1	1	2	4	100	300
14.0999	Computer Engineering, Other.	22	62	50	225	127.27	262.9
15.0805	Mechanical/Mechanical Engineering Technology/Technician.	6	12	15	7	150	-41.67
15.0405	Robotics Technology/Technician.	10	12	27	31	170	158.33
43.0404	Cybersecurity Defense Strategy/Policy.	0	0	1	1	Inf	Inf
14.0202	Astronautical Engineering.	0	3	0	10	NaN	233.33
15.0508	Hazardous Materials Management and Waste Technology/Technician.	0	3	0	1	NaN	-66.67
15.0899	Mechanical Engineering Related Technologies/Technicians, Other.	0	0	0	1	NaN	Inf
40.0806	Nuclear Physics.	0	0	0	1	NaN	Inf
43.0399	Homeland Security, Other.	0	3	0	3	NaN	0
51.1002	Cytotechnology/Cytotechnologist.	0	10	0	6	NaN	-40
26.0912		0	5	0	0	NaN	-100
	Military and Strategic Leadership.	0	1	0	0	NaN	-100
30.2901	Maritime Studies.	0	3	0	0	NaN	-100
40.0802	Atomic/Molecular Physics.	0	3	0	0	NaN	-100
47.0607	Airframe Mechanics and Aircraft Maintenance Technology/Technician.	0	1	0	0	NaN	-100
47.0614	Alternative Fuel Vehicle Technology/Technician.	0	1	0	0	NaN	-100


Validation: Similarity Scores & DID estimates


Aggregate DID Analysis: Quasi-Poisson Results

DID Effects of U.S.-China Tensions by State

DID Results: Heterogeneity by State and Institution

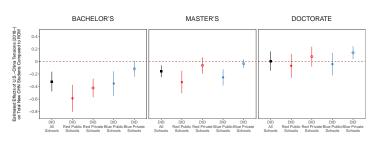
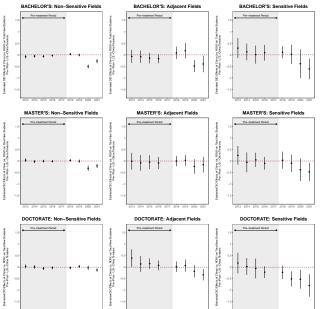



Figure: Relative Change of Total New Chinese International Students Compared to the ROW by State Partisanship and Institution Type

Dynamic DID Results

